Что такое файл ос

Обновлено: 07.07.2024

Файл представляет собой набор коррелированной информации, которая записывается во вторичном или энергонезависимом хранилище, таком как магнитные диски, оптические диски и ленты. Это метод сбора данных, который используется в качестве средства для ввода и получения вывода из этой программы.

В общем случае файл представляет собой последовательность битов, байтов или записей, значение которых определяется создателем файла и пользователем. Каждый файл имеет логическое расположение, где он находится для хранения и поиска.

Из этого руководства по операционной системе вы узнаете:

Цель системы управления файлами

Вот основные цели системы управления файлами:

  • Он обеспечивает поддержку ввода-вывода для различных типов устройств хранения.
  • Минимизирует шансы потерянных или уничтоженных данных
  • Помогает ОС стандартизировать подпрограммы интерфейса ввода / вывода для пользовательских процессов.
  • Он обеспечивает поддержку ввода / вывода для нескольких пользователей в многопользовательской системной среде.

Свойства файловой системы

Вот важные свойства файловой системы:

  • Файлы хранятся на диске или в другом хранилище и не исчезают при выходе пользователя из системы.
  • Файлы имеют имена и связаны с разрешением доступа, которое разрешает контролируемый обмен.
  • Файлы могут быть организованы или более сложные структуры, чтобы отразить отношения между ними.

Файловая структура

Файловая структура должна быть предопределенным форматом таким образом, чтобы операционная система понимала. Он имеет исключительно определенную структуру, основанную на его типе.

Три типа структуры файлов в ОС:

  • Текстовый файл: это последовательность символов, организованная в виде строк.
  • Объектный файл: это серия байтов, которая организована в блоки.
  • Исходный файл: это набор функций и процессов.

Атрибуты файла

Файл имеет имя и данные. Кроме того, он также хранит метаинформацию, такую ​​как дата и время создания файла, текущий размер, дата последнего изменения и т. Д. Вся эта информация называется атрибутами файловой системы.

Вот некоторые важные атрибуты файла, используемые в ОС:

  • Имя: это единственная информация, хранящаяся в удобочитаемой форме.
  • Идентификатор : каждый файл идентифицируется уникальным номером тега в файловой системе, называемой идентификатором.
  • Расположение: указывает на местоположение файла на устройстве.
  • Тип: Этот атрибут необходим для систем, которые поддерживают файлы различных типов.
  • Размер . Атрибут, используемый для отображения текущего размера файла.
  • Защита . Этот атрибут назначает и контролирует права доступа на чтение, запись и выполнение файла.
  • Время, дата и безопасность: используется для защиты, безопасности, а также для мониторинга

Тип файла

Это относится к способности операционной системы различать различные типы файлов, такие как текстовые, двоичные и исходные файлы. Однако в операционных системах, таких как MS_DOS и UNIX, есть файлы следующих типов:

Специальный символьный файл

Это аппаратный файл, который читает или записывает данные символьно, например, мышь, принтер и т. Д.

Обычные файлы

  • Эти типы файлов хранят информацию о пользователях.
  • Это могут быть текстовые, исполняемые программы и базы данных.
  • Это позволяет пользователю выполнять такие операции, как добавление, удаление и изменение.

Файлы каталогов

  • Каталог содержит файлы и другую связанную информацию об этих файлах. В основном это папка для хранения и организации нескольких файлов.

Специальные файлы

  • Эти файлы также называются файлами устройств. Он представляет физические устройства, такие как принтеры, диски, сети, флэш-накопители и т. Д.

Функции файла

  • Создайте файл, найдите место на диске и сделайте запись в каталоге.
  • Запись в файл, требуется позиционирование в файле
  • Чтение из файла предполагает размещение в файле
  • Удалить запись каталога, восстановить дисковое пространство.
  • Перестановка: переместить положение чтения / записи.

Обычно используемые термины в файловых системах

Этот элемент хранит одно значение, которое может быть статическим или переменной длины.

БАЗА ДАННЫХ:

Сбор связанных данных называется базой данных. Отношения между элементами данных являются явными.

RECORD:

Методы доступа к файлам

Три метода доступа к файлам:

  • Последовательный доступ
  • Прямой произвольный доступ
  • Индекс последовательного доступа

Последовательный доступ

В этом типе метода доступа к файлам доступ к записям осуществляется в определенной заранее определенной последовательности. В методе последовательного доступа информация, хранящаяся в файле, также обрабатывается одна за другой. Большинство компиляторов получают доступ к файлам, используя этот метод доступа.

Произвольный доступ

Метод произвольного доступа также называется прямым произвольным доступом. Этот метод позволяет получить доступ к записи напрямую. Каждая запись имеет свой собственный адрес, по которому можно напрямую получить доступ для чтения и записи.

Последовательный доступ

Этот тип метода доступа основан на простом последовательном доступе. В этом методе доступа для каждого файла создается индекс с прямым указателем на разные блоки памяти. В этом методе Индекс ищется последовательно, и его указатель может напрямую обращаться к файлу. Несколько уровней индексации могут быть использованы для обеспечения большей эффективности доступа. Это также уменьшает время, необходимое для доступа к одной записи.

Распределение пространства

В операционной системе файлам всегда выделяется дисковое пространство.

Три типа методов выделения пространства:

  • Связанное распределение
  • Индексированное распределение
  • Смежное Распределение

Смежное Распределение

  • Каждый файл использует непрерывное адресное пространство в памяти.
  • Здесь ОС назначает адрес диска в линейном порядке.
  • В методе смежного размещения внешняя фрагментация является самой большой проблемой.

Связанное распределение

  • Каждый файл содержит список ссылок.
  • Каталог содержит ссылку или указатель в первом блоке файла.
  • При этом методе нет внешней фрагментации
  • Этот метод размещения файлов используется для файлов с последовательным доступом.
  • Этот метод не идеален для файлов прямого доступа.

Индексированное распределение

  • Каталог содержит адреса блоков индекса конкретных файлов.
  • Создается индексный блок со всеми указателями для определенных файлов.
  • Все файлы должны иметь отдельные индексные блоки для хранения адресов дискового пространства.

Файловые каталоги

Один каталог может содержать или не содержать несколько файлов. Он также может иметь подкаталоги внутри основного каталога. Информация о файлах поддерживается каталогами. В ОС Windows это называется папками.

Содержание

История

Слово file впервые применено к компьютерному хранилищу в 1950 году. Реклама памяти на запоминающих ЭЛТ фирмы RCA в журнале «Popular Science» [1] гласила:

« …результаты бесчисленных вычислений можно держать «в картотеке» (on file) и получать снова. Эта «картотека» теперь существует в запоминающей трубке, разработанной в лабораториях RCA. Она электрически сохраняет цифры, отправленные в вычислительную машину, и держит их в хранилище, заодно запоминая новые — ускоряя интеллектуальные решения в лабиринтах математики. »

В 1952 году слово file отнесли к колоде перфокарт [2] . Поначалу словом file называли само устройство памяти, а не его содержимое (см. Регистровый файл). Например, диски IBM 350, использовавшиеся, например, в машине IBM 305, назывались disk files. Системы наподобие Compatible Time-Sharing System ввели концепцию файловой системы, когда на одном запоминающем устройстве существует несколько виртуальных «устройств памяти», что и дало слову «файл» современное значение. Имена файлов в CTTS состояли из двух частей, «основного имени» и «дополнительного имени» (последнее существует и поныне как расширение имени файла).

Классификация файлов

Содержимое файлов

Файлы могут содержать в себе любую информацию. Это могут быть как программы, выполняемые под управлением какой-либо операционной системы, либо файлы с данными для этих программ. Независимо от операционных систем персональных компьютеров все файлы можно разделить на текстовые и бинарные (по другому - двоичные ) файлы. Текстовыми файлами называют файлы, в которых используются в качестве информационных символы с шестнадцатеричными кодами 20h-7Eh (32 -126 десятичными) и 80h-7Eh (128 - 254 десятичными). В качестве служебных кодов и только в качестве них допускается использовать символы с кодами:

  • 09h (9) (HT) - горизонтальная табуляция.
  • 0Ah (10) (LF,EOL) - новая строка (перевод строки).
  • 0Bh (11) (VT) - вертикальная табуляция.
  • 0Ch (12) (FF) - новая строка (перевод страницы).
  • 0Dh (13) (CR) - возврат каретки.
  • 1Ah (26) (SUB,EOF) - конец файла.

Примечание: При визуализации текстового файла символ горизонтальной табуляции заменяется несколькими (обычно восемью) проблемами, символ вертикальной табуляции - несколькими пустыми строками. Символ возврата каретки переводит курсор (или позицию вывода нового символа) на первый элемент начала строки. Символ перевода строки выводит следующий символ на своем месте, только строкой ниже. Поэтому символ EOL (End-of-Line) действительности - это последовательность символов CR/LF. Все символы, расположенные после символа конца файла, при выводе игнорируются.

Среди всех текстовых файлов можно выделить подмножество чистых ASCII файлов , информационные символы которых имеют только коды с номерами 20h - 7Eh. Двоичные же файлы представляют из себя последовательность из любых символов. Их длина определяется из заголовка файла. Это разделение является важным для различных операционных систем, поскольку назначение и обработка бинарных и текстовых файлов в операционных системах различаются.

Другие виды классификации файлов

Также файлы можно разделить на исполняемые (программы) и неисполняемые ( файлы данных и документов). Исполняемые файлы могут запускаться операционной системой на выполнение, а неисполняемые файлы могут только изменять свое содержимое в процессе выполнения программ. Далее можно разделить файлы на основные , присутствие которых обязательно для работы операционной системы и программных продуктов, служебные , хранящие конфигурацию и настройки основных файлов, рабочие , содержимое которых изменяется в результате работы основных программных файлов и собственно ради которых и создаются все остальные файлы, а также временные файлы , создающиеся в момент работы основных и хранящие промежуточные результаты.

Файлы и каталоги

Следует отметить, что существует специальный вид файла, называемый каталогом (catalog) , или директорией (ditectory) . В нем содержатся ссылки на другие файлы. Поскольку ссылки на эти файлы содержатся лишь в одном из каталогов, для пользователи эти файлы как бы расположены в каталоге. На самом деле, конечно, все файлы находятся в секторах диска. Но это истинно лишь на физическом уровне, а на уровне представления данных файлы находятся в каталогах. Преимущества каталогов, особенности их работы с ними будут описаны ниже. Следует только отметить, что каталоги появились не сразу и не во всех операционных системах. Они возникли там, где требовался большой объем хранимой информации (например, в файловых системах жестких дисков) и, следовательно, возникли сложности с организацией и размещением большого числа файлов. Эти преимущества каталогов следует использовать при работе с операционными системами, содержащих каталоги.

Параметры файлов

Любой файл содержит в служебных полях следующую информацию о себе. Она включает имя, дату и время создания и модификации, свой размер, и другие атрибуты, зависящие от реализации файловой системы. То же относится и к каталогу. Имя и тип любого файла (и каталога) должны быть уникальными в пределах того каталога, в котором они находятся. Рассмотрим ограничения, налагаемые на файлы операционными системами.

Свойства файла

В зависимости от файловой системы, файл может обладать различным набором свойств.

Имя файла

В большинстве файловых систем имя файла используется для указания, к какому именно файлу производится обращение. В различных файловых системах ограничения на имя файла сильно различаются: в FAT16 и FAT12 размер имени файла ограничен 8.3 знаками (8 на имя и 3 на расширение); в других системах имя файла ограничено обычно в 255 байт; в NTFS имя ограничено в некоторых ОС 256 символами Unicode (по спецификации — 32 768 символов).

Помимо ограничений файловой системы, интерфейсы операционной системы дополнительно ограничивают набор символов, который допустим при работе с файлами.

Большинство операционных систем требуют уникальности имени файла в одном каталоге, хотя некоторые системы допускают файлы с одинаковыми именами (например, при работе с ленточными накопителями).

Расширение имени файла

Расширение имени файла (часто расширение файла или расширение) как самостоятельный атрибут файла существует в файловых системах FAT16, FAT32, NTFS, используемых операционными системами MS-DOS, DR-DOS, PC DOS, MS Windows и используется для определения типа файла. Оно позволяет системе определить, каким приложением следует открывать данный файл. По умолчанию в операционной системе Windows расширение скрыто от пользователя.

В остальных файловых системах расширение — условность, часть имени, отделённая самой правой точкой в имени.

Основные атрибуты

В некоторых файловых системах, таких как NTFS, предусмотрены атрибуты (обычно это бинарное значение «да»/«нет», кодируемое одним битом). Во многих современных операционных системах атрибуты практически не влияют на возможность доступа к файлам, для этого в некоторых операционных и файловых системах существуют права доступа.

Название атрибута перевод значение файловые системы операционные системы
READ ONLY только для чтения в файл запрещено писать FAT32, FAT12, FAT16, NTFS, HPFS, VFAT DOS, OS/2, Windows
SYSTEM системный критический для работы операционной системы файл FAT32, FAT12, FAT16, NTFS, HPFS, VFAT DOS, OS/2, Windows
HIDDEN скрытый файл скрывается от показа, пока явно не указано обратное FAT32, FAT12, FAT16, NTFS, HPFS, VFAT DOS, OS/2, Windows
ARCHIVE архивный (требующий архивации) файл изменён после резервного копирования или не был скопирован программами резервного копирования; при изменении файла ОС автоматически устанавливает этот атрибут FAT32, FAT12, FAT16, NTFS, HPFS, VFAT DOS, OS/2, Windows
Suid Установка пользовательского ID выполнение программы от имени владельца ext2 Unix-like
Sgid Установка группового ID выполнение программы от имени группы (для каталогов: любой файл созданный в каталоге с установленным SGID, получит заданную группу-владельца) ext2 Unix-like
Sticky bit липкий бит изначально предписывал ядру не выгружать завершившуюся программу из памяти сразу, а лишь спустя некоторое время, чтобы избежать постоянной загрузки с диска наиболее часто используемых программ, в настоящее время в разных ОС используется по-разному ext2 Unix-like

Время

Для файла могут быть определены временные метки создания, модификации и последнего доступа.

Владелец и группа файла

В некоторых файловых системах предусмотрено указание на владельца файла и группу-владельца.

Права доступа

В некоторых файловых системах предусмотрена возможность для ограничения доступа пользователей к содержимому файла

В UNIX-подобных операционных системах для файлов обычно выделяют три типа прав: на запись, чтение и выполнение.

Каждое право задаётся раздельно для владельца, для группы и для всех остальных. ACL позволяют расширить этот список.

В операционных системах Windows NT при работе с файловой системой NTFS права доступа задаются явно для пользователей или групп (или наследуются от вышестоящих объектов). Права в себя включают право на чтение, запись исполнение, удаление, смену атрибутов и владельца, создание и удаление подпапок (для папок) и чтение прав доступа.

Каждое право может быть задано как разрешением, так и запретом, запрет имеет больший приоритет, чем разрешение. Представление файлов в графических оболочках.

Просмотр файлов в DOS Shell

Оболочка DOS Shell не случайно рассматривается первой среди всех графических оболочек фирмы Microsoft. Именно здесь зародились все остальные приемы работы и назначения клавиш, используемые в более “молодых” оболочках.

Этот интерфейс предоставляет пользователю наглядный способ работы с операционной системой. Для выбора и ввода команд можно использовать клавиатуру, либо мышь.

Интерфейс SHELL представляет собой программу, которая выполняет функции DOS. При работе с этой программой обычный символ готовности (>) отсутствует.

Выбор и ввод команд DOS осуществляется с использованием меню и различных графических представлений. Интерфейс SHELL устроен таким образом, что пользователь может сам добавлять в него нужные ему команды и программы.

Оболочка Shell запускается командой:

После ввода этой команды и запуска MS-DOS SHELL на экране появляется окно интерфейса. Программа DOSSHELL занимает 4,4 Кб памяти.

Выход и возврат в Shell

Некоторые программы не работают под управлением интерфейса SHELL. Для их запуска необходимо выйти из этой оболочки. Существует два Способа выхода из MS-DOS SHELL, Если нужно временно покинуть SHELL для выполнения каких-либо действий с использованием командного режима DOS, то следует нажать клавиши Shift+F9 либо в списке программ Главной Группы (Main) выбрать Командный Режим (Command Prompt). На экране дисплея появляется текст:

Microsoft (R) MS-DOS (R) Version 5.0 (С) Copyright Corp 1981- и символ готовности, например, С:\>.

Для возврата в SHELL следует ввести команду EXIT. Возврат происходит в тот каталог, из которого был осуществлен выход из SHELL.

Резидентные в памяти программы (TSR) следует запускать до ввода команды DOSSHELL. Например, команду PRINT необходимо вводить до запуска интерфейса SHELL

Если нужно окончательно выйти из SHELL и вернуться в командный режим DOS, то следует нажать функциональную клавишу F3. После этого на экране появляется символ готовности DOS (>) и программа SHELL удаляется из памяти, освобождая пространство размером 4,4 Кб. Аналогичный выход из SHELL осуществляется нажатием клавиш Alt+F4, либо выбором eXit (Выход) в меню File (Файл). Обратно к интерфейсу SHELL можно вернуться повторным его запуском командой DOSSHELL.

Терминология, используемая в Shell

После ввода команды DOSSHELL на экране появляется окно графического интерфейса Shell. Графический интерфейс может работать в двух режимах:

  • Графический режим: в качестве указателя мыши используется стрелка, а место указания выбора каталога или файла обозначается пиктограммой в виде прямоугольника.
  • Текстовый режим: В качестве указателя мыши используется прямоугольник, а место указания выбора каталога обозначается квадратными скобками. Перед файлами такое место указания не предусмотрено.

При описании графического интерфейса SHELL используется следующая терминология:

Представление файлов и каталогов в графической оболочке SHELL осуществляется с помощью дерева каталогов и списка файлов в текущем каталоге.

Операции над файлами

В процессе работы на компьютере над файлами чаще всего производятся следующие операции:

  • Копирование — копия файла помещается в другой каталог.
  • Чтение — данные из файла помещаются в область памяти.
  • Перемещение — сам файл перемещается в другой каталог.
  • Удаление — запись о файле удаляется из каталога.
  • Переименование — изменяется имя файла.
  • Запись — в файл помещаются данные.

Особенности реализации

В операционной системе UNIX процессы (обычно находятся в каталоге /proc) и устройства (/dev) представляются в виде файлов особого рода, что позволяет использовать некоторые файловые операции для манипуляции этими объектами.

В некоторых файловых системах (например, в файловой системе OS VAX VMS) файлы имеют версию, что позволяет открывать более старые варианты данного файла. В файловой системе Mac OS (HFS) у файлов есть два «потока»: поток данных (где хранится содержимое файла) и поток ресурсов, хранящий информацию о программе, предназначенной для открывания данного файла и, возможно, некоторую информацию для этой программы. В NTFS файл может содержать, кроме основного, сколько угодно именованных потоков.




Файловая система . На каждом носителе информации (гибком, жестком или лазерном диске) может храниться большое количество файлов. Порядок хранения файлов на диске определяется используемой файловой системой.

Каждый диск разбивается на две области: обла сть хранения файлов и каталог. Каталог содержит имя файла и указание на начало его размещения на диске. Если провести аналогию диска с книгой, то область хранения файлов соответствует ее содержанию, а каталог - оглавлению. Причем книга состоит из страниц, а диск - из секторов.

Для дисков с небольшим количеством файлов (до нескольких десятков) может использоваться одноуровневая файловая система , когда каталог (оглавление диска) представляет собой линейную последовательность имен файлов (табл. 1.2). Такой каталог можно сравнить с оглавлением детской книжки, которое содержит только названия отдельных рассказов.

Если на диске хранятся сотни и тысячи файлов, то для удобства поиска используется многоуровневая иерархическая файловая система , которая имеет древовидную структуру. Такую иерархическую систему можно сравнить, например, с оглавлением данного учебника, которое представляет собой иерархическую систему разделов, глав, параграфов и пунктов.

Начальный, корневой каталог содержит вложенные каталоги 1-го уровня, в свою очередь, каждый из последних может содержать вложенные каталоги 2-го уровня и так далее. Необходимо отметить, что в каталогах всех уровней могут храниться и файлы.

Например, в корневом каталоге могут находиться два вложенных каталога 1-го уровня (Каталог_1, Каталог_2) и один файл (Файл_1). В свою очередь, в каталоге 1-го уровня (Каталог_1) находятся два вложенных каталога второго уровня (Каталог_1.1 и Каталог_1.2) и один файл (Файл_1.1) - рис. 1.3.

Файловая система - это система хранения файлов и организации каталогов.

Рассмотрим иерархическую файловую систему на конкретном примере. Каждый диск имеет логическое имя (А:, В: - гибкие диски, С:, D:, Е: и так далее - жесткие и лазерные диски).

Пусть в корневом каталоге диска С: имеются два каталога 1-го уровня (GAMES, TEXT), а в каталоге GAMES один каталог 2-го уровня (CHESS). При этом в каталоге TEXT имеется файл proba.txt, а в каталоге CHESS - файл chess.exe (рис. 1.4).

Рис. 1.4. Пример иерархической файловой системы

Путь к файлу . Как найти имеющиеся файлы (chess.exe, proba.txt) в данной иерархической файловой системе? Для этого необходимо указать путь к файлу. В путь к файлу входят записываемые через разделитель "\" логическое имя диска и последовательность имен вложенных друг в друга каталогов, в последнем из которых содержится нужный файл. Пути к вышеперечисленным файлам можно записать следующим образом:

Путь к файлу вместе с именем файла называют иногда полным именем файла.

Пример полного имени файла:

Представление файловой системы с помощью графического интерфейса . Иерархическая файловая система MS-DOS, содержащая каталоги и файлы, представлена в операционной системе Windows с помощью графического интерфейса в форме иерархической системы папок и документов. Папка в Windows является аналогом каталога MS-DOS

Однако иерархическая структура этих систем несколько различается. В иерархической файловой системе MS-DOS вершиной иерархии объектов является корневой каталог диска, который можно сравнить со стволом дерева, на котором растут ветки (подкаталоги), а на ветках располагаются листья (файлы).

В Windows на вершине иерархии папок находится папка Рабочий стол. Следующий уровень представлен папками Мой компьютер, Корзина и Сетевое окружение (если компьютер подключен к локальной сети) - рис. 1.5.

Рис. 1.5. Иерархическая структура папок

Если мы хотим ознакомиться с ресурсами компьютера, необходимо открыть папку Мой компьютер.

1. В окне Мой компьютер находятся значки имеющихся в компьютере дисков. Активизация (щелчок) значка любого диска выводит в левой части окна информацию о его емкости, занятой и свободной частях.

Типы файловых систем

Рядовому пользователю компьютерных электронных устройств редко, но приходится сталкиваться с таким понятием, как «выбор файловой системы». Чаще всего это происходит при необходимости форматирования внешних накопителей (флешек, microSD), установке операционных систем, восстановлении данных на проблемных носителях, в том числе жестких дисках. Пользователям Windows предлагается выбрать тип файловой системы, FAT32 или NTFS, и способ форматирования (быстрое/глубокое). Дополнительно можно установить размер кластера. При использовании ОС Linux и macOS названия файловых систем могут отличаться.

Возникает логичный вопрос: что такое файловая система и в чем ее предназначение? В данной статье дадим ответы на основные вопросы касательно наиболее распространенных ФС.

Что такое файловая система

Обычно вся информация записывается, хранится и обрабатывается на различных цифровых носителях в виде файлов. Далее, в зависимости от типа файла, кодируется в виде знакомых расширений – *exe, *doc, *pdf и т.д., происходит их открытие и обработка в соответствующем программном обеспечении. Мало кто задумывается, каким образом происходит хранение и обработка цифрового массива в целом на соответствующем носителе.

Операционная система воспринимает физический диск хранения информации как набор кластеров размером 512 байт и больше. Драйверы файловой системы организуют кластеры в файлы и каталоги, которые также являются файлами, содержащими список других файлов в этом каталоге. Эти же драйверы отслеживают, какие из кластеров в настоящее время используются, какие свободны, какие помечены как неисправные.

Запись файлов большого объема приводит к необходимости фрагментации, когда файлы не сохраняются как целые единицы, а делятся на фрагменты. Каждый фрагмент записывается в отдельные кластеры, состоящие из ячеек (размер ячейки составляет один байт). Информация о всех фрагментах, как части одного файла, хранится в файловой системе.

Файловая система связывает носитель информации (хранилище) с прикладным программным обеспечением, организуя доступ к конкретным файлам при помощи функционала взаимодействия программ A PI. Программа, при обращении к файлу, располагает данными только о его имени, размере и атрибутах. Всю остальную информацию, касающуюся типа носителя, на котором записан файл, и структуры хранения данных, она получает от драйвера файловой системы.

На физическом уровне драйверы ФС оптимизируют запись и считывание отдельных частей файлов для ускоренной обработки запросов, фрагментации и «склеивания» хранящейся в ячейках информации. Данный алгоритм получил распространение в большинстве популярных файловых систем на концептуальном уровне в виде иерархической структуры представления метаданных (B-trees). Технология снижает количество самых длительных дисковых операций – позиционирования головок при чтении произвольных блоков. Это позволяет не только ускорить обработку запросов, но и продлить срок службы HDD. В случае с твердотельными накопителями, где принцип записи, хранения и считывания информации отличается от применяемого в жестких дисках, ситуация с выбором оптимальной файловой системы имеет свои нюансы.

Основные функции файловых систем

Файловая система отвечает за оптимальное логическое распределение информационных данных на конкретном физическом носителе. Драйвер ФС организует взаимодействие между хранилищем, операционной системой и прикладным программным обеспечением. Правильный выбор файловой системы для конкретных пользовательских задач влияет на скорость обработки данных, принципы распределения и другие функциональные возможности, необходимые для стабильной работы любых компьютерных систем. Иными словами, это совокупность условий и правил, определяющих способ организации файлов на носителях информации.

Основными функциями файловой системы являются:

  • размещение и упорядочивание на носителе данных в виде файлов;
  • определение максимально поддерживаемого объема данных на носителе информации;
  • создание, чтение и удаление файлов;
  • назначение и изменение атрибутов файлов (размер, время создания и изменения, владелец и создатель файла, доступен только для чтения, скрытый файл, временный файл, архивный, исполняемый, максимальная длина имени файла и т.п.);
  • определение структуры файла;
  • поиск файлов;
  • организация каталогов для логической организации файлов;
  • защита файлов при системном сбое;
  • защита файлов от несанкционированного доступа и изменения их содержимого.

VDS Timeweb арендовать

Задачи файловой системы

Функционал файловой системы нацелен на решение следующих задач:

  • присвоение имен файлам;
  • программный интерфейс работы с файлами для приложений;
  • отображение логической модели файловой системы на физическую организацию хранилища данных;
  • поддержка устойчивости файловой системы к сбоям питания, ошибкам аппаратных и программных средств;
  • содержание параметров файла, необходимых для правильного взаимодействия с другими объектами системы (ядро, приложения и пр.).

В многопользовательских системах реализуется задача защиты файлов от несанкционированного доступа, обеспечение совместной работы. При открытии файла одним из пользователей для других этот же файл временно будет доступен в режиме «только чтение».

Вся информация о файлах хранится в особых областях раздела (томах). Структура справочников зависит от типа файловой системы. Справочник файлов позволяет ассоциировать числовые идентификаторы уникальных файлов и дополнительную информацию о них с непосредственным содержимым файла, хранящимся в другой области раздела.

Операционные системы и типы файловых систем

Существует три основных вида операционных систем, используемых для управления любыми информационными устройствами: Windows компании Microsoft, macOS разработки Apple и операционные системы с открытым исходным кодом на базе Linux. Все они, для взаимодействия с физическими носителями, используют различные типы файловых систем, многие из которых дружат только со «своей» операционкой. В большинстве случаев они являются предустановленными, рядовые пользователи редко создают новые дисковые разделы и еще реже задумываются об их настройках.

В случае с Windows все выглядит достаточно просто: NTFS на всех дисковых разделах и FAT32 (или NTFS) на флешках. Если установлен NAS (сервер для хранения данных на файловом уровне), и в нем используется какая-то другая файловая система, то практически никто не обращает на это внимания. К нему просто подключаются по сети и качают файлы.

На мобильных гаджетах с ОС Android чаще всего установлена ФС версии ext4 во внутренней памяти и FAT32 на карточках microSD. Владельцы продукции Apple зачастую вообще не имеют представления, какая файловая система используется на их устройствах – HFS+, HFSX, APFS, WTFS или другая. Для них существуют лишь красивые значки папок и файлов в графическом интерфейсе.

Более богатый выбор у линуксоидов. Но здесь настройка и использование определенного типа файловой системы требует хотя бы минимальных навыков программирования. Тем более, мало кто задумывается, можно ли использовать в определенной ОС «неродную» файловую систему. И зачем вообще это нужно.

Рассмотрим более подробно виды файловых систем в зависимости от их предпочтительного использования с определенной операционной системой.

Файловые системы Windows

Исходный код файловой системы, получившей название FAT, был разработан по личной договоренности владельца Microsoft Билла Гейтса с первым наемным сотрудником компании Марком Макдональдом в 1977 году. Основной задачей FAT была работа с данными в операционной системе Microsoft 8080/Z80 на базе платформы MDOS/MIDAS. Файловая система FAT претерпела несколько модификаций – FAT12, FAT16 и, наконец, FAT32, которая используется сейчас в большинстве внешних накопителей. Основным отличием каждой версии является преодоление ограниченного объема доступной для хранения информации. В дальнейшем были разработаны еще две более совершенные системы обработки и хранения данных – NTFS и ReFS.

FAT (таблица распределения файлов)

Числа в FAT12, FAT16 и FAT32 обозначают количество бит, используемых для перечисления блока файловой системы. FAT32 является фактическим стандартом и устанавливается на большинстве видов сменных носителей по умолчанию. Одной из особенностей этой версии ФС является возможность применения не только на современных моделях компьютеров, но и в устаревших устройствах и консолях, снабженных разъемом USB.

Пространство FAT32 логически разделено на три сопредельные области:

  • зарезервированный сектор для служебных структур;
  • табличная форма указателей;
  • непосредственная зона записи содержимого файлов.

К недостатком стандарта FAT32 относится ограничение размера файлов на диске до 4 Гб и всего раздела в пределах 8 Тб. По этой причине данная файловая система чаще всего используется в USB-накопителях и других внешних носителях информации. Для установки последней версии ОС Microsoft Windows 10 на внутреннем носителе потребуется более продвинутая файловая система.

С целью устранения ограничений, присущих FAT32, корпорация Microsoft разработала обновленную версию файловой системы exFAT (расширенная таблица размещения файлов). Новая ФС очень схожа со своим предшественником, но позволяет пользователям хранить файлы намного большего размера, чем четыре гигабайта. В exFAT значительно снижено число перезаписей секторов, ответственных за непосредственное хранение информации. Функция очень важна для твердотельных накопителей ввиду необратимого изнашивания ячеек после определенного количества операций записи. Продукт exFAT совместим с операционными системами Mac, Android и Windows. Для Linux понадобится вспомогательное программное обеспечение.

NTFS (файловая система новой технологии)

Стандарт NTFS разработан с целью устранения недостатков, присущих более ранним версиям ФС. Впервые он был реализован в Windows NT в 1995 году, и в настоящее время является основной файловой системой для Windows. Система NTFS расширила допустимый предел размера файлов до шестнадцати гигабайт, поддерживает разделы диска до 16 Эб (эксабайт, 10 18 байт ). Использование системы шифрования Encryption File System (метод «прозрачного шифрования») осуществляет разграничение доступа к данным для различных пользователей, предотвращает несанкционированный доступ к содержимому файла. Файловая система позволяет использовать расширенные имена файлов, включая поддержку многоязычности в стандарте юникода UTF, в том числе в формате кириллицы. Встроенное приложение проверки жесткого диска или внешнего накопителя на ошибки файловой системы chkdsk повышает надежность работы харда, но отрицательно влияет на производительность.

ReFS (Resilient File System)

Последняя разработка Microsoft, доступная для серверов Windows 8 и 10. Архитектура файловой системы в основном организована в виде B + -tree. Файловая система ReFS обладает высокой отказоустойчивостью благодаря реализации новых функций:

  • Copy-on-Write (CoW) – никакие метаданные не изменяются без копирования;
  • данные записываются на новое дисковое пространство, а не поверх существующих файлов;
  • при модификации метаданных новая копия хранится в свободном дисковом пространстве, затем система создает ссылку из старых метаданных на новую версию.

Все это позволяет повысить надежность хранения файлов, обеспечивает быстрое и легкое восстановление данных.

Файловые системы macOS

Для операционной системы macOS компания Apple использует собственные разработки файловых систем:

Файловые системы macOS

  1. HFS+, которая является усовершенствованной версией HFS, ранее применяемой на компьютерах Macintosh, и ее более соверешенный аналог APFS. Стандарт HFS+ используется во всех устройствах под управлением продуктов Apple, включая компьютеры Mac, iPod, а также Apple X Server.
  2. Кластерная файловая система Apple Xsan, созданная из файловых систем StorNext и CentraVision, используется в расширенных серверных продуктах. Эта файловая система хранит файлы и папки, информацию Finder о просмотре каталогов, положениях окна и т.д.

Файловые системы Linux

В отличие от ОС Windows и macOS, ограничивающих выбор файловой системы предустановленными вариантами, Linux предоставляет возможность использования нескольких ФС, каждая из которых оптимизирована для решения определенных задач. Файловые системы в Linux используются не только для работы с файлами на диске, но и для хранения данных в оперативной памяти или доступа к конфигурации ядра во время работы системы. Все они включены в ядро и могут использоваться в качестве корневой файловой системы.

Файловая система Линукс

Основные файловые системы, используемые в дистрибутивах Linux:

Ext2, Ext3, Ext4 или Extended Filesystem – стандартная файловая система, первоначально разработанная еще для Minix. Содержит максимальное количество функций и является наиболее стабильной в связи с редкими изменениями кодовой базы. Начиная с ext3 в системе используется функция журналирования. Сегодня версия ext4 присутствует во всех дистрибутивах Linux.

JFS или Journaled File System разработана в IBM в качестве альтернативы для файловых систем ext. Сейчас она используется там, где необходима высокая стабильность и минимальное потребление ресурсов (в первую очередь в многопроцессорных компьютерах). В журнале хранятся только метаданные, что позволяет восстанавливать старые версии файлов после сбоев.

ReiserFS также разработана в качестве альтернативы ext3, поддерживает только Linux. Динамический размер блока позволяет упаковывать несколько небольших файлов в один блок, что предотвращает фрагментацию и улучшает работу с небольшими файлами. Недостатком является риск потери данных при отключении энергии.

XFS рассчитана на файлы большого размера, поддерживает диски до 2 терабайт. Преимуществом системы является высокая скорость работы с большими файлами, отложенное выделение места, увеличение разделов на лету, незначительный размер служебной информации. К недостаткам относится невозможность уменьшения размера, сложность восстановления данных и риск потери файлов при аварийном отключении питания.

Btrfs или B-Tree File System легко администрируется, обладает высокой отказоустойчивостью и производительностью. Используется как файловая система по умолчанию в OpenSUSE и SUSE Linux.

Другие ФС, такие как NTFS, FAT, HFS, могут использоваться в Linux, но корневая файловая система на них не устанавливается, поскольку они для этого не предназначены.

Дополнительные файловые системы

В операционных системах семейства Unix BSD (созданы на базе Linux) и Sun Solaris чаще всего используются различные версии ФС UFS (Unix File System), известной также под названием FFS (Fast File System). В современных компьютерных технологиях данные файловые системы могут быть заменены на альтернативные: ZFS для Solaris, JFS и ее производные для Unix.

Кластерные файловые системы включают поддержку распределенных хранилищ, расширяемость и модульность. К ним относятся:

  • ZFS – «Zettabyte File System» разработана для распределенных хранилищ Sun Solaris OS;
  • Apple Xsan – эволюция компании Apple в CentraVision и более поздних разработках StorNext;
  • VMFS (Файловая система виртуальных машин) разработана компанией VMware для VMware ESX Server;
  • GFS – Red Hat Linux именуется как «глобальная файловая система» для Linux;
  • JFS1 – оригинальный (устаревший) дизайн файловой системы IBM JFS, используемой в старых системах хранения AIX.

Практический пример использования файловых систем

Владельцы мобильных гаджетов для хранения большого объема информации используют дополнительные твердотельные накопители microSD (HC), по умолчанию отформатированные в стандарте FAT32. Это является основным препятствием для установки на них приложений и переноса данных из внутренней памяти. Чтобы решить эту проблему, необходимо создать на карточке раздел с ext3 или ext4. На него можно перенести все файловые атрибуты (включая владельца и права доступа), чтобы любое приложение могло работать так, словно запустилось из внутренней памяти.

Операционная система Windows не умеет делать на флешках больше одного раздела. С этой задачей легко справится Linux, который можно запустить, например, в виртуальной среде. Второй вариант - использование специальной утилиты для работы с логической разметкой, такой как MiniTool Partition Wizard Free . Обнаружив на карточке дополнительный первичный раздел с ext3/ext4, приложение Андроид Link2SD и аналогичные ему предложат куда больше вариантов.

Файловая система для microSD

Флешки и карты памяти быстро умирают как раз из-за того, что любое изменение в FAT32 вызывает перезапись одних и тех же секторов. Гораздо лучше использовать на флеш-картах NTFS с ее устойчивой к сбоям таблицей $MFT. Небольшие файлы могут храниться прямо в главной файловой таблице, а расширения и копии записываются в разные области флеш-памяти. Благодаря индексации на NTFS поиск выполняется быстрее. Аналогичных примеров оптимизации работы с различными накопителями за счет правильного использования возможностей файловых систем существует множество.

Надеюсь, краткий обзор основных ФС поможет решить практические задачи в части правильного выбора и настройки ваших компьютерных устройств в повседневной практике.

Читайте также: