Что такое сжатие файлов

Обновлено: 06.07.2024

Мы уже разобрались с тем, как оцифровывается звук . Одна из проблем — если качественно его оцифровывать, то нам нужно очень много данных, а это значит большие файлы, большой расход места на диске, дорогие флешки, много трафика в интернете. Хочется, чтобы файлики были поменьше.

Для этого используется сжатие — различные алгоритмы, которые творят с данными свою магию и на выходе получаются данные меньшего объёма.

Сжатие с потерями и без потерь

Есть два принципиальных вида сжатия — с потерями и без.

Сжатие с потерями означает, что в процессе мы лишились части информации. Алгоритмы сжатия с потерями стараются сделать так, чтобы мы потеряли только те данные, которые нам не слишком важны.

Представьте, что сжатие с потерями — это краткий пересказ произведения из школьной программы: школьнику не так важны описания природы и авторский стиль, ему главное сюжет. Краткий пересказ сохранил только важное, но передал это намного быстрее.

Сжатие без потерь — это когда мы уменьшаем размер файла, при этом не теряя в качестве. Для этого используются интересные математические приёмы и кодирование. Главная мысль — чтобы при раскодировании все данные остались на месте.

Алгоритмы сжатия без потерь

Есть два основных варианта: алгоритм Хаффмана или LZW. LZW используется повсеместно, но объяснить его довольно сложно, он неинтуитивный и требует целой лекции. Гораздо приятнее объяснить алгоритм Хаффмана.

Алгоритм Хаффмана берёт файл, разбивает его на фрагменты, с которыми ему удобно работать, а потом смотрит, насколько часто встречается каждый фрагмент. Самые частые слова этот алгоритм обозначает коротким кодом, а самые редкие — кодом подлиннее. Так как самые частые слова занимают теперь гораздо меньше места, то и готовый файл становится меньше.

Но есть и минус: иногда нужно хранить эту таблицу соответствий слов и кода прямо в этом же файле, а она может сама по себе получиться большой. Чаще всего алгоритм Хаффмана применяется для сжатия текстовых файлов и видео без потерь.

Вот пример: берём песню Beyonce — All The Single Ladies. Там есть два таких пассажа:

Здесь 281 знак. Мы видим, что некоторые строчки повторяются. Закодируем их:

Вместе таблицей сжатия этот текст теперь занимает 187 знаков — мы сжали текст почти на треть благодаря тому, что он довольно монотонный.

Сжатие без потерь на примере аудио

В среднем минута несжатого аудио занимает 10 мегабайт. Это довольно много: если у вас, например, часовая запись концерта, то она будет занимать полгигабайта. С другой стороны, в этой записи захвачены все нюансы звука, есть много высоких частот и вообще красота.

Для таких ситуаций используют сжатие без потерь: оно уменьшает файл в 2–3 раза, не искажая звук. Алгоритмы, которые сжимают аудио, называются кодеками. FLAC и Apple Lossless — два популярных кодека для сжатия аудио без потерь.

Сравните сами размер и качество двухминутного аудио:

Оригинал — без сжатия, формат WAV, 23 мегабайта
Сжатие без потерь — формат FLAC с теми же параметрами, что и WAV, 10 мегабайт

Где ещё применяется сжатие без потерь

В архиваторах. Задача программ-архиваторов — упаковать выбранные файлы так, чтобы архив занимал как можно меньше места, при этом не повреждая то, что внутри. Например, текстовая версия «Войны и мира» может занимать 4 мегабайта, а заархивированная — 100 килобайт, в 40 раз меньше.

В программировании. Есть специальные упаковщики, которые берут готовую программу и оптимизируют код так, чтобы он занимал меньше места, но сохранил свою работоспособность. Например:

  • Удаляют комментарии
  • Сокращают до минимума названия переменных и функций
  • Удаляют символы, которые нужны были человеку для удобочитаемости

Что дальше

В следующей части разберём, как работает сжатие с потерями и почему благодаря этому у нас есть ТикТок и Ютуб.

В данной статье мы узнаем, что такое сжатие файлов, для чего оно используется и как позволяет оптимизировать деятельность. Посмотрим, какие факторы влияют на сжатие файлов и какую формулу можно использовать для определения его степени. Рассмотрим, какие можно применять программы для создания архивов.

От чего зависит сжатие файла?

От чего зависит сжатие файла? Это одно из самых простых действий, которое может сделать пользователь, для того чтобы уменьшить размер файла, что такое сжатие изображения и как настроить, мы уже знаем. Сжатие используется для:

  • экономии пространства на носителях;
  • при отправке почты;
  • при использовании файлов, где есть лимитирование объемов информации.

В целом, сжатие данных это алгоритм, который позволяет избавиться от избытка исходных данных, которые содержаться в исходном файле. Есть такое понятие, как сжатый атрибут. Это один из методов сжатия файла. Такое сжатие помогает сохранить место в хранилище.

От чего зависит сжатие файла

Для осуществления данного способа есть несколько способов. В персональных компьютерах есть автоматическая опция для показа сжатых файлов. При его использовании данные исходного файла не утрачиваются, и он воспроизводится как обычный файл.

Распаковка файла осуществляется за счет возможностей Windows. Но при закрытии файл сжимается снова. Это значительная экономия памяти. Лучше сжимать файлы, которые практически не используются.

Размер памяти современных ПК позволяет хранить большой объем информации, поэтому нет необходимости в компрессии, об этом подробнее можно на курсах SEO с нуля можно узнать.

Файлы, которыми нужно пользоваться часто лучше не сжимать, т.к. распаковка потребует дополнительной вычислительной мощности. Использовать сжатие можно с помощью проводника и командной строки.

От чего зависит степень сжатия файлов?

От чего зависит степень сжатия файлов? Зависит данный показатель от множества факторов. Например, программы, которая используется для уменьшения, метод, тип исходника. Самая большая степень сжатия у фотографий, текстовых файлов. Самая меньшая степень сжатия – у загрузочных модулей и программ. Архивы практически не поддаются сжатию.

От чего зависит степень сжатия файлов

Степень сжатия – это основной параметр архивации. Есть специальная формула, которая характеризует степень сжатия. Есть специальные программы, которые помогают создавать архивы. Такие программы позволяют избавиться от лишней информации исходника:

  • упрощение кодов;
  • исключение постоянных битов;
  • исключение повторяющихся символов.

Сжать можно сразу несколько файлов одновременно. Архив – это файл, который может содержать большое количество файлов. Вся информация, которая касается файлов тоже храниться в архиве. Для формирования архивов можно обратиться за помощью к специалистам IT и продвижения SEO, они всегда смогут помочь.

Для чего используется сжатие файлов?

Для чего используется сжатие файлов? К архивации прибегают в нескольких случаях. Например, для сохранения свободного места в хранилище устройства.

Для чего используется сжатие файлов

Меньший объем файлов позволяет не только их проще хранить, но и без труда переносить с устройства на устройство. При ведении контекстной рекламы Яндекс тоже можно использовать сжатые файлы, например, изображения.

Время копирования заархивированных файлов кратно меньше. К тому же, такие файлы больше защищены, как от взлома, так и от компьютерных вирусов. Коэффициент сжатия можно вычислить по формуле.

Где объем сжатого файла делится на объем исходника, затем умножается на 100%. В итоге получается степень сжатия. Заархивированные файлы можно как упаковать, так и распаковать. Если файлы даже в архиве очень большие, то хранить их можно на нескольких дисках, которые называют томами.

За счет чего происходит сжатие файлов?

За счет чего происходит сжатие файлов? Посмотрим, какие программы помогают уменьшать объем исходников. Есть не менее десятка специализированных программ. У каждой есть свой набор специальных функций. Производители подобных программ есть как за рубежом, так и в России.

За счет чего происходит сжатие файлов

Чаще всего упаковка и распаковка фалов проводится одной программой, но бывает и так, что для каждой операции своя. Есть файлы, которые обладают свойством самораспаковывания. Суть в том, что исполняемый модуль способен к саморазархивации.

Чаще всего при распаковке файлов программы сохраняют его на жесткий диск. Но есть и программы, которые создают упакованный исполняемый модуль. При этом в программном файле сохраняется имя и расширение, он загружается на жесткий диск, распаковывается и после этого начинает работать. После работы можно вернуть его обратно в архив.

Программы архиваторы помогают архивировать файлы, просматривать их, создавать архивы из большого количества томов. Архивные файлы можно протестировать, они позволяют вводить комментарии. В архиве можно хранить несколько версий исходника.

Что даёт сжатие файлов?

Что дает сжатие файлов? Сейчас люди обмениваются большим количеством информации. Информация обновляется постоянно. Старая информация заменяет новую, большинство данных приходится сохранять. Для того чтобы она не занимала много места на устройствах хранения лучше запаковывать файлы в архив. Есть специальные облачные хостинги что это такое, мы уже знаем.

Что даёт сжатие файлов

При сжатии нужно руководствоваться тем, что файл сохранит свои исходные показатели по качеству, информативности, цветопередаче и т.д. Сжатие используется, например, при загрузке файлов в социальных сетях, где есть лимит по тяжести загруженных файлов.

Сжатые файлы используются в деловых переписках, особенно если у получателя на корпоративном сервере есть лимит по объему полученной информации в одном письме. Архивирование используется для сохранения памяти на устройствах.

Доброго времени суток.
Сегодня я хочу коснуться темы сжатия данных без потерь. Несмотря на то, что на хабре уже были статьи, посвященные некоторым алгоритмам, мне захотелось рассказать об этом чуть более подробно.
Я постараюсь давать как математическое описание, так и описание в обычном виде, для того, чтобы каждый мог найти для себя что-то интересное.

В этой статье я коснусь фундаментальных моментов сжатия и основных типов алгоритмов.

Сжатие. Нужно ли оно в наше время?

Разумеется, да. Конечно, все мы понимаем, что сейчас нам доступны и носители информации большого объема, и высокоскоростные каналы передачи данных. Однако, одновременно с этим растут и объемы передаваемой информации. Если несколько лет назад мы смотрели 700-мегабайтные фильмы, умещающиеся на одну болванку, то сегодня фильмы в HD-качестве могут занимать десятки гигабайт.
Конечно, пользы от сжатия всего и вся не так много. Но все же существуют ситуации, в которых сжатие крайне полезно, если не необходимо.

  • Пересылка документов по электронной почте (особенно больших объемов документов с использованием мобильных устройств)
  • При публикации документов на сайтах, потребность в экономии трафика
  • Экономия дискового пространства в тех случаях, когда замена или добавление средств хранения затруднительно. Например, подобное бывает в тех случаях, когда выбить бюджет под капитальные расходы непросто, а дискового пространства не хватает

Конечно, можно придумать еще множество различных ситуаций, в которых сжатие окажется полезным, но нам достаточно и этих нескольких примеров.

Все методы сжатия можно разделить на две большие группы: сжатие с потерями и сжатие без потерь. Сжатие без потерь применяется в тех случаях, когда информацию нужно восстановить с точностью до бита. Такой подход является единственно возможным при сжатии, например, текстовых данных.
В некоторых случаях, однако, не требуется точного восстановления информации и допускается использовать алгоритмы, реализующие сжатие с потерями, которое, в отличие от сжатия без потерь, обычно проще реализуется и обеспечивает более высокую степень архивации.

Сжатие с потерями
Лучшие степени сжатия, при сохранении «достаточно хорошего» качества данных. Применяются в основном для сжатия аналоговых данных — звука, изображений. В таких случаях распакованный файл может очень сильно отличаться от оригинала на уровне сравнения «бит в бит», но практически неотличим для человеческого уха или глаза в большинстве практических применений.
Сжатие без потерь
Данные восстанавливаются с точностью до бита, что не приводит к каким-либо потерям информации. Однако, сжатие без потерь показывает обычно худшие степени сжатия.

Итак, перейдем к рассмотрению алгоритмов сжатия без потерь.

Универсальные методы сжатия без потерь

В общем случае можно выделить три базовых варианта, на которых строятся алгоритмы сжатия.
Первая группа методов – преобразование потока. Это предполагает описание новых поступающих несжатых данных через уже обработанные. При этом не вычисляется никаких вероятностей, кодирование символов осуществляется только на основе тех данных, которые уже были обработаны, как например в LZ – методах (названных по имени Абрахама Лемпеля и Якоба Зива). В этом случае, второе и дальнейшие вхождения некой подстроки, уже известной кодировщику, заменяются ссылками на ее первое вхождение.

Вторая группа методов – это статистические методы сжатия. В свою очередь, эти методы делятся на адаптивные (или поточные), и блочные.
В первом (адаптивном) варианте, вычисление вероятностей для новых данных происходит по данным, уже обработанным при кодировании. К этим методам относятся адаптивные варианты алгоритмов Хаффмана и Шеннона-Фано.
Во втором (блочном) случае, статистика каждого блока данных высчитывается отдельно, и добавляется к самому сжатому блоку. Сюда можно отнести статические варианты методов Хаффмана, Шеннона-Фано, и арифметического кодирования.

Общие принципы, на которых основано сжатие данных

Все методы сжатия данных основаны на простом логическом принципе. Если представить, что наиболее часто встречающиеся элементы закодированы более короткими кодами, а реже встречающиеся – более длинными, то для хранения всех данных потребуется меньше места, чем если бы все элементы представлялись кодами одинаковой длины.
Точная взаимосвязь между частотами появления элементов, и оптимальными длинами кодов описана в так называемой теореме Шеннона о источнике шифрования(Shannon's source coding theorem), которая определяет предел максимального сжатия без потерь и энтропию Шеннона.

Немного математики


Если вероятность появления элемента si равна p(si), то наиболее выгодно будет представить этот элемент — log2p(si) битами. Если при кодировании удается добиться того, что длина всех элементов будет приведена к log2p(si) битам, то и длина всей кодируемой последовательности будет минимальной для всех возможных методов кодирования. При этом, если распределение вероятностей всех элементов F = i)> неизменно, и вероятности элементов взаимно независимы, то средняя длина кодов может быть рассчитана как

Это значение называют энтропией распределения вероятностей F, или энтропией источника в заданный момент времени.
Однако обычно вероятность появления элемента не может быть независимой, напротив, она находится в зависимости от каких-то факторов. В этом случае, для каждого нового кодируемого элемента si распределение вероятностей F примет некоторое значение Fk, то есть для каждого элемента F= Fk и H= Hk.

Иными словами, можно сказать, что источник находится в состоянии k, которому соответствует некий набор вероятностей pk(si) для всех элементов si.


Поэтому, учитывая эту поправку, можно выразить среднюю длину кодов как

Где Pk — вероятность нахождения источника в состоянии k.

Итак, на данном этапе мы знаем, что сжатие основано на замене часто встречающихся элементов короткими кодами, и наоборот, а так же знаем, как определить среднюю длину кодов. Но что же такое код, кодирование, и как оно происходит?

Кодирование без памяти

Коды без памяти являются простейшими кодами, на основе которых может быть осуществлено сжатие данных. В коде без памяти каждый символ в кодируемом векторе данных заменяется кодовым словом из префиксного множества двоичных последовательностей или слов.
На мой взгляд, не самое понятное определение. Рассмотрим эту тему чуть более подробно.


Пусть задан некоторый алфавит , состоящий из некоторого (конечного) числа букв. Назовем каждую конечную последовательность символов из этого алфавита (A=a1, a2,… ,an) словом, а число n — длиной этого слова.


Пусть задан также другой алфавит. Аналогично, обозначим слово в этом алфавите как B.

Введем еще два обозначения для множества всех непустых слов в алфавите. Пусть — количество непустых слов в первом алфавите, а — во втором.

Пусть также задано отображение F, которое ставит в соответствие каждому слову A из первого алфавита некоторое слово B=F(A) из второго. Тогда слово B будет называться кодом слова A, а переход от исходного слова к его коду будет называться кодированием.

Поскольку слово может состоять и из одной буквы, то мы можем выявить соответствие букв первого алфавита и соответствующих им слов из второго:
a1 <-> B1
a2 <-> B2

an <-> Bn

Это соответствие называют схемой, и обозначают ∑.
В этом случае слова B1, B2,…, Bn называют элементарными кодами, а вид кодирования с их помощью — алфавитным кодированием. Конечно, большинство из нас сталкивались с таким видом кодирования, пусть даже и не зная всего того, что я описал выше.

Итак, мы определились с понятиями алфавит, слово, код, и кодирование. Теперь введем понятие префикс.

Пусть слово B имеет вид B=B'B''. Тогда B' называют началом, или префиксом слова B, а B'' — его концом. Это довольно простое определение, но нужно отметить, что для любого слова B, и некое пустое слово ʌ («пробел»), и само слово B, могут считаться и началами и концами.

Итак, мы подошли вплотную к пониманию определения кодов без памяти. Последнее определение, которое нам осталось понять — это префиксное множество. Схема ∑ обладает свойством префикса, если для любых 1≤i, j≤r, i≠j, слово Bi не является префиксом слова Bj.
Проще говоря, префиксное множество – это такое конечное множество, в котором ни один элемент не является префиксом (или началом) любого другого элемента. Простым примером такого множества является, например, обычный алфавит.

Одним из канонических алгоритмов, которые иллюстрируют данный метод, является алгоритм Хаффмана.

Алгоритм Хаффмана

Алгоритм Хаффмана использует частоту появления одинаковых байт во входном блоке данных, и ставит в соответствие часто встречающимся блокам цепочки бит меньшей длины, и наоборот. Этот код является минимально – избыточным кодом. Рассмотрим случай, когда, не зависимо от входного потока, алфавит выходного потока состоит из всего 2 символов – нуля и единицы.

Для лучшей иллюстрации, рассмотрим небольшой пример.
Пусть у нас есть алфавит, состоящий из всего четырех символов — < a1, a2, a3, a4>. Предположим также, что вероятности появления этих символов равны соответственно p1=0.5; p2=0.24; p3=0.15; p4=0.11 (сумма всех вероятностей, очевидно, равна единице).

Итак, построим схему для данного алфавита.

  1. Объединяем два символа с наименьшими вероятностями (0.11 и 0.15) в псевдосимвол p'.
  2. Удаляем объединенные символы, и вставляем получившийся псевдосимвол в алфавит.
  3. Объединяем два символа с наименьшей вероятностью (0.24 и 0.26) в псевдосимвол p''.
  4. Удаляем объединенные символы, и вставляем получившийся псевдосимвол в алфавит.
  5. Наконец, объединяем оставшиеся два символа, и получаем вершину дерева.

Если сделать иллюстрацию этого процесса, получится примерно следующее:



Как вы видите, при каждом объединении мы присваиваем объединяемым символам коды 0 и 1.
Таким образом, когда дерево построено, мы можем легко получить код для каждого символа. В нашем случае коды будут выглядить так:

Поскольку ни один из данных кодов не является префиксом какого-нибудь другого (то есть, мы получили пресловутое префиксное множество), мы можем однозначно определить каждый код в выходном потоке.
Итак, мы добились того, что самый частый символ кодируется самым коротким кодом, и наоборот.
Если предположить, что изначально для хранения каждого символа использовался один байт, то можно посчитать, насколько нам удалось уменьшить данные.

Пусть на входу у нас была строка из 1000 символов, в которой символ a1 встречался 500 раз, a2 — 240, a3 — 150, и a4 — 110 раз.

Изначально данная строка занимала 8000 бит. После кодирования мы получим строку длинной в ∑pili = 500 * 1 + 240 * 2 + 150 * 3 + 110 * 3 = 1760 бит. Итак, нам удалось сжать данные в 4,54 раза, потратив в среднем 1,76 бита на кодирование каждого символа потока.


Напомню, что согласно Шеннону, средняя длина кодов составляет . Подставив в это уравнение наши значения вероятностей, мы получим среднюю длину кодов равную 1.75496602732291, что весьма и весьма близко к полученному нами результату.
Тем не менее, следует учитывать, что помимо самих данных нам необходимо хранить таблицу кодировки, что слегка увеличит итоговый размер закодированных данных. Очевидно, что в разных случаях могут с использоваться разные вариации алгоритма – к примеру, иногда эффективнее использовать заранее заданную таблицу вероятностей, а иногда – необходимо составить ее динамически, путем прохода по сжимаемым данным.

Заключение

Итак, в этой статье я постарался рассказать об общих принципах, по которым происходит сжатие без потерь, а также рассмотрел один из канонических алгоритмов — кодирование по Хаффману.
Если статья придется по вкусу хабросообществу, то я с удовольствием напишу продолжение, так как есть еще множество интересных вещей, касающихся сжатия без потерь; это как классические алгоритмы, так и предварительные преобразования данных (например, преобразование Барроуза-Уилира), ну и, конечно, специфические алгоритмы для сжатия звука, видео и изображений (самая, на мой взгляд, интересная тема).

Как работает сжатие файлов?

Сжатие файлов является основной частью работы Интернета. Это позволяет нам передавать файлы, которые в противном случае потребовали бы слишком большой пропускной способности и времени. Всякий раз, когда вы получаете доступ к файлам ZIP или просматриваете изображения в формате JPEG, вы получаете выгоду от сжатия файлов.

Таким образом, в какой-то момент вы, вероятно, задали вопрос: как работает сжатие файлов? Вот основной взгляд на то, как работает сжатие.

Что означает сжатие?


Проще говоря, сжатие файла (или сжатие данных) является актом уменьшения размера файла при сохранении исходных данных. Это позволяет файлу занимать меньше места на устройстве хранения данных, а также облегчает его передачу через Интернет или другим способом.

Важно отметить, что сжатие не бесконечно. Хотя сжатие файла в ZIP-файл уменьшает его размер, вы не можете продолжать сжимать файл, чтобы еще больше уменьшить его размер до нуля.

Обычно сжатие файлов делится на два основных типа: с потерями и без потерь. Давайте посмотрим, как они оба работают по очереди.

Как работает сжатие файлов: сжатие с потерями

Сжатие с потерями уменьшает размер файла, удаляя ненужные биты информации. Это чаще всего встречается в форматах изображений, видео и аудио, где нет необходимости в идеальном представлении исходного медиа. Многие распространенные форматы для этих типов носителей используют сжатие с потерями; MP3 и JPEG — два популярных примера.

MP3 не содержит всю аудиоинформацию из оригинальной записи — вместо этого он выбрасывает некоторые звуки, которые люди не слышат. В любом случае вы не заметите, что они пропали, поэтому удаление этой информации приведет к меньшему размеру файла, практически без недостатков.

Аналогично, файлы JPEG удаляют ненужные части изображений. Например, в изображении, содержащем голубое небо, сжатие JPEG может изменить все пиксели неба на один или два оттенка синего вместо использования десятков различных оттенков.

Однако чем сильнее вы сжимаете файл, тем заметнее становится снижение качества. Вы, вероятно, испытали это с грязными файлами MP3, загруженными на YouTube. Например, сравните этот высококачественный музыкальный трек:


С этой сильно сжатой версией той же песни:


Сжатие с потерями подходит, когда файл содержит больше информации, чем нужно для ваших целей. Например, предположим, у вас есть огромный файл изображения RAW. Хотя вы, вероятно, хотите сохранить это качество при печати изображения на большом баннере, бессмысленно загружать файл RAW в Facebook.

Картинка содержит так много данных, что не заметно при просмотре в социальных сетях. Сжатие изображения в высококачественный JPEG выбрасывает некоторую информацию, но изображение выглядит почти невооруженным глазом. Смотрите наше сравнение популярных графических форматов для более глубокого взгляда на это.

Сжатие с потерями в общем использовании

Как мы уже упоминали, сжатие с потерями отлично подходит для большинства видов носителей. В связи с этим жизненно важно, чтобы такие компании, как Spotify и Netflix, постоянно передавали огромные объемы информации. Максимальное уменьшение размера файла при сохранении качества делает их работу более эффективной. Можете ли вы представить, было ли каждое видео YouTube храниться и передаваться в оригинальном несжатом формате?

Но сжатие с потерями не работает так хорошо для файлов, где вся информация имеет решающее значение. Например, использование сжатия с потерями в текстовом файле или электронной таблице приведет к искаженному выводу. Вы действительно не можете ничего выбросить без серьезного вреда для конечного продукта.

При сохранении в формате с потерями, вы часто можете установить уровень качества. Например, многие графические редакторы имеют ползунок для выбора качества JPEG от 0 до 100.

Сохранить как сжатый JPEG в низком качестве

Экономия на уровне 90 или 80 процентов приводит к небольшому уменьшению размера файла, с небольшой разницей в глазах. Но сохранение в плохом качестве или повторное сохранение одного и того же файла в формате с потерями ухудшит его.

Ниже вы можете увидеть пример этого (нажмите, чтобы увидеть увеличенные изображения). Слева оригинальное изображение, загруженное с Pixabay в формате JPEG. Среднее изображение является результатом сохранения его в формате JPEG с 50-процентным качеством. И самое правое изображение показывает исходное изображение, сохраненное вместо этого в формате JPEG с 10-процентным качеством.




На первый взгляд среднее изображение выглядит не так уж плохо. Вы можете заметить артефакты по краям коробок только при увеличении. Конечно, самое правое изображение сразу выглядит ужасно.

Перед кадрированием для загрузки размеры файлов составляли 874 КБ, 310 КБ и 100 КБ соответственно.

Как работает сжатие файлов: сжатие без потерь

Сжатие без потерь — это способ уменьшить размер файла, чтобы вы могли идеально восстановить исходный файл. В отличие от сжатия с потерями, он не выбрасывает никакой информации. Вместо этого сжатие без потерь по существу работает за счет устранения избыточности.

Давайте рассмотрим простой пример, чтобы показать, что это значит. Ниже стопка из 10 кирпичей: два синих, пять желтых и три красных. Этот стек — простой способ проиллюстрировать эти блоки, но есть и другой способ сделать это.

Как работает сжатие файлов? Пример без потерь кирпича

Вместо того, чтобы показывать все 10 блоков, мы можем удалить все цвета, кроме одного. Затем, если мы используем цифры, чтобы показать, сколько кирпичей каждого цвета было, мы представили точно такой же бит информации, используя гораздо меньше кирпичей. Вместо 10 кирпичей нам теперь нужно только три.

как работает сжатие файлов: блоки сжатия без потерь

Это простая иллюстрация того, как возможно сжатие без потерь. Он хранит ту же информацию более эффективным способом, удаляя избыточность. Рассмотрим реальный файл, где строка ниже:

Можно «сжать» до следующей, гораздо более короткой формы:

Это позволяет нам использовать семь символов вместо 24 для представления одних и тех же данных, что является значительной экономией.

Сжатие без потерь в повседневном использовании

Пример архивации файлов Windows

Как мы упоминали выше, сжатие без потерь важно в тех случаях, когда вы не можете удалить исходный файл. Если вам интересно, как работают ZIP-файлы, это ответ.

Когда вы создаете ZIP-файл из исполняемой программы Windows, он использует сжатие без потерь. Сжатие файла ZIP является более эффективным способом хранения программы, но когда вы распаковываете (распаковываете) ее, вся оригинальная информация присутствует. Если вы использовали сжатие с потерями для сжатия исполняемых файлов, распакованная версия будет повреждена и непригодна для использования.

Распространенные форматы без потерь включают PNG для изображений, FLAC для аудио и ZIP. Форматы видео без потерь редки, потому что они занимают огромное количество места.

Когда использовать сжатие с потерями против сжатия без потерь

Экспорт MP3 в Audacity

Теперь, когда мы рассмотрели обе формы сжатия файлов, вы можете задаться вопросом, когда следует использовать одну или другую. Как выясняется, «лучшей» формы сжатия не существует — все зависит от того, для чего вы используете файлы.

В общем, вы должны использовать сжатие без потерь, если вы хотите получить идеальную копию исходного материала, и сжатие с потерями, если недостаточно хорошая копия. Давайте посмотрим на другой пример, чтобы увидеть, как они могут работать в гармонии.

Скажем, вы только что откопали свою старую коллекцию компакт-дисков и хотите оцифровать ее. чтобы у вас была вся музыка на вашем компьютере. Когда вы копируете свои компакт-диски, имеет смысл использовать такой формат, как FLAC, который без потерь. Это позволяет вам иметь мастер-копию на вашем компьютере, которая так же хороша, как и оригинальный компакт-диск.

Позже, возможно, вы захотите поставить музыку на телефон или старый MP3-плеер, чтобы вы могли слушать на ходу. Возможно, вы не заботитесь о том, чтобы ваша музыка была в идеальном качестве, поэтому вы можете конвертировать файлы FLAC в MP3 Это дает вам аудиофайл, который по-прежнему идеально подходит для прослушивания, но не занимает много места на вашем мобильном устройстве. Качество MP3, преобразованного из FLAC, будет таким же хорошим, как если бы вы создали сжатый MP3 прямо с оригинального CD.

Тип данных, представленных в файле, также может определять, какой тип сжатия является лучшим. Поскольку в PNG-изображениях используется сжатие без потерь, они предлагают небольшие размеры файлов для изображений с большим равномерным пространством, например, компьютерные снимки экрана. Тем не менее, вы заметите, что PNG занимают гораздо больше места, когда они представляют собой смесь цветов на реальных фотографиях.

Проблемы во время сжатия файлов

Как мы уже видели, преобразование форматов с потерями в формат потерь — это хорошо, равно как и преобразование одного формата без потерь в другой. Однако вы никогда не должны конвертировать формат с потерями в без потерь и должны остерегаться преобразования одного формата с потерями в другой.

Преобразование форматов с потерями в без потерь просто пустая трата пространства. Помните, что форматы с потерями выбрасывают данные; невозможно восстановить эти данные.

Скажем, у вас есть 3MB MP3-файл. Преобразование этого в FLAC может привести к 30-мегабайтному файлу, но эти 30-мегабайтные содержат точные звуки, которые сделал гораздо меньший MP3. Преобразование обратно в формат без потерь не «восстанавливает» информацию, которую выбросило сжатие MP3.

Наконец, как упоминалось ранее, преобразование одного формата с потерями в другой (или многократное сохранение в том же формате) приведет к дальнейшему снижению качества. Каждый раз, когда вы применяете сжатие с потерями, вы теряете больше деталей. Это становится все более и более заметным, пока файл по существу не разрушен.

Как работает компрессия? Теперь ты знаешь

Мы рассмотрели как сжатие с потерями, так и сжатие без потерь, чтобы увидеть, как они работают. Теперь вы знаете, как можно сохранить файл в меньшем размере, чем его оригинальная форма, и как выбрать лучший метод для ваших нужд.

Конечно, алгоритмы, которые определяют, какие данные выбрасываются в методах с потерями и как лучше хранить избыточные данные при сжатии без потерь, намного сложнее, чем мы объясняли здесь. На эту тему можно найти гораздо больше, если вам интересно.

Читайте также: