Чтобы описать цвет в компьютерной системе необходимо числа

Обновлено: 06.07.2024

В КомпьюАрт № 7'2012 была представлена статья о гармоничных цветовых сочетаниях и закономерностях влияния цвета на восприятие человека, что, несомненно, учитывают в своих проектах современные дизайнеры. Но при работе за компьютером и смешивании цветов на экране монитора возникают специфические проблемы. Дизайнер должен получить на экране монитора или на твердой копии именно те цвет, тон, оттенок и светлоту, которые требуются. Цвета на мониторе не всегда совпадают с природными красками. Очень непросто получить один и тот же цвет на экране, на распечатке цветного принтера и на типографском оттиске. Дело в том, что цвета в природе, на мониторе и на печатном листе создаются абсолютно разными способами.
Для однозначного определения цветов в различных цветовых средах существуют цветовые модели, о которых мы и поговорим в настоящей статье.

Модель RGB

Цветовая модель RGB — самый популярный способ представления графики, который подходит для описания цветов, видимых на мониторе, телевизоре, видеопроекторе, а также создаваемых при сканировании изображений.

Модель RGB используется при описании цветов, получаемых смешиванием трех лучей: красного (Red), зеленого (Green) и синего (Blue). Из первых букв английских названий этих цветов составлено название модели. Остальные цвета получаются сочетанием базовых. Цвета такого типа называются аддитивными, поскольку при сложении (смешивании) двух лучей основных цветов результат становится светлее. На рис. 1 показано, какие цвета получаются при сложении основных.

Рис. 1. Комбинации базовых цветов модели RGB

Рис. 1. Комбинации базовых цветов модели RGB

В модели RGB каждый базовый цвет характеризуется яркостью, которая может принимать 256 значений — от 0 до 255. Поэтому можно смешивать цвета в различных пропорциях, изменяя яркость каждой составляющей. Таким образом, можно получить 256x256x256 = 16 777 216 цветов.

Каждому цвету можно сопоставить код, используя десятичное и шестнадцатеричное представление кода. Десятичное представление — это тройка десятичных чисел, разделенных запятыми. Первое число соответствует яркости красной составляющей, второе — зеленой, а третье — синей. Шестнадцатеричное представление — это три двузначных шестнадцатеричных числа, каждое из которых соответствует яркости базового цвета. Первое число (первая пара цифр) соответствует яркости красного цвета, второе число (вторая пара цифр) — зеленого, а третье (третья пара) — синего.

Для проверки данного факта откройте палитру цветов в CorelDRAW или Photoshop. В поле R введите максимальное значение яркости красного цвета 255, а в поля G и B — нулевое значение. В результате поле образца будет содержать красный цвет, шестнадцатеричный код будет таким: FF0000 (рис. 2).

Рис. 2. Представление красного цвета в модели RGB: слева — в окне палитры Photoshop, справа — CorelDRAW

Рис. 2. Представление красного цвета в модели RGB: слева — в окне палитры Photoshop, справа — CorelDRAW

Если к красному цвету добавить зеленый с максимальной яркостью, введя в поле G значение 255, получится желтый цвет, шестнадцатеричное представление которого — FFFF00.

Максимальная яркость всех трех базовых составляющих соответствует белому цвету, минимальная — черному. Поэтому белый цвет имеет в десятичном представлении код (255, 255, 255), а в шестнадцатеричном — FFFFFF16. Черный цвет кодируется соответственно (0, 0, 0) или 00000016.

Все оттенки серого цвета образуются смешиванием трех составляющих одинаковой яркости. Например, при значениях R = 200, G = 200, B = 200 или C8C8C816 получается светло­серый цвет, а при значениях R = 100, G = 100, B = 100 или 64646416 — темно­серый. Чем более темный оттенок серого цвета вы хотите получить, тем меньшее число нужно вводить в каждое текстовое поле.

Что же происходит при выводе изображения на печать, как передаются цвета? Ведь бумага не излучает, а поглощает или отражает цветовые волны! При переносе цветного изображения на бумагу используется совершенно другая цветовая модель.

Модель CMYK

При печати на бумагу наносится краска — материал, который поглощает и отражает цветовые волны различной длины. Таким образом, краска выступает в роли фильтра, пропускающего строго определенные лучи отраженного цвета, вычитая все остальные.

Цветовую модель CMYK используют для смешения красок печатающие устройства — принтеры и типографские станки. Цвета этой модели получаются в результате вычитания из белого базовых цветов модели RGB. Поэтому их называют субтрактивными.

Базовыми для CMYK являются следующие цвета:

  • голубой (Cyan) — белый минус красный (Red);
  • пурпурный (Magenta) — белый минус зеленый (Green);
  • желтый (Yellow) — белый минус синий (Blue).

Помимо этих, используется еще и черный цвет, который является ключевым (Key) в процессе цветной печати. Дело в том, что реальные краски имеют примеси, поэтому их цвет не соответствует в точности теоретически рассчитанным голубому, пурпурному и желтому. Смешение трех основных красок, которые должны давать черный цвет, дает вместо этого неопределенный грязно­коричневый. Поэтому в число основных полиграфических красок и внесена черная.

На рис. 3 представлена схема, из которой видно, какие цвета получаются при смешении базовых в CMYK.

Рис. 3. Комбинации базовых цветов модели CMYK

Рис. 3. Комбинации базовых цветов модели CMYK

Следует отметить, что краски модели CMYK не являются столь чистыми, как цвета модели RGB. Этим объясняется небольшое несоответствие базовых цветов. Согласно схеме, представленной на рис. 3, при максимальной яркости должны получаться следующие комбинации цветов:

  • смешение пурпурного (M) и желтого (Y) должно давать красный цвет (R) (255, 0, 0);
  • смешение желтого (Y) и голубого (C) должно давать зеленый цвет (G) (0, 255, 0);
  • смешение пурпурного (M) и голубого (C) должно давать синий цвет (B) (0, 0, 255).

На практике получается несколько иначе, что мы далее и проверим. Откройте диалоговое окно палитры цветов в программе Photoshop. В текстовые поля M и Y введите значение 100%. Вместо базового красного цвета (255, 0, 0) мы имеем красно­оранжевую смесь (рис. 4).

Рис. 4. Пример несоответствия смеси пурпурного и желтого цветов модели CMYK красному цвету модели RGB. Окно палитры Photoshop

Рис. 4. Пример несоответствия смеси пурпурного и желтого цветов модели CMYK красному цвету модели RGB. Окно палитры Photoshop

Теперь в текстовые поля Y и C введите значение 100%. Вместо базового зеленого цвета (0, 255, 0) получается зеленый цвет с небольшим оттенком синего. При задании яркости 100% в полях M и C вместо синего цвета (0, 0, 255) мы имеем синий цвет с фиолетовым оттенком. Более того, не все цвета модели RGB могут быть представлены в модели CMYK. Цветовой охват RGB шире, чем у CMYK.

Основные цвета моделей RGB и CMYK находятся в зависимости, представленной на схеме цветового круга (рис. 5). Эта схема применяется для цветовой коррекции изображений; примеры ее использования рассматривались в КомпьюАрт № 12'2011.

Рис. 5. Схема цветового круга

Рис. 5. Схема цветового круга

Модели RGB и CMYK являются аппаратно зависимыми. Для модели RGB значения базовых цветов определяются качеством люминофора у ЭЛТ или характеристиками ламп подсветки и цветовых фильтров панели у ЖК­мониторов. Если обратиться к модели CMYK, то значения базовых цветов определяются реальными типографскими красками, особенностями печатного процесса и носителя. Таким образом, одинаковое изображение может на различной аппаратуре выглядеть по­разному.

Как отмечалось ранее, RGB является наиболее популярной и часто применяемой моделью для представления цветных изображений. В большинстве случаев изображения подготавливаются для демонстрации через монитор или проектор и для печати на цветных настольных принтерах. Во всех этих случаях необходимо использовать модель RGB.

Замечание

Несмотря на то что в цветных принтерах используются чернила цветовой модели CMYK, чаще всего изображения, подготавливаемые для печати, необходимо преобразовать в модель RGB. Но распечатанное изображение будет выглядеть немного темнее, чем на мониторе, поэтому перед печатью его необходимо осветлить. Величина осветления для каждого принтера определяется опытным путем.

Модель CMYK необходимо применять в одном случае — если изображение готовится к печати на типографском станке. Более того, следует учесть, что модель CMYK не содержит столь же большого числа цветов, как модель RGB, поэтому в результате преобразования из RGB в CMYK изображение может утратить ряд оттенков, которые вряд ли получится восстановить обратным преобразованием. Поэтому старайтесь выполнять преобразование изображения в модель CMYK на конечном этапе работы с ним.

Модель HSB

Модель HSB упрощает работу с цветами, так как в ее основе лежит принцип восприятия цвета человеческим глазом. Любой цвет определяется своим цветовым тоном (Hue) — собственно цветом, насыщенностью (Saturation) — процентом добавления к цвету белой краски и яркостью (Brightness) — процентом добавления черной краски. На рис. 6 показано графическое представление модели HSB.

Рис. 6. Графическое представление модели HSB

Рис. 6. Графическое представление модели HSB

Спектральные цвета, или цветовые тона, располагаются по краю цветового круга и характеризуются положением на нем, которое определяется величиной угла в диапазоне от 0 до 360°. Эти цвета обладают максимальной (100%) насыщенностью (S) и яркостью (B). Насыщенность изменяется по радиусу круга от 0 (в центре) до 100% (на краях). При значении насыщенности 0% любой цвет становится белым.

Яркость — параметр, определяющий освещенность или затемненность. Все цвета цветового круга имеют максимальную яркость (100%) независимо от тона. Уменьшение яркости цвета означает его затемнение. Для отображения этого процесса на модели добавляется новая координата, направленная вниз, на которой откладываются значения яркости от 100 до 0%. В результате получается цилиндр, образованный из серии кругов с уменьшающейся яркостью, нижний слой — черный.

С целью проверки данного утверждения откройте диалоговое окно выбора цвета в программе Photoshop. В поля S и B введите максимальное значение 100%, а в поле H — минимальное значение 0°. В результате мы получим чистый красный цвет солнечного спектра. Этому же цвету соответствует красный цвет модели RGB, его код (255, 0, 0), что указывает на взаимосвязь этих моделей (рис. 7).

Рис. 7. Пример взаимосвязи цветов в моделях HSB и RGB

Рис. 7. Пример взаимосвязи цветов в моделях HSB и RGB

В поле H изменяйте значение угла с шагом 20°. Вы будете получать цвета в том порядке, в каком они расположены в спектре: красный сменится оранжевым, оранжевый желтым, желтый зеленым и т. д. Угол 60° дает желтый цвет (255, 255, 0), 120°— зеленый (0, 255, 0), 180°— голубой (255, 0, 255), 240° — синий (0, 0, 255) и т.д.

Чтобы получить розовый цвет, на языке модели HSB — блеклый красный, необходимо в поле H ввести значение 0°, а насыщенность (S) понизить, например, до 50%, задав максимальное значение яркости (B).

Серый цвет для модели HSB — это сведенные к нулю цветовой тон (H) и насыщенность (S) с яркостью (B) меньше 100%. Вот примеры светло­серого: H = 0, S = 0, B = 80% и темно­серого цветов: H = 0, S = 0, B = 40%.

Белый цвет задается так: H = 0, S = 0, B = 100%, а чтобы получить черный цвет, достаточно снизить до нуля значение яркости при любых значениях тона и насыщенности.

В модели HSB любой цвет получается из спектрального добавлением определенного процента белой и черной красок. Поэтому HSB — очень простая в понимании модель, которую используют маляры и профессиональные художники. У них обычно есть несколько основных красок, а все другие получаются добавлением к ним черной или белой. Однако при смешивании художниками красок, полученных на основе базовых, цвет выходит за рамки модели HSB.

Модель Lab

Модель Lab основана на следующих трех параметрах: L — яркость (Lightness) и два хроматических компонента — a и b. Параметр a изменяется от темно­зеленого через серый до пурпурного цвета. Параметр b содержит цвета от синего через серый до желтого (рис. 8). Оба компонента меняются от –128 до 127, а параметр L — от 0 до 100. Нулевое значение цветовых компонентов при яркости 50 соответствует серому цвету. При значении яркости 100 получается белый цвет, при 0 — черный.

Рис. 8. Графическое представление модели Lab

Рис. 8. Графическое представление модели Lab

Понятия яркости в моделях Lab и HSB нетождественны. Как и в RGB, смешение цветов из шкал a и b позволяет получить более яркие цвета. Уменьшить яркость результирующего цвета можно за счет параметра L.

Рис. 9. Пример взаимосвязи цветов в моделях Lab и RGB

Рис. 9. Пример взаимосвязи цветов в моделях Lab и RGB

Откройте окно выбора цвета в программе Photoshop, в поле яркости L введите значение 50, для параметра a введите наименьшее значение –128, а параметр b обнулите. В результате вы получите сине­зеленый цвет (рис. 9). Теперь попробуйте увеличить значение параметра a на единицу. Обратите внимание: ни в одной модели числовые значения не изменились. Попробуйте, увеличивая значение данного параметра, добиться изменения в других моделях. Скорее всего, у вас получится это сделать при значении 121 (зеленая составляющая RGB уменьшится на 1). Это обстоятельство подтверждает факт того, что модель Lab имеет больший цветовой охват по сравнению с моделями RGB, HSB и CMYK.

В модели Lab яркость полностью отделена от изображения, поэтому в некоторых случаях эту модель удобно использовать для перекраски фрагментов и повышения насыщенности изображения, влияя только на цветовые составляющие a и b. Также возможна регулировка контраста, резкости и других тоновых характеристик изображения за счет изменения параметра яркости L. Примеры коррекции изображения в модели Lab приводились в КомпьюАрт № 3'2012.

Цветовой охват модели Lab шире, чем у RGB, поэтому каждое повторное преобразование из одной модели в другую практически безопасно. Более того, можно перевести изображение в режим Lab, выполнить коррекцию в нем, а затем безболезненно перевести результат обратно в модель RGB.

Модель Lab аппаратно независима, служит ядром системы управления цвета в графическом редакторе Photoshop и применяется в скрытом виде при каждом преобразовании цветовых моделей как промежуточная. Ее цветовой диапазон покрывает диапазоны RGB и CMYK.

Индексированные цвета

Для публикации изображения в Интернете используется не вся цветовая палитра, состоящая из 16 млн цветов, как в режиме RGB, а только 256 цветов. Этот режим называется «Индексированные цвета» (Indexed Color). На работу с такими изображениями налагается ряд ограничений. К ним не могут быть применены фильтры, некоторые команды тоновой и цветовой коррекции, недоступны все операции со слоями.

С изображением, скачанным из Интернета (как правило в формате GIF) очень часто возникает следующая ситуация. Нарисовать в нем что­либо получится только цветом, отличным от выбранного. Это объясняется тем, что выбранный цвет выходит за рамки цветовой палитры индексированного изображения, то есть этого цвета нет в файле. В результате происходит замена выбранного в палитре цвета на ближайший похожий цвет из цветовой таблицы. Поэтому перед редактированием такого изображения необходимо перевести его в модель RGB. 

Разные люди могут по-разному представлять один и тот же цвет по его названию. Например голубой цвет может на самом деле быть цветом морской волны или небесным. Гораздо точнее цвет определяется шестнадцатеричным кодом, всего существует 16777216 комбинаций. Поэтому дизайнеру может быть полезно распознавать цвет, просто взглянув на его hex-код.

Основы

Начнем с простого: рассмотрим обычный hex-код, где каждая из трех пар цифр контролирует один из цветов RGB — красный, зеленый, синий. Числа могут принимать значения цифр от 0 до 9 и букв от A до F.


Насыщенность цвета зависит от того, насколько разные в парах числа. Чем больше значение пар, тем светлее цвет. Вторая цифра каждой пары уточняет оттенок:



Распознавание цвета

В большинстве случаев распознать цвет по hex-коду можно, учитывая только первые цифры пар. В примере ниже понятно, что цвет смешан из большого количества красного, немного синего, а зеленого совсем нет.


Понимание цвета по hex-коду позволяет веб-дизайнеру быстрее ориентироваться в коде страницы, кроме того, можно всегда произвести впечатление на коллег или клиентов, сказав «Ах, какой прекрасный оттенок бордового».

Можно также легко менять яркость, оттенок или насыщенность цвета, отредактировав лишь его шестнадцатеричный код. В первом примере ниже одна из пар меняется с шагом в 10%, при этом растет яркость цвета. Во втором примере яркость растет, но насыщенность падает:


Подчеркивание ссылок

По умолчанию браузеры подчеркивают гиперссылки на веб-страницах. При использовании не слишком крупных шрифтов подчеркивание может смешиваться с буквами ссылки, и выглядит такая конструкция не очень. Но можно сделать подчеркивание менее насыщенным:

  • Для темного текста на светлом фоне делаем ссылки ярче.
  • Для яркого текста на темном фоне делаем ссылки темнее.



Получившиеся ссылки легче читаются, т.к. подчеркивание не смешивается с символами. Однако добавлять span в каждую ссылку не очень рационально. Поэтому можно убрать подчеркивание ссылок, но при этом добавить border-bottom:

Цвета контента

Зачастую на сайтах используется один и тот же цвет для заголовков и основного текста. Но при таком подходе снижается читабельность контента: чем мельче шрифт, тем контрастнее он должен быть. Пример:



Уменьшение первых цифр в парах hex-кода повысит контрастность текста, а значит читабельность улучшится:



Редактирование фона

Легко управлять фоном, изменяя hex-код цвета:

Фон страницы визуально более чувствителен к изменениям цвета, чем контент. Поэтому можно легко сделать его теплее или холоднее, корректируя и вторую цифру в парах hex-кода. Например:

Подбор и комбинирование цветов

Понимание структуры шестнадцатеричного кода цветов дает дизайнеру возможность точно подбирать комбинации цветов и выбирать цветовые схемы. Самая простая техника — это переставлять одну пару в разные места кода. Еще один способ — удвоение первой цифры в первой паре и разделение на два остальных первых цифр. Также можно комбинировать цвета, взятые из фото. Описанные способы наглядно продемонстрированы на рисунке ниже:

Цвет на экране получается при суммировании лучей трёх основных цветов — красного, зелёного и синего. Если интенсивность каждого из них достигает \(100\), то получается белый цвет. Минимальная интенсивность трёх базовых цветов даёт чёрный цвет.

Для описания каждого составляющего цвета требуется \(1\) байт (\(8\) бит) памяти, а чтобы описать один цвет, требуется \(3\) байта, т.е. \(24\) бита, памяти.

Для кодирования одного цвета пикселя определяется длина двоичного кода, которая называется глубиной цвета . Рассчитать глубину цвета можно по формуле: N = 2 i , где N —количество цветов в палитре, i — глубина цвета. Интенсивность каждого из трёх цветов — это один байт (т.е. число в диапазоне от \(0\) до \(255\)), т.е. каждая составляющая может принимать \(256\) значений. Таким образом, с использованием трёх составляющих можно описать \(256⋅256⋅256 = 16777216 \)различных цветовых оттенков, а, значит, модель RGB имеет приблизительно \(16,7\) миллионов различных цветов.
Таким количеством цветов определяется, в основном, палитра современного монитора.

6.jpg

При печати изображений на принтерах используется цветовая модель, основными красками в которой являются голубая (Cyan), пурпурная (Magenta) и жёлтая (Yellow).

Чтобы получить чёрный цвет, в цветовую модель был включен компонент чистого чёрного цвета (BlacK). Так получается четырёхцветная модель, называемая CMYK .

Область применения цветовой модели CMYK — полноцветная печать. Именно с этой моделью работает большинство устройств печати.

Из-за несоответствия цветовых моделей часто возникает ситуация, когда цвет, который нужно напечатать, не может быть воспроизведен с помощью модели CMYK (например, золотой или серебряный). В этом случае применяются краски Pantone.

Все файлы, предназначенные для вывода в типографии, должны быть конвертированы в CMYK . Этот процесс называется цветоделением .

При просмотре CMYK -изображения на экране монитора одни и те же цвета могут восприниматься немного иначе, чем при просмотре RGB -изображения.

В модели CMYK невозможно отобразить очень яркие цвета модели RGB , модель RGB , в свою очередь, не способна передать тёмные густые оттенки модели CMYK , поскольку природа цвета разная.

Отображение цвета на экране монитора часто меняется и зависит от особенностей освещения, температуры монитора и цвета окружающих предметов. Кроме того, многие цвета, видимые в реальной жизни, не могут быть выведены при печати, не все цвета, отображаемые на экране, могут быть напечатаны, а некоторые цвета печати не видны на экране монитора.

Свет как физическое явление представляет собой поток электромагнитных волн различной длины и амплитуды. Глаз человека, будучи сложной оптической системой, воспринимает эти волны в диапазоне длин приблизительно от 350 до 780 нм. Свет воспринимается либо непосредственно от источника, например, от осветительных приборов, либо как отраженный от поверхностей объектов или преломленный при прохождении сквозь прозрачные и полупрозрачные объекты. Цвет - это характеристика восприятия глазом электромагнитных волн разной длины, поскольку именно длина волны определяет для глаза видимый цвет. Амплитуда, определяющая энергию волны (пропорциональную квадрату амплитуды), отвечает за яркость цвета. Таким образом, само понятие цвета является особенностью человеческого "видения" окружающей среды.

На рис. 2.1 схематически изображен глаз человека. Фоторецепторы, расположенные на поверхности сетчатки, играют роль приемников света. Хрусталик - это своеобразная линза, формирующая изображение, а радужная оболочка исполняет роль диафрагмы, регулируя количество света, пропускаемого внутрь глаза. Чувствительные клетки глаза неодинаково реагируют на волны различной длины. Интенсивность света есть мера энергии света, воздействующего на глаз, а яркость - это мера восприятия глазом этого воздействия. Интегральная кривая спектральной чувствительности глаза приведена на рис. 2.2; это стандартная кривая Международной комиссии по освещению (МКО, или CIE - Comission International de l'Eclairage).

Фоторецепторы подразделяются на два вида: палочки и колбочки. Палочки являются высокочувствительными элементами и работают в условиях слабого освещения. Они нечувствительны к длине волны и поэтому не "различают" цвета. Колбочки же, наоборот, обладают узкой спектральной кривой и "различают" цвета. Палочек существует только один тип, а колбочки подразделяются на три вида, каждый из которых чувствителен к определенному диапазону длин волн (длинные, средние или короткие.) Чувствительность их также различна.

На рис. 2.3 представлены кривые чувствительности колбочек для всех трех видов. Видно, что наибольшей чувствительностью обладают колбочки, воспринимающие цвета зеленого спектра, немного слабее - "красные" колбочки и существенно слабее - "синие".


Рис. 2.2. Интегральная кривая спектральной чувствительности глаза
Рис. 2.3. Кривые чувствительности различных рецепторов

Таким образом, если функция характеризует спектральное разложение светового излучения от некоторого источника (рис. 2.4), т. е. распределение интенсивности по длинам волн, то три типа колбочек будут посылать в мозг сигналы (красный, зеленый, синий), мощность которых определяется интегральными соотношениями

\begin</p>
R=\int C(\lambda)S_R(\lambda)d\lambda, \\ G=\int C(\lambda)S_G(\lambda)d\lambda, \\ B=\int C(\lambda)S_B(\lambda)d\lambda, \end

S_R, S_G, S_B

где - функции чувствительности соответствующих типов колбочек.

Если воспринимаемый свет содержит все видимые длины волн в приблизительно равных количествах, то он называетсяахроматическим и при максимальной интенсивности воспринимается как белый, а при более низких интенсивностях - как оттенки серого цвета. Интенсивность отраженного света удобно рассматривать в диапазоне от 0 до 1, и тогда нулевое значение будет соответствовать черному цвету. Если же свет содержит длины волн в неравных пропорциях, то он являетсяхроматическим. Объект, отражающий свет, воспринимается как цветной, если он отражает или пропускает свет в узком диапазоне длин волн. Точно так же и источник света воспринимается как цветной, если он испускает волны в узком диапазоне длин. При освещении цветной поверхности цветным источником света могут получаться довольно разнообразные цветовые эффекты.

Цветовой график МКО

Трехмерная природа восприятия цвета позволяет отображать его в прямоугольной системе координат. Любой цвет можно изобразить в виде вектора, компонентами которого являются относительные веса красного, зеленого и синего цветов, вычисленные по формулам

r=\frac<R></p>
, \quad g=\frac, \quad b=\frac.

Поскольку эти координаты в сумме всегда составляют единицу, а каждая из координат лежит в диапазоне от 0 до 1, то все представленные таким образом точки пространства будут лежать в одной плоскости, причем только в треугольнике, отсекаемом от нее положительным октантом системы координат (рис. 2.5а). Ясно, что при таком представлении все множество точек этого треугольника можно описать с помощью двух координат, так как третья выражается через них посредством соотношения

b=1-r-g.

Таким образом, мы переходим к двумерному представлению области, т.е. к проекции области на плоскость (рис. 2.5б).

X, Y, Z

С использованием такого преобразования в 1931 г. были выработаны международные стандарты определения и измерения цветов. Основой стандарта стал так называемый двумерный цветовой график МКО. Поскольку, как показали физические эксперименты, сложением трех основных цветов можно получить не все возможные цветовые оттенки, то в качестве базисных были выбраны другие параметры, полученные на основе исследования стандартных реакций глаза на свет. Эти параметры - - являются чисто теоретическими, поскольку построены с использованием отрицательных значений основных составляющих цвета. Треугольник основных цветов был построен так, чтобы охватывать весь спектр видимого света. Кроме того, равное количество всех трех гипотетических цветов в сумме дает белый цвет. Координаты цветности строятся так же, как и в приведенной выше формуле:

x=\frac<X></p>
, \quad y=\frac, \quad z=\frac, \quad x+y+z=1

При проекции этого треугольника на плоскость получается цветовой график МКО. Но координаты цветности определяют только относительные количества основных цветов, не задавая яркости результирующего цвета. Яркость можно задать координатой , а определить исходя из величин , по формулам

X=\frac</p>
 x, \quad Z=\frac(1-x-y).

Цветовой график МКО. На контуре указаны длины волн в нанометрах


увеличить изображение
Рис. 2.6. Цветовой график МКО. На контуре указаны длины волн в нанометрах

C

Цветовой график МКО приведен на рис. 2.6. Область, ограниченная кривой, охватывает весь видимый спектр, а сама кривая называется линией спектральных цветностей. Числа, проставленные на рисунке, означают длину волны в соответствующей точке. Точка , соответствующая полуденному освещению при сплошной облачности, принята в качестве опорного белого цвета.

Цветовой график удобен для целого ряда задач. Например, с его помощью можно получить дополнительный цвет: для этого надо провести луч от данного цвета через опорную точку до пересечения с другой стороной кривой (цвета являютсядополнительными друг к другу, если при сложении их в соответствующей пропорции получается белый цвет). Для определения доминирующей длины волны какого-либо цвета также проводится луч из опорной точки до пересечения с данным цветом и продолжается до пересечения с ближайшей точкой линии цветностей.

Для смешения двух цветов используются законы Грассмана. Пусть два цвета заданы на графике МКО координатами и . Тогда смешение их дает цвет =(x_1+x_2,y_1+y_2,z_1+z_2)" />
. Если ввести обозначения , t_2=\frac" />
, то получим координаты цветности смеси

x_</p>
=\frac, \quad y_=\frac, \quad Y_=Y_1+Y_2.

RGB

Координаты МКО являются точным стандартом определения цвета. Но в различных областях, имеющих дело с цветом, есть свой подход к его моделированию. В частности, может использоваться другой набор основных цветов. Компьютерная графика опирается на систему , поэтому представляет интерес переход между этими двумя наборами цветов (иными словами, преобразование координат цветности).

Цветовые модели RGB и CMY

Цветовые модели, используемые в компьютерной графике, - это средства описания цветов в определенном диапазоне.

На основе описанных выше физических представлений в компьютерной графике была принята так называемая аддитивная цветовая модель, использующая три первичных составляющих цвета. Эта модель предполагает, что любой цвет можно рассматривать как взвешенную сумму трех основных цветов. Проиллюстрировать ее можно на примере освещения сцены с помощью трех прожекторов разного цвета. Каждый прожектор управляется независимо, и путем изменения мощности каждого из них можно воспроизвести практически все цвета. В модели RGB цвет можно представить в виде вектора в трехмерной системе координат с началом отсчета в точке (0,0,0). Максимальное значение каждой из компонент вектора примем за 1. Тогда вектор (1,1,1) соответствует белому цвету. Все цветовые векторы, таким образом, заключены внутри единичного куба, называемого цветовым кубом (рис. 2.7а).

Другая модель смешения цветов - субстрактивная цветовая модель, или модель CMY , использующая в качестве первичных составляющих цвета Cyan, Magenta, Yellow (голубой, пурпурный, желтый), которые являются дополнительными к Red, Green, Blue. В этой модели оттенки цвета получаются путем "вычитания" из падающего света волн определенной длины. Этот подход нуждается в пояснении. В этой системе координат вектор (0,0,0) соответствует белому цвету, а вектор (1,1,1) - черному. Соответствующий цветовой куб представлен на рис. 2.7б.

Связь между значениями (R,G,B) и (C,M,Y) для одного и того же цвета выражается формулой

\begin</p>
R \\ G \\ B \end + \begin C \\ M \\ Y \end = \begin 1 \\ 1 \\ 1 \end

Схема смешения цветов для моделей RGB и CMY


увеличить изображение
Рис. 2.8. Схема смешения цветов для моделей RGB и CMY

Цвета одной модели являются дополнительными к цветам другой (дополнительный цвет - это цвет, результатом смешения которого с данным является белый). Схема смешения цветов для двух моделей представлена на рис. 2.8. Пример субстрактивного формирования оттенков показан на рис. 2.9. При освещении падающим белым светом в слое голубой (Cyan) краски из спектра белого цвета поглощается (вычитается) красная часть как дополнительный цвет, затем из оставшегося света в слое пурпурной (Magenta) краски поглощается зеленая часть спектра, и, наконец, от белой поверхности отражается синий цвет, который мы и видим. Таким образом, смешение голубого и пурпурного цветов дает в итоге синий цвет.

Растровые дисплеи, как правило, используют аппаратно- ориентированную модель цветов RGB. Существуют также дисплеи стаблицей цветности, представляющей собой матрицу, каждый элемент которой - некоторый цвет (вектор RGB). В таких дисплеях значения кодов пикселей, заносимые в видеопамять, представляют собой индексы матрицы цветности. При отображении некоторого пикселя на экран по значению кода выбирается элемент таблицы цветности, содержащий тройку значений R, G, B. Эта тройка и передается на монитор для задания цвета пикселя на экране.

В полноцветных дисплеях для каждого пикселя в видеопамять заносится тройка значений R, G, B. В этом случае для отображения пикселя из видеопамяти непосредственно выбираются значения R, G, B, которые и передаются на монитор (но могут и передаваться в таблицу цветности).

В моделях RGB и CMY легко задавать яркости для одного из основных цветов, но довольно затруднительно задать оттенок с требуемым цветовым тоном и насыщенностью, соответствующим какому-либо образцу цвета. В различного рода графических редакторах эта задача чаще всего решается с помощью интерактивного выбора из палитры цветов и формированием цветов в палитре путем подбора значений координат до получения требуемого визуального результата. Иногда такая палитра наглядно отображает выбор вектора из цветового куба: сначала посредством одного движка выбирается цветовая плоскость, а затем на этой плоскости выбирается конкретная точка. Но и таким методом не сразу удается достигнуть желаемого эффекта, поскольку не так просто выбрать правильную цветовую плоскость.

Цветовые модели HSV и HLS

Приведенные модели не охватывают всего диапазона видимого цвета, поскольку их цветовой охват - это лишь треугольник на графике МКО, вершинам которого соответствуют базовые цвета. Они являются аппаратно ориентированными, т.е. соответствуют технической реализации цвета в устройствах графического вывода. Но психофизиологическое восприятие света определяется не интенсивностью трех первичных цветов, а цветовым тоном, насыщенностью и светлотой. Цветовой тон позволяет различать цвета, насыщенность задает степень "разбавления" чистого тона белым цветом, а светлота - это интенсивность света в целом. Поэтому для адекватного нашему восприятию подбора оттенков более удобными являются модели, в числе параметров которых присутствует тон (Hue). Этот параметр принято измерять углом, отсчитываемым вокруг вертикальной оси. При этом красному цвету соответствует угол 0 , зеленому - 120 , синему - 240 , а дополняющие друг друга цвета расположены один напротив другого, т.е. угол между ними составляет 180 . Цвета CMY расположены посредине между составляющими их компонентами RGB. Существует две модели, использующие этот параметр.

Модель HSV (Hue, Saturation , Value, или тон, насыщенность, количество света) можно представить в виде световой шестигранной пирамиды (рис. 2.10), по оси которой откладывается значение V, а расстояние от оси до боковой грани в горизонтальном сечении соответствует параметру S (за диапазон изменения этих величин принимается интервал от нуля до единицы). Значение S равно единице, если точка лежит на боковой грани пирамиды. Шестиугольник, лежащий в основании пирамиды, представляет собой проекцию цветового куба в направлении его главной диагонали (рис. 2.11).

Краткая аннотация: Цветовая модель RGB . Формирование собственных цветовых оттенков на экране монитора. Цветовая модель CMYK . Формирование собственных цветовых оттенков при печати изображений. Взаимосвязь цветовых моделей RGB и CMYK . Кодирование цвета в различных графических программах. Цветовая модель HSB .

Цель: получить представление о методах описания цветов в компьютерной графике – цветовых моделях.

Свет и цвет

Мир, окружающий человека, — это океан цвета. Цвет имеет не только информационную, но и эмоциональную составляющую. Для многих отраслей производства, в том числе для полиграфии и компьютерных технологий, необходимы объективные способы описания и обработки цвета.

Понятие света и цвета в компьютерной графике является основополагающим.

Цвета образуются в природе различным образом.

Источники света (солнце, лампочки, экраны компьютеров и телевизоров) излучают свет различных длин волн, воспринимаемый глазом как цветной свет. Попадая на поверхности несветящихся предметов, свет частично поглощается, а частично отражается. Отраженное излучение воспринимается глазом как окраска предметов. Таким образом, цвет объекта возникает в результате излучения или отражения. Описание цвета может опираться на составление любого цвета на основе основных цветов или на такие понятия как светлота, насыщенность, цветовой тон.

В связи с необходимостью описания различных физических процессов воспроизведения цвета, были разработаны различные цветовые модели, позволяющие с помощью математического аппарата описать определенные цветовые области спектра.

Цветовые модели описывают цветовые оттенки с помощью смешивания нескольких основных цветов. Основные цвета разбиваются на оттенки по яркости от темного к светлому и каждой градации яркости присваивается цифровое значение (например, самой темной – 0, самой светлой – 255). Считается, что в среднем человек способен воспринимать около 256 оттенков одного цвета. Поэтому, любой цвет можно разложить на оттенки основных цветов и обозначить его набором цифр – цветовых координат.

Таким образом, при выборе цветовой модели можно определять трехмерное цветовое координатное пространство, внутри которого каждый цвет представляется точкой. Такое пространство называется пространством цветовой модели.

Цветовая модель RGB

Цветов огромное количество, однако, при цветовосприятии человеческим глазом непосредственно воспринимаются три цвета — красный, зеленый, синий. Остальные цвета образуются при смешивании этих трех основных. Именно на данных цветах основана цветовая модель RGB – Red (красный), Green (зеленый), Blue (синий).

При сложении (смешении) двух основных цветов результат осветляется (речь идет о световых лучах определенного цвета, чем больше света, тем светлее).

Смешав три базовых цвета в разных пропорциях, можно получить все многообразие оттенков.

Для описания конкретного оттенка нужно в скобках описать количество (интенсивность) каждого из основных цветов: сначала красного, потом зеленого, потом синего. Например, (240, 160, 25) - оранжевый цвет.

Модель RGB

В модели RGB количество каждого компонента измеряется числом от 0 до 255, то есть имеет 256 градаций. Полное количество цветов, представляемых этой моделью равно 256*256*256 = 16 777 216.

Чёрный цвет получается, если интенсивность всех базовых цветов равна нулю – (0,0,0).

Белый цвет получается при их максимальной интенсивности -(255,255,255).

Ярко-синий цвет может быть определён как (0,0,255), красный как (255,0,0), ярко-фиолетовый — (255,0,255).

Применение: в этой модели кодирует изображение сканер, и отображает рисунок экран монитора.

Примеры кодирования цветов

Цветовая модель CMYK

Цвета в таких светящихся устройствах, как телевизоры и компьютерные мониторы формируются путем смешивания в различных пропорциях трех первичных цветов RGB, но такие средства воспроизведения цвета, как печатные издания и картины работают на поглощении одних длин волн и отражение других.

Цветовая модель CMYK разработана для полиграфии и базируется на четырех основных цветах: Cyan (голубой), Magenta (пурпурный), Yellow (желтый), Black (черный). Чёрный означают K (по последней букве), чтобы не путать с B (англ. blue) из модели RGB.

Три первичных цвета RGB при смешивании создают белый цвет, а три первичных цвета CMY при смешивании создают черный цвет. Поскольку реальные чернила не создают чистых цветов, то к этим трем цветам добавляется отдельно черный цвет (К) и модель называется CMYK. Диапазон представления цветов в CMYK уже, чем в RGB, поэтому при преобразовании данных из RGB в CMYK цвета кажутся грязнее.

В цвета модели CMYK окрашено все, что не светится собственным светом. Окрашенные несветящиеся объекты поглощают часть спектра белого света, их освещающего. В зависимости от того, в какой области спектра происходит поглощение, объекты окрашены в разные цвета.

Цветовая модель CMYK

Применение:. Так как модель описывает реальные полиграфические краски, ее используют для получения полиграфического оттиска. Пурпурный, голубой, желтый цвета составляют так называемую полиграфическую триаду.

Цветовая модель HSB

Модель HSB получила название по первым буквам английских слов: цветовой тон (hue), насыщенность (saturation), яркость (brightness).

Значение, определяющее положение цвета в спектре. Например, зеленый расположен между желтым и синим.

S - Насыщенность (saturation)

Параметр управления цветом; чистота оттенка цвета в диапазоне от серого до чистого цвета.

B - Яркость (brightness)

Яркость цвета по шкале от черного до белого на мониторе пользователя. Измеряется в процентах: от 0 до 100%. Нулевая яркость - это чёрный цвет.

Цветовая модель HSB

Работу с яркостью можно характеризовать как добавление в спектральный цвет определенного процента черной краски.

В общем случае, любой цвет получается из спектрального цвета добавлением определенного процента белой и черной красок, то есть фактически серой краски.

На цветовом круге основные цвета моделей RGB и CMYK находятся в такой зависимости: каждый цвет расположен напротив дополняющего его (комплиментарного) цвета; при этом он находится между цветами, с помощью которых получен. Например, сложение зеленого и красного цветов дает желтый. Чтобы усилить какой-либо цвет, нужно ослабить дополняющий его цвет (расположенный напротив него на цветовом круге). Например, чтобы изменить общее цветовое решение в сторону голубых тонов, следует снизить в нем содержание красного цвета.

К "плюсам" этой модели относят то, что она неплохо согласуется с восприятием человека: цветовой тон является эквивалентом длины волны света, насыщенность — интенсивности волны, а яркость — количества света. Кроме того, данная модель является удобной и понятной, имеет большой цветовой охват.

К "минусам" данной модели относят наличие необходимости преобразования в модель RGB для отображения на экране монитора или в модель CMYK для получения полиграфического оттиска, а любое преобразование из модели в модель не обходится без потерь цветовоспроизведения.

Применение: HSB — модель, которую используют компьютерные художники.

Читайте также: