Что такое код dns

Обновлено: 06.07.2024

Стандарт DNS описан в RFC 1035. Все диаграммы и бóльшая часть информации для этой статьи взята в данном RFC. Я бы рекомендовал обратиться к нему, если что-то непонятно.

В этой статье мы используем шестнадцатеричный формат для упрощения работы с бинарником. Ниже я добавил краткое пояснение, как они переводятся друг в друга [1] .

Заголовок

У заголовка следующий формат:

Для нас имеют значение следующие поля:

Полный заголовок

Совместив все поля, можно записать наш заголовок в шестнадцатеричном формате:


Для получения параметров запроса мы объединяем значения полей от QR до RCODE, помня о том, что не упомянутые выше поля установлены в 0. Это даёт последовательность 0000 0001 0000 0000 , которая в шестнадцатеричном формате соответствует 01 00 . Так выглядит стандартный DNS-запрос.

Вопрос

Секция вопроса имеет следующий формат:

Для составления надписи нужно закодировать каждую секцию URL, получив ряд байтов. Надпись — это ряд байтов, перед которыми стоит байт беззнакового целого, обозначающий количество байт в секции. Для кодирования нашего URL можно просто указать ASCII-код каждого символа.


В секции QNAME разрешено нечётное число байтов, так что набивка байтами не требуется перед началом секции QTYPE.


Можете запустить этот скрипт, скопировав код в файл query.py и запустив в консоли команду $ python query.py . У него нет никаких внешних зависимостей, и он должен работать на Python 2 или 3.

После выполнения скрипт выводит ответ от DNS-сервера. Разобьём его на части и посмотрим, что можно выяснить.

Заголовок


Преобразуем 81 80 в двоичный формат:


Преобразуя эти биты по вышеуказанной схеме, можно увидеть:

Секция вопроса

Секция вопроса идентична такой же секции в запросе:

Секция ответа

У секции ответа формат ресурсной записи:

    NAME : Этой URL, чей IP-адрес содержится в данном ответе. Он указан в сжатом формате:

В данном случае смещение составляет c0 0c или двоичном формате:

Мы увидели, как составить DNS-запрос. Теперь можно попробовать следующее:

Существует масса способов заблокировать рекламу на Android. Самый простой – воспользоваться специальным расширением для браузера, который будет по умолчанию блокировать все рекламные объявления в интернете. Другое дело, что у него есть пара довольно ощутимых недостатков. Во-первых, рекламу он блокирует только в браузере, а, во-вторых, для Chrome не подходит в принципе, потому что мобильная версия браузера их не поддерживает. Поэтому пользователям Android приходится искать альтернативные способы блокировки рекламы. Рассказываю о самом простом, надёжном и универсальном.


Заблокировать рекламу можно без установки расширений и сторонних приложений

Речь идёт об использовании частного DNS-адреса. Википедия говорит, что DNS – это компьютерная распределённая система для получения информации о доменах. То есть своего рода распределительный пункт, который обрабатывает информацию о сайтах, а затем подаёт её вам в том или ином виде. Одна из функций DNS – это способность блокировать определённые типы сайтов или контента, который на них содержится, на уровне трафика. Благодаря ей, кстати, мы можем заблокировать всю рекламу на смартфоне.

Как заблокировать рекламу на сайтах и в приложениях

Небольшой дисклеймер: на сайте Adguard, сервиса блокировки рекламы, говорится, что для успешного блокирования рекламы необходимо установить их приложение. Вот оно. Но у меня всё получилось и без него, имейте это ввиду.

  • Перейдите в приложение «Настройки» на своём смартфоне;
  • В разделе «Другие соединения» откройте «Частный DNS»;

Приватный DNS

Замена DNS позволит заблокировать рекламу, поскольку смартфон будет препятствовать прохождению рекламного трафика

Кстати, в период Чёрной пятницы действует промокод BF2020, который позволяет заблокировать рекламу на трёх устройствах сразу с помощью AdGuard на целый год. В итоге получится всего 17 рублей в месяц.

В зависимости от смартфона и используемой прошивки может потребоваться нажать на кнопку «Сохранить». Но, судя по всему, на некоторых устройствах эта кнопка перестаёт подсвечиваться сразу после прописывания приватного DNS-адреса. С чем это связано, не знаю, но это и не важно, потому что достижению цели никак не мешает. В этом случае просто покиньте настройки, ничего не сохраняя – все изменения будут применены автоматически и никуда не денутся.

Самый лучший блокировщик рекламы

Как я уже сказал выше, DNS – это своего рода распределитель. Когда мы используем DNS от AdGuard, он начинает анализировать весь трафик, который стремится пройти через наши смартфоны и блокировать тот, который исходит от рекламных сетей. Дело в том, что рекламных сетей относительно немного, и AdGuard известны почти все. Поэтому можете быть уверены, что 95% всей рекламы, которая встречается вам в интернете, в приложениях и тем более в играх, будет заблокировано.

Блокировка рекламы

DNS блокирует только рекламный контент, поэтому на месте скрытых баннеров вы будете видеть вот такие заплатки

Если вам нужно настроить дополнительные фильтры, например, чтобы запретить возможность входа на некоторые сайты или, напротив, добавить в белый список некоторые адреса, вам потребуется установить приложение AdGuard. Самые распространённые сценарии применения приложения – это блокировка сайтов для взрослых на детских смартфонах или разрешение на демонстрацию рекламы в играх, где за её просмотр дают внутриигровую валюту или другие плюшки. Сделать это проще простого – достаточно войти в раздел «Фильтры» и настроить всё так, как вам нужно.

Как Google Chrome изменился после обновления и почему его стоит установить всем

Блокировка рекламы по DNS – это очень удобная штука именно за счёт своей универсальности. То есть вы можете прописать частный DNS-адрес AdGuard в настройках всех своих устройств и больше никогда не видеть большую часть рекламных объявлений. Кроме того, аналогичным образом вы сможете заблокировать рекламу, которую распространяют вредоносы adware. Нередко они проникают на устройства пользователей под видом доброкачественного софта, а потом внедряют рекламные баннеры в шторки уведомлений, пункты настроек и системные приложения.

Что такое DNS-сервер — объясняем простыми словами

Из этой статьи вы узнаете ряд нюансов работы глобальной сети. Осветим, что такое Domain Name System, как работает технология, какие DNS-серверы бывают и другие важные вопросы.

Что такое DNS?

Прежде чем начать говорить о DNS-серверах, расскажем о самой технологии DNS (Domain Name System). DNS — это технология, которая позволяет браузеру вроде Firefox, Chrome или Edge найти запрошенный пользователем сайт по его имени.

Как работает DNS?

Принцип работы DNS похож на поиск и вызов контактов из телефонной книги смартфона. Ищем имя, нажимаем «позвонить», и телефон соединяет нас с нужным абонентом. Понятно, что смартфон в ходе звонка не использует само имя человека, вызов возможен только по номеру телефона. Если вы внесете имя без номера телефона, позвонить человеку не сможете.


Что такое DNS-сервер?

Это как раз и есть «книга контактов» интернета. DNS-сервер — это специализированный компьютер (или группа), который хранит IP-адреса сайтов. Последние, в свою очередь, привязаны к именам сайтов и обрабатывает запросы пользователя. В интернете много DNS-серверов, они есть у каждого провайдера и обслуживают их пользователей.

Зачем нужны DNS-серверы и какие они бывают?

Основное предназначение DNS-серверов — хранение информации о доменах и ее предоставление по запросу пользователей, а также кэширование DNS-записей других серверов. Это как раз «книга контактов», о которой мы писали выше.

В случае кэширования все несколько сложнее. Дело в том, что отдельно взятый DNS-сервер не может хранить вообще всю информацию об адресах сайтов и связанных с ними IP-адресами. Есть исключения — корневые DNS-серверы, но о них позже. При обращении к сайту компьютера пользователя браузер первым делом проверяет локальный файл настроек DNS, файл hosts. Если там нет нужного адреса, запрос направляется дальше — на локальный DNS-сервер интернет-провайдера пользователя.

Локальный DNS-сервер в большинстве случаев взаимодействует с другими DNS-серверами из региона, в котором находится запрошенный сайт. После нескольких обращений к таким серверам локальный DNS-сервер получает искомое и отправляет эти данные в браузер — запрошенный сайт открывается. Полученные данные сохраняются на локальном сервере, что значительно ускоряет его работу. Поскольку, единожды «узнав» IP-адрес сайта, запрошенного пользователем, локальный DNS сохраняет эту информацию. Процесс сохранения полученных ранее данных и называется кэшированием.

Если пользователь обратится к ранее запрошенному сайту еще раз, то сайт откроется быстрее, поскольку используется сохраненная информация. Правда, хранится кэш не вечно, время хранения зависит от настроек самого сервера.

IP-адрес сайта может измениться — например, при переезде на другой хостинг или сервер в рамках прежнего хостинга. Что происходит в этом случае? В этом случае обращения пользователей к сайту, чей IP-адрес поменялся, некоторое время обрабатываются по-старому, то есть перенаправление идет на прежний «айпишник». И лишь через определенное время (например, сутки) кэш локальных серверов обновляется, после чего обращение к сайту идет уже по новому IP-адресу.


Где находятся главные DNS-серверы?

DNS-серверы верхнего уровня, которые содержат информацию о корневой DNS-зоне, называются корневыми. Этими серверами управляют разные операторы. Изначально корневые серверы находились в Северной Америке, но затем они появились и в других странах. Основных серверов — 13. Но, чтобы повысить устойчивость интернета в случае сбоев, были созданы запасные копии, реплики корневых серверов. Так, количество корневых серверов увеличилось с 13 до 123.

В Северной Америке находятся 40 серверов (32,5%), в Европе – 35 (28,5%), еще 6 серверов располагаются в Южной Америке (4,9%) и 3 – в Африке (2,4%). Если взглянуть на карту, то DNS-серверы расположены согласно интенсивности использования интернет-инфраструктуры. Есть сервера в Австралии, Китае, Бразилии, ОАЭ и других странах, включая Исландию.

В России тоже есть несколько реплик корневых серверов DNS, среди которых:

  • F.root (Москва);
  • I.root (Санкт-Петербург);
  • J.root (Москва, Санкт-Петербург);
  • K.root (Москва, Санкт-Петербург, Новосибирск);
  • L.root (Москва, Ростов-на-Дону, Екатеринбург).

Один из узлов корневого DNS-сервера K-root размещен в Selectel.

Что такое DNS-зоны?

В этой статье мы рассматриваем лишь вариант «один домен — один IP-адрес». На самом деле, ситуация может быть и сложнее. Так, с определенным доменным именем может быть связано несколько ресурсов — сайт и почтовый сервер. У этих ресурсов вполне могут быть разные IP-адреса, что дает возможность повысить надежность и эффективность работы сайта или почтовой системы. Есть у сайтов и поддомены, IP-адреса которых тоже могут быть разными.

Вся эта информация о связи сайта, поддоменов, почтовой системы хранится в специальном файле на DNS-сервере. Его содержимое называется DNS-зона. Файл содержит следующие типы записей:

  • А — адрес веб-ресурса, который привязан к конкретному имени домена.
  • MX — адрес почтового сервера.
  • CNAME — чаще всего этот тип записи используется для подключения поддомена.
  • NS — адрес DNS-сервера, который отвечает за содержимое других ресурсных записей.
  • TXT — любая текстовая информация о доменном имени.
  • SPF — данные с указанием списка серверов, которые входят в список доверенных для отправки писем от имени указанного домена.
  • SOA — исходная запись зоны, в которой указаны сведения о сервере и которая содержит шаблонную информацию о доменном имени.

А что с новыми доменами?

После регистрации доменного имени нужно «рассказать» о нем DNS-серверам. Для этого нужно прописать ресурсные записи, что обычно делается в админке хостинг-провайдера или доменного провайдера. Примерно через сутки DNS-записи пропишутся в локальном сервере, также они попадут и в реестры всех прочих DNS-серверов. Как только это произойдет, новый домен станет нормально открываться браузером. «DNS сайта», как иногда ошибочно называют доменное имя, активируется.

Еще немного о DNS

От DNS-инфраструктуры зависит нормальная работа всей глобальной сети, поэтому за работоспособностью серверов постоянно следят. В частности, предпринимаются меры по усилению безопасности системы. Кроме того, вводятся и меры на случай стихийных бедствий, проблем с электричеством и других экстренных ситуаций.

DNS-хостинг

Технология Anycast, используемая в услугах, делает DNS-системы более надежными, безопасными, отказоустойчивыми. Есть два рекурсивных кэширующих DNS-сервера. Подробнее читайте в Базе знаний Selectel.

Добавление домена и управление им

Для добавления домена нажмите кнопку Добавить домен. В открывшемся окне введите имя домена и завершите действие кнопкой Добавить домен.


Для удаление домена выберите домен, отметьте его галочкой и нажмите Удалить. Можно выбрать и удалить несколько доменов одновременно.


Делегирование домена на NS-серверы Selectel происходит по умолчанию.


При необходимости добавьте новые DNS-записи к домену. Для этого выберите нужный домен из списка и нажмите кнопку Добавить запись.


Заполните поля Тип, Имя записи, TTL и Значение. Нажмите Добавить запись.


DNS-записи можно редактировать и удалять.


Для редактирования настроек домена откройте домен и перейдите на соответствующую вкладку. Внесите необходимые изменения и нажмите Сохранить.

Что такое DNS-сервер простыми словами

Вы когда-нибудь задавались вопросом, как браузер понимает, какую именно страницу открыть, когда вы вводите в строку адрес сайта? На самом деле, это глубокий вопрос, решать который стоит не непосредственно с перехода на сайты, а со связи компьютеров между собой.

В 70-х — 90-х годах 20 века существовала сеть под названием ARPANET. Это была попытка объединить множество компьютеров министерством обороны США для возможности передачи информации во время войны. Важность такого подхода заключалась в быстрой передаче информации на дальние расстояния. Впоследствии принципы работы ARPANET легли в основу современного интернета.

Изначально вся сеть объединяла компьютеры в четырёх различных институтах США:

  • Калифорнийский университет в Лос-Анджелесе;
  • Стэнфордский исследовательский центр;
  • Университет Юты;
  • Калифорнийский университет в Санта-Барбаре.

В самом начале компьютеров, подключённых к сети, было несколько десятков, и их идентификаторы было легко запомнить. Можно было записать эти адреса в блокнот и использовать его так же, как и телефонные книги.

Время шло, и уже к середине 80-х годов вместо нескольких десятков компьютеров сеть стала насчитывать несколько тысяч. И каждый из них имел уникальный идентификатор, который становилось всё сложнее учитывать вручную или запоминать. Необходима была система, которая позволит очеловечить имена компьютеров и хранить все адреса в одном месте, чтобы каждый компьютер в сети имел один и тот же набор всех идентификаторов.

Файл hosts — как первый шаг к созданию DNS

Для решения задачи разработчики решили использовать словарь, который связывал уникальное имя и IP-адрес каждого компьютера в сети. Таким словарём стал файл hosts.txt, который и отвечал за привязку IP-адреса к имени компьютера. Файл лежал на сервере Стэнфордского исследовательского института, и пользователи сети регулярно вручную скачивали этот файл на свои компьютеры, чтобы сохранять актуальность словаря, ведь новые компьютеры появлялись в сети почти каждый день.

Выглядел hosts.txt тогда (да и сейчас) таким образом:

При наличии такого файла на компьютере пользователя для связи с компьютером Майка, можно было не запоминать цифры, а использовать понятное латинское имя «MIKE-STRATE-PC».

Посмотрим, как выглядит файл и попробуем добавить туда новое имя, чтобы подключиться к компьютеру с использованием данного имени. Для этого отредактируем файл hosts. Вы можете найти его на своём компьютере по следующему адресу:

  • В Unix-системах: /etc/hosts
  • В Windows-системах: %Путь до папки Windows%/system32/drivers/etc/hosts

Компьютеру с IP-адресом 192.168.10.36, который находится внутри локальной сети мы указали имя «MIKE-STRATE-PC». После чего можно воспользоваться командой ping, которая пошлёт специальный запрос на компьютер Майка и будет ждать от него ответа. Похоже на то, как вы стучитесь в дверь или звоните в звонок, чтобы узнать, «есть ли кто дома?» Такой запрос можно послать на любой компьютер.

По мере развития сети и «обрастания» её новыми клиентами, такой способ становился неудобным. Всем пользователям компьютеров было необходимо всё чаще скачивать свежую версию файла с сервера Стэнфордского исследовательского института, который обновлялся вручную несколько раз в неделю. Для добавлений же новых версий было необходимо связываться с институтом и просить их внести в файл новые значения.

В 1984 году Пол Мокапетрис (Paul Mockapetris) описал новую систему под названием DNS (Domain Name System / Система доменных имён), которая была призвана автоматизировать процессы соотнесения IP-адресов и имён компьютеров, а также процессы обновления имён у пользователей без необходимости ручного скачивания файла со стороннего сервера.

Работа DNS в сети интернет

В настоящее время интернет окружает нас повсюду — мы используем его в мобильных и настольных устройствах. Системы видеонаблюдения и даже чайники взаимодействуют друг с другом с помощью интернета, и для корректной связи с ними нужна система, с помощью которой пользователи смогут одним запросом в адресной строке подключиться к нужному сервису. Всё это ложится на плечи системы DNS, которая внутри себя хранит намного больше информации, чем просто IP-адрес и название устройств. Записи в DNS также отвечают за корректную отправку электронных писем, связывают друг с другом разные домены и доменные зоны.

DNS является распределённой системой, а значит она имеет множество узлов, каждый из которых ответственен за свою зону. Такое возможно благодаря тому, что сама по себе структура DNS является иерархической, то есть выделяет зоны ответственности, где каждый родитель знает о расположении своего дочернего сервера, и знает зону его ответственности.

dns, hierarchy

Рассмотрим работу DNS и её составных частей поближе.

Терминология

Основными компонентами DNS являются:

Домен (доменное имя) — символьное имя для обозначения сервера в сети интернет. Доменные имена являются иерархической структурой, в которой каждый уровень отделяется точкой. Основными уровнями являются:

DNS-сервер — система, ответственная за хранение и поддержание в актуальном состоянии записей о своих дочерних доменах. Каждый DNS-сервер ответственен только за свою зону, то есть DNS-сервер домена .io знает о том, где расположен домен hexlet, DNS-сервер которого знает о расположении своих поддоменов.

Корневой DNS-сервер — система, знающая расположение (IP-адреса) DNS-серверов доменов верхнего уровня.

Ресурсная запись — единица информации DNS-сервера. Каждая ресурсная запись имеет несколько полей:

  • Имя (домен, к которому относится запись)
  • Тип
  • Параметры
  • Значение

Подключение

Необходимо понимать, что доменное имя — это всего лишь абстракция для людей. Сам компьютер и приложения (например, браузер) обращается к сервисам внутри сети интернет только по IP-адресам.

Рассмотрим процесс получения IP-адреса по доменному имени на примере домена ru.hexlet.io .

Возможны два варианта событий:

Компьютер посылает запрос на известный ему DNS-сервер. Чаще всего им является DNS-сервер поставщика интернет-услуг (провайдера): какой IP-адрес у домена ru.hexlet.io?. DNS-сервер провайдера находит в своей базе информацию о том, что домен ru.hexlet.io расположен по IP-адресу 104.25.238.104 и возвращает значение нашему компьютеру. Этот процесс похож на то, как использовался файл hosts.txt .

Ближайший известный DNS-сервер не имеет записи о том, по какому IP-адресу располагается домен ru.hexlet.io . В таком случае запускается цепочка процессов, благодаря которым наш компьютер получит IP-адрес домена:

Так как домен является иерархической структурой, и все DNS-сервера знают IP-адреса корневых DNS-серверов, то к ним и происходит запрос на получение IP-адреса домена.

Корневые DNS-сервера, в соответствии со своей зоной ответственности знают о том, где располагаются DNS-сервера доменов верхнего уровня. Эти адреса возвращаются DNS-серверу нашего провайдера, после чего на нужный DNS-сервер (в нашем случае на DNS-сервер домена .io) посылается запрос на получение IP-адреса домена ru.hexlet.

В соответствии со своей зоной ответственности DNS-сервер домена верхнего уровня возвращает IP-адрес DNS-сервера домена hexlet, на который посылается запрос на получение IP-адреса поддомена ru.

DNS-сервер возвращает IP-адреса поддомена ru, после чего DNS-сервер нашего провайдера возвращает полученный адрес на наш компьютер, который уже может обратиться к домену ru.hexlet.io по его IP-адресу.

Рекурсия в DNS

Можно заметить, что оба описанных выше варианта сильно различаются: в первом случае мы просто послали запрос и получили ответ, а во втором — возникла необходимость идти от самого корневого домена в процессе поиска нужной нам записи. Такой процесс является рекурсивным, потому что ближайший DNS-сервер непрерывно посылает запросы к другим DNS-серверам до тех пор, пока не получит необходимые ресурсные записи. Данный процесс можно визуализировать следующим образом:

dns, structure

При запросах 1 и 2 ближайший сервер будет получать информацию о местонахождении DNS-серверов, которые входят в зону ответственности того сервера, на который был послан запрос. При запросе 3 будут получены необходимые ресурсные записи домена hexlet и его поддоменов.

Рекурсивный поиск — это достаточно долгая операция, которая к тому же сильно нагружает сеть и сами DNS-сервера. Именно для того, чтобы избавиться от рекурсии каждый DNS-сервер кеширует информацию о записях, которые получает, для быстрой отдачи этой информации пользователю.

Как видно, рекурсивный поиск предполагает нахождение конечного ответа на наш запрос путём поиска записи по всем необходимым DNS-серверам, начиная с корневого. В противовес такому способу также существует итеративный запрос, который в отличие от рекурсивного выполняет всего лишь одну итерацию — это запрос ближайшему DNS-серверу, от которого мы можем получить как закешированный ответ, так и данные той зоны, за которую он ответственен. Важно отметить, что итеративный запрос предполагает всего один такой запрос.

Чаще всего в интернете DNS-сервера умеют посылать рекурсивные запросы, потому что в таком случае ответ можно закешировать, что в дальнейшем позволит снизить нагрузку как на сам сервер, так и на другие DNS-сервера. Время, на которое DNS-сервер кеширует информацию, указывается в ресурсной записи DNS, о которой сейчас пойдёт речь.

Ресурсные записи DNS

Рассмотрим, какие ресурсные записи используются, и на что они указывают. Основными ресурсными записями DNS являются:

A-запись — одна из самых важных записей. Именно эта запись указывает на IP-адрес сервера, который привязан к доменному имени.

MX-запись — указывает на сервер, который будет использован при отсылке доменной электронной почты.

NS-запись — указывает на DNS-сервер домена.

TXT-запись — в этой записи хранится текстовая информация о домене. Часто используется для подтверждения прав на владение доменом, посредством добавления определённой строки, которую присылает нам интернет-сервис.

Ресурсные записи почти всегда одинаковые, но для некоторых записей могут появляться другие поля, например в MX-записях также присутствует значение приоритета. В основном ресурсные записи имеют следующую структуру:

Имя записи — указывается домен, которому принадлежит данная ресурсная запись.

TTL (time to live / время жизни) — время в секундах, на которое будет закешировано значение ресурсной записи. Это необходимо для разгрузки DNS-серверов. Благодаря кешированию и возможна ситуация, что ближайший DNS-сервер знает IP-адрес запрашиваемого домена.

Класс — предполагалось, что DNS может работать не только в сети интернет, поэтому в записи указывается и её класс. На сегодняшний день поддерживается только одно значение — IN (Internet).

Тип — указывает тип ресурсной записи, основные из которых были разобраны выше.

Значение — непосредственно значение ресурсной записи. В зависимости от типа ресурсной записи значения могут быть представлены в разном виде.

Утилита dig является DNS-клиентом и входит в состав одного из самых распространённых DNS-серверов BIND.

Пример реальных записей DNS

dns, output

Не пугайтесь такого длинного вывода. Уже сейчас можно понять почти всё, что тут указано. Разберём вывод каждой секции более детально.

Вывод состоит из нескольких частей:

  • Шапка
  • Секция запроса
  • Секция ответа
  • Служебная информация

Шапка запроса

Секция запроса

В секции запроса указывается домен, к которому происходит обращение, класс записи и те записи, которые мы хотим получить. ANY указывает на то, что нужно вывести все доступные ресурсные записи, но если вы хотите поэкспериментировать с утилитой сами, то можете с помощью специального ключа получить вывод только конкретных записей, которые интересуют в настоящий момент.

Секция ответа

Секция ответа достаточно большая, поэтому для удобства разобьём её по типам ресурсных записей.

Как запись A, так и AAAA-запись указывают на IP-адрес, который привязан к нашему домену. A-запись указывает IP в формате IPv4, а запись AAAA — в формате IPv6.

MX-запись также имеет параметр приоритета. Так как серверов для отправки почты может быть несколько, то и записей может быть много, поэтому для определения основного сервера указывается приоритет записи. Чем меньше число, тем выше приоритет.

Запись SOA (Start of Authority) указывает на несколько различных параметров:

  1. Сервер с эталонной информацией о текущем домене
  2. Контактную информацию ответственного лица
  3. Различные параметры кеширования записей

Бывают и некоторые более специфичные ресурсные записи, о которых здесь не было речи, но это не значит, что они бесполезны. Полный перечень таких записей всегда можно найти в документации (например по DNS-серверу BIND).

Выводы

DNS-сервера сейчас составляют основу всего интернета и используются почти в каждом действии пользователя в сети, будь то переход на сайт, отправка электронной почты, работы с интернет-приложением на телефоне и так далее. Поэтому знания о принципах работы DNS-серверов и основных ресурсных записях, благодаря которым и возможно перемещение по сети интернет, являются важными для разработчика.

Читайте также: