До разделения памяти устройство управления было

Обновлено: 07.07.2024

С понятием управления паметью в ОС связаны следующие технологии:

  • Функции управления памятью в ОС
  • Типы адресов
  • Методы распределения памяти в ОС
  • Принцип кэширования данных в ОС

Содержание

Функции управления памятью в ОС

Операционная система решает следующие задачи:

  • Отслеживание свободной и занятой памяти.
  • Выделение и освобождение памяти по запросам процессов.
  • Обеспечение настройки адресов.
  • Поддержка механизма виртуальной памяти

Типы адресов

Для идентификации переменных и команд используются символьные имена (метки), виртуальные адреса и физические адреса.

Символьные имена

Символьные имена присваивает пользователь при написании программы.

Виртуальные адреса

Виртуальные адреса вырабатывает компилятор. Так как не известно, в какое место оперативной памяти будет загружена программа, то компилятор присваивает переменным и командам виртуальные (условные) адреса, обычно считая по умолчанию, что программа будет размещена, начиная с нулевого адреса. Совокупность виртуальных адресов процесса называется виртуальным адресным пространством. Каждый процесс имеет собственное виртуальное адресное пространство.

Физические адреса

Физические адреса соответствуют номерам ячеек оперативной памяти, где в действительности расположены или будут расположены переменные и команды. Переход от виртуальных адресов к физическим может осуществляться двумя способами.

В первом случае замену виртуальных адресов на физические делает специальная системная программа - перемещающий загрузчик. Перемещающий загрузчик на основании имеющихся у него исходных данных о начальном адресе физической памяти, в которую предстоит загружать программу, и информации, предоставленной компилятором об адресно-зависимых константах программы, выполняет загрузку программы, совмещая ее с заменой виртуальных адресов физическими.

Второй способ заключается в том, что программа загружается в память в неизмененном виде в виртуальных адресах, при этом операционная система фиксирует смещение действительного расположения программного кода относительно виртуального адресного пространства. Во время выполнения программы при каждом обращении к оперативной памяти выполняется преобразование виртуального адреса в физический.

Второй способ является более гибким, он допускает перемещение программы во время ее выполнения, в то время как перемещающий загрузчик жестко привязывает программу к первоначально выделенному ей участку памяти. Вместе с тем использование перемещающего загрузчика уменьшает накладные расходы, так как преобразование каждого виртуального адреса происходит только один раз во время загрузки, а во втором случае - каждый раз при обращении по данному адресу.

Иногда (обычно в специализированных системах) заранее точно известно, в какой области оперативной памяти будет выполняться программа, и компилятор выдает исполняемый код сразу в физических адресах.

Чтобы обеспечить эффективный контроль использования памяти, ОС должна выполнять следующие функции:

  • отображение адресного пространства процесса на конкретные области физической памяти;
  • распределение памяти между конкурирующими процессами;
  • контроль доступа к адресным пространствам процессов;
  • выгрузка процессов (целиком или частично) во внешнюю память, когда в оперативной памяти недостаточно места;
  • учет свободной и занятой памяти.

В следующих разделах лекции рассматривается ряд конкретных схем управления памятью. Каждая схема включает в себя определенную идеологию управления, а также алгоритмы и структуры данных и зависит от архитектурных особенностей используемой системы. Вначале будут рассмотрены простейшие схемы. Доминирующая на сегодня схема виртуальной памяти будет описана в последующих лекциях.

Простейшие схемы управления памятью

Первые ОС применяли очень простые методы управления памятью. Вначале каждый процесс пользователя должен был полностью поместиться в основной памяти , занимать непрерывную область памяти, а система принимала к обслуживанию дополнительные пользовательские процессы до тех пор, пока все они одновременно помещались в основной памяти . Затем появился "простой свопинг" (система по-прежнему размещает каждый процесс в основной памяти целиком, но иногда на основании некоторого критерия целиком сбрасывает образ некоторого процесса из основной памяти во внешнюю и заменяет его в основной памяти образом другого процесса). Такого рода схемы имеют не только историческую ценность. В настоящее время они применяются в учебных и научно-исследовательских модельных ОС, а также в ОС для встроенных (embedded) компьютеров.

Схема с фиксированными разделами

Самым простым способом управления оперативной памятью является ее предварительное (обычно на этапе генерации или в момент загрузки системы) разбиение на несколько разделов фиксированной величины. Поступающие процессы помещаются в тот или иной раздел. При этом происходит условное разбиение физического адресного пространства . Связывание логических и физических адресов процесса происходит на этапе его загрузки в конкретный раздел, иногда – на этапе компиляции.

Каждый раздел может иметь свою очередь процессов, а может существовать и глобальная очередь для всех разделов(см. рис. 8.4).

Эта схема была реализована в IBM OS/360 ( MFT ), DEC RSX-11 и ряде других систем.

Подсистема управления памятью оценивает размер поступившего процесса, выбирает подходящий для него раздел, осуществляет загрузку процесса в этот раздел и настройку адресов.


Рис. 8.4. Схема с фиксированными разделами: (a) – с общей очередью процессов, (b) – с отдельными очередями процессов

Очевидный недостаток этой схемы – число одновременно выполняемых процессов ограничено числом разделов.

Другим существенным недостатком является то, что предлагаемая схема сильно страдает от внутренней фрагментации – потери части памяти, выделенной процессу, но не используемой им. Фрагментация возникает потому, что процесс не полностью занимает выделенный ему раздел или потому, что некоторые разделы слишком малы для выполняемых пользовательских программ.

Один процесс в памяти

Частный случай схемы с фиксированными разделами – работа менеджера памяти однозадачной ОС. В памяти размещается один пользовательский процесс. Остается определить, где располагается пользовательская программа по отношению к ОС – в верхней части памяти, в нижней или в средней. Причем часть ОС может быть в ROM (например, BIOS, драйверы устройств). Главный фактор, влияющий на это решение, – расположение вектора прерываний, который обычно локализован в нижней части памяти, поэтому ОС также размещают в нижней. Примером такой организации может служить ОС MS-DOS.

Защита адресного пространства ОС от пользовательской программы может быть организована при помощи одного граничного регистра, содержащего адрес границы ОС.

Оверлейная структура

Так как размер логического адресного пространства процесса может быть больше, чем размер выделенного ему раздела (или больше, чем размер самого большого раздела), иногда используется техника, называемая оверлей (overlay) или организация структуры с перекрытием. Основная идея – держать в памяти только те инструкции программы, которые нужны в данный момент.

Потребность в таком способе загрузки появляется, если логическое адресное пространство системы мало, например 1 Мбайт (MS-DOS) или даже всего 64 Кбайта (PDP-11), а программа относительно велика. На современных 32-разрядных системах, где виртуальное адресное пространство измеряется гигабайтами, проблемы с нехваткой памяти решаются другими способами (см. раздел "Виртуальная память").


Рис. 8.5. Организация структуры с перекрытием. Можно поочередно загружать в память ветви A-B, A-C-D и A-C-E программы

Коды ветвей оверлейной структуры программы находятся на диске как абсолютные образы памяти и считываются драйвером оверлеев при необходимости. Для описания оверлейной структуры обычно используется специальный несложный язык (overlay description language). Совокупность файлов исполняемой программы дополняется файлом (обычно с расширением . odl ), описывающим дерево вызовов внутри программы. Для примера, приведенного на рис. 8.5, текст этого файла может выглядеть так:

Синтаксис подобного файла может распознаваться загрузчиком. Привязка к физической памяти происходит в момент очередной загрузки одной из ветвей программы.

Оверлеи могут быть полностью реализованы на пользовательском уровне в системах с простой файловой структурой. ОС при этом лишь делает несколько больше операций ввода-вывода. Типовое решение – порождение линкером специальных команд, которые включают загрузчик каждый раз, когда требуется обращение к одной из перекрывающихся ветвей программы.

Тщательное проектирование оверлейной структуры отнимает много времени и требует знания устройства программы, ее кода, данных и языка описания оверлейной структуры . По этой причине применение оверлеев ограничено компьютерами с небольшим логическим адресным пространством . Как мы увидим в дальнейшем, проблема оверлейных сегментов , контролируемых программистом, отпадает благодаря появлению систем виртуальной памяти.

Заметим, что возможность организации структур с перекрытиями во многом обусловлена свойством локальности, которое позволяет хранить в памяти только ту информацию, которая необходима в конкретный момент вычислений.

Динамическое распределение. Свопинг

Имея дело с пакетными системами , можно обходиться фиксированными разделами и не использовать ничего более сложного. В системах с разделением времени возможна ситуация, когда память не в состоянии содержать все пользовательские процессы. Приходится прибегать к свопингу (swapping) – перемещению процессов из главной памяти на диск и обратно целиком. Частичная выгрузка процессов на диск осуществляется в системах со страничной организацией (paging) и будет рассмотрена ниже.

Выгруженный процесс может быть возвращен в то же самое адресное пространство или в другое. Это ограничение диктуется методом связывания . Для схемы связывания на этапе выполнения можно загрузить процесс в другое место памяти.

Свопинг не имеет непосредственного отношения к управлению памятью, скорее он связан с подсистемой планирования процессов. Очевидно, что свопинг увеличивает время переключения контекста. Время выгрузки может быть сокращено за счет организации специально отведенного пространства на диске (раздел для свопинга). Обмен с диском при этом осуществляется блоками большего размера, то есть быстрее, чем через стандартную файловую систему. Во многих версиях Unix свопинг начинает работать только тогда, когда возникает необходимость в снижении загрузки системы.

Схема с переменными разделами

В принципе, система свопинга может базироваться на фиксированных разделах . Более эффективной, однако, представляется схема динамического распределения или схема с переменными разделами, которая может использоваться и в тех случаях, когда все процессы целиком помещаются в памяти, то есть в отсутствие свопинга. В этом случае вначале вся память свободна и не разделена заранее на разделы. Вновь поступающей задаче выделяется строго необходимое количество памяти, не более. После выгрузки процесса память временно освобождается. По истечении некоторого времени память представляет собой переменное число разделов разного размера (рис. 8.6). Смежные свободные участки могут быть объединены.


Рис. 8.6. Динамика распределения памяти между процессами (серым цветом показана неиспользуемая память)

В какой раздел помещать процесс? Наиболее распространены три стратегии.

  • Стратегия первого подходящего (First fit). Процесс помещается в первый подходящий по размеру раздел.
  • Стратегия наиболее подходящего ( Best fit ). Процесс помещается в тот раздел, где после его загрузки останется меньше всего свободного места.
  • Стратегия наименее подходящего (Worst fit). При помещении в самый большой раздел в нем остается достаточно места для возможного размещения еще одного процесса.

Моделирование показало, что доля полезно используемой памяти в первых двух случаях больше, при этом первый способ несколько быстрее. Попутно заметим, что перечисленные стратегии широко применяются и другими компонентами ОС, например для размещения файлов на диске.

Типовой цикл работы менеджера памяти состоит в анализе запроса на выделение свободного участка (раздела), выборе его среди имеющихся в соответствии с одной из стратегий (первого подходящего, наиболее подходящего и наименее подходящего), загрузке процесса в выбранный раздел и последующих изменениях таблиц свободных и занятых областей. Аналогичная корректировка необходима и после завершения процесса. Связывание адресов может осуществляться на этапах загрузки и выполнения.

Этот метод более гибок по сравнению с методом фиксированных разделов , однако ему присуща внешняя фрагментация – наличие большого числа участков неиспользуемой памяти, не выделенной ни одному процессу. Выбор стратегии размещения процесса между первым подходящим и наиболее подходящим слабо влияет на величину фрагментации . Любопытно, что метод наиболее подходящего может оказаться наихудшим, так как он оставляет множество мелких незанятых блоков.

Статистический анализ показывает, что пропадает в среднем 1/3 памяти! Это известное правило 50% (два соседних свободных участка в отличие от двух соседних процессов могут быть объединены).

Одно из решений проблемы внешней фрагментации – организовать сжатие, то есть перемещение всех занятых (свободных) участков в сторону возрастания (убывания) адресов, так, чтобы вся свободная память образовала непрерывную область. Этот метод иногда называют схемой с перемещаемыми разделами. В идеале фрагментация после сжатия должна отсутствовать. Сжатие, однако, является дорогостоящей процедурой, алгоритм выбора оптимальной стратегии сжатия очень труден и, как правило, сжатие осуществляется в комбинации с выгрузкой и загрузкой по другим адресам.

Управление памятью в операционной системе

Изучение

Термин «память» можно определить как набор данных в определенном формате. Он используется для хранения инструкций и обработанных данных. Память состоит из большого массива или группы слов или байтов, каждое из которых имеет собственное местоположение. Основным мотивом компьютерной системы является выполнение программ. Эти программы вместе с информацией, к которой они обращаются, должны находиться в основной памяти во время выполнения. ЦП извлекает инструкции из памяти в соответствии со значением счетчика программ.

Для достижения определенной степени мультипрограммирования и правильного использования памяти важно управление памятью. Существует множество методов управления памятью, отражающих различные подходы, и эффективность каждого алгоритма зависит от ситуации.

Что такое основная память

Основная память играет центральную роль в работе современного компьютера. Основная память — это большой массив слов или байтов размером от сотен тысяч до миллиардов. Основная память — это хранилище быстро доступной информации, совместно используемой ЦП и устройствами ввода-вывода. Основная память — это место, где хранятся программы и информация, когда процессор эффективно их использует. Также основная память связана с процессором, поэтому перемещение инструкций и информации в процессор и из процессора происходит очень быстро. Основная память также известна как RAM (оперативная память). Эта память является энергозависимой. ОЗУ теряет свои данные при отключении питания.

Иерархия памяти

Рисунок 1: Иерархия памяти

Что такое управление памятью

В многопрограммном компьютере операционная система находится в части памяти, а остальная часть используется несколькими процессами. Задача разделения памяти между различными процессами называется управлением памятью. Управление памятью — это метод операционной системы для управления операциями между основной памятью и диском во время выполнения процесса. Основная цель управления памятью — эффективное использование памяти.

Почему требуется управление памятью

  • Выделять и освобождать память до и после выполнения процесса.
  • Для отслеживания используемого пространства памяти процессами.
  • Чтобы свести к минимуму проблемы фрагментации.
  • Для правильного использования основной памяти.
  • Сохранять целостность данных при выполнении процесса.

Теперь мы обсуждаем концепцию логического адресного пространства и физического адресного пространства:

Логическое и физическое адресное пространство

Логическое адресное пространство: адрес, генерируемый ЦП, известен как «логический адрес». Он также известен как виртуальный адрес. Логическое адресное пространство можно определить как размер процесса. Логический адрес можно изменить.

Физическое адресное пространство: адрес, видимый блоком памяти (т. Е. Тот, который загружен в регистр адреса памяти), обычно известен как «Физический адрес». Физический адрес также известен как реальный адрес. Набор всех физических адресов, соответствующих этим логическим адресам, известен как физическое адресное пространство. Физический адрес вычисляется MMU. Отображение виртуальных адресов в физические во время выполнения выполняется с помощью модуля управления памятью (MMU) аппаратного устройства. Физический адрес всегда остается постоянным.

Статическая и динамическая нагрузка

Загрузка процесса в основную память выполняется загрузчиком. Есть два разных типа загрузки:

  • Статическая загрузка: — При статической загрузке загружает всю программу по фиксированному адресу. Это требует больше места в памяти.
  • Динамическая загрузка: — Для выполнения процесса вся программа и все данные процесса должны находиться в физической памяти. Итак, размер процесса ограничен размером физической памяти. Для правильного использования памяти используется динамическая загрузка. При динамической загрузке подпрограмма не загружается, пока не будет вызвана. Все процедуры хранятся на диске в перемещаемом формате загрузки. Одним из преимуществ динамической загрузки является то, что неиспользуемая процедура никогда не загружается. Эта загрузка полезна, когда для ее эффективной обработки требуется большой объем кода.

Статические и динамические ссылки

Для выполнения задачи связывания используется компоновщик. Компоновщик — это программа, которая берет один или несколько объектных файлов, созданных компилятором, и объединяет их в один исполняемый файл.

  • Статическая компоновка: пристатической компоновке компоновщик объединяет все необходимые программные модули в единую исполняемую программу. Таким образом, нет никакой зависимости от времени выполнения. Некоторые операционные системы поддерживают только статическое связывание, в котором библиотеки системного языка обрабатываются как любой другой объектный модуль.
  • Динамическое связывание: основная концепция динамического связывания аналогична динамической загрузке. При динамической компоновке «заглушка» включается для каждой соответствующей ссылки на библиотечную подпрограмму. Заглушка — это небольшой фрагмент кода. Когда заглушка выполняется, она проверяет, находится ли нужная процедура уже в памяти или нет. Если он недоступен, программа загружает подпрограмму в память.

Обмен

Когда процесс выполняется, он должен находиться в памяти. Перекачка представляет собой процесс обмена процесс временно во вторичную память из в основной памяти, которая является быстрым, по сравнению с вторичной памятью. Подкачка позволяет запускать больше процессов и может быть помещена в память одновременно. Основная часть подкачки — это время передачи, а общее время прямо пропорционально объему подкачки памяти. Обмен также известен как развертывание, развертывание, потому что, если приходит процесс с более высоким приоритетом и ему требуется обслуживание, диспетчер памяти может заменить процесс с более низким приоритетом, а затем загрузить и выполнить процесс с более высоким приоритетом. После завершения высокоприоритетной работы,процесс с более низким приоритетом поменялись обратно в памяти и продолжал в процессе исполнения.

Когда процесс выполняется, он должен находиться в памяти

Непрерывное распределение памяти

Основная память должна задействовать как операционную систему, так и различные клиентские процессы. Таким образом, выделение памяти становится важной задачей операционной системы. Память обычно делится на два раздела: один для резидентной операционной системы и один для пользовательских процессов. Обычно нам нужно, чтобы несколько пользовательских процессов находились в памяти одновременно. Следовательно, нам нужно подумать о том, как выделить доступную память для процессов, которые находятся во входной очереди, ожидая ввода в память. При выделении смежной памяти каждый процесс содержится в одном непрерывном сегменте памяти.

Основная память должна задействовать как операционную систему

Выделение памяти

Чтобы добиться правильного использования памяти, необходимо эффективно распределять память. Один из простейших методов распределения памяти — разделить память на несколько разделов фиксированного размера, и каждый раздел содержит ровно один процесс. Таким образом, степень мультипрограммирования определяется количеством разделов.

Распределение нескольких разделов : в этом методе процесс выбирается из входной очереди и загружается в свободный раздел. Когда процесс завершается, раздел становится доступным для других процессов.

Фиксированное распределение разделов: в этом методе операционная система поддерживает таблицу, в которой указывается, какие части памяти доступны, а какие заняты процессами. Изначально вся память доступна для пользовательских процессов и считается одним большим блоком доступной памяти. Эта доступная память известна как «отверстие». Когда процесс прибывает и ему требуется память, мы ищем достаточно большую дыру, чтобы сохранить этот процесс. Если требование выполняется, мы выделяем память для процесса, в противном случае оставляя остальную доступной для удовлетворения будущих запросов. При распределении памяти иногда возникают проблемы с динамическим распределением памяти, которые касаются того, как удовлетворить запрос размера n из списка свободных отверстий. Есть несколько решений этой проблемы:

First fit:-

При первой подгонке первое доступное свободное отверстие удовлетворяет требованиям назначенного процесса.

Здесь, на этой диаграмме, блок памяти размером 40 КБ

Здесь, на этой диаграмме, блок памяти размером 40 КБ является первым доступным свободным местом, в котором может храниться процесс A (размер 25 КБ), поскольку первые два блока не имели достаточного пространства памяти.

Best fit:-

В наиболее подходящем случае выделите наименьшее отверстие, которое достаточно велико для обработки требований. Для этого мы ищем весь список, если список не упорядочен по размеру.

Здесь, в этом примере, сначала мы просматриваем полный список и обнаруживаем, что последнее отверстие 25 КБ является наиболее подходящим отверстием для процесса A (размер 25 КБ).

В этом методе использование памяти максимально по сравнению с другими методами распределения памяти.

Worst fit:- В худшем случае выделите для обработки наибольшее доступное отверстие. Этот метод дает самое большое оставшееся отверстие.

Здесь, в этом примере, процесс A (размер 25 КБ) выделяется самому большому доступному блоку памяти, который составляет 60 КБ. Неэффективное использование памяти является серьезной проблемой в худшем случае.

Фрагментация

Фрагментация определяется как когда процесс загружается и удаляется после выполнения из памяти, он создает небольшую свободную дыру. Эти дыры не могут быть назначены новым процессам, потому что дыры не объединяются или не удовлетворяют требованиям процесса к памяти. Чтобы достичь определенной степени мультипрограммирования, мы должны уменьшить потери памяти или проблему фрагментации. В операционной системе два типа фрагментации:

Внутренняя фрагментация

Внутренняя фрагментация происходит, когда блоки памяти выделяются процессу больше, чем их запрошенный размер. Из-за этого остается некоторое неиспользуемое пространство, что создает проблему внутренней фрагментации.

Пример: предположим, что для распределения памяти используется фиксированное разделение, а размер блока в памяти различается: 3 МБ, 6 МБ и 7 МБ. Теперь приходит новый процесс p4 размером 2 МБ и требует блока памяти. Он получает блок памяти размером 3 МБ, но 1 МБ блочной памяти является пустой тратой и не может быть выделен другим процессам. Это называется внутренней фрагментацией.

Внешняя фрагментация

При внешней фрагментации у нас есть свободный блок памяти, но мы не можем назначить его процессу, потому что блоки не являются смежными.

Пример: Предположим (рассмотрим пример выше) три процесса p1, p2, p3 имеют размер 2 МБ, 4 МБ и 7 МБ соответственно. Теперь им выделяются блоки памяти размером 3 МБ, 6 МБ и 7 МБ соответственно. После выделения для процесса p1 и p2 осталось 1 МБ и 2 МБ. Предположим, что приходит новый процесс p4 и требует 3-мегабайтный блок памяти, который доступен, но мы не можем его назначить, потому что свободное пространство памяти не является непрерывным. Это называется внешней фрагментацией.

И первая, и самая подходящая системы для распределения памяти, подверженной внешней фрагментации. Для преодоления проблемы внешней фрагментации используется уплотнение. В технике уплотнения все свободное пространство памяти объединяется и образует один большой блок. Таким образом, это пространство может быть эффективно использовано другими процессами.

Другое возможное решение внешней фрагментации — позволить логическому адресному пространству процессов быть несмежным, что позволяет процессу выделять физическую память там, где последняя доступна.

Paging:

Paging — это схема управления памятью, которая устраняет необходимость непрерывного выделения физической памяти. Эта схема позволяет физическому адресному пространству процесса быть несмежным.

  • Логический адрес или виртуальный адрес (представлен в битах): адрес, генерируемый ЦП.
  • Логическое адресное пространство или виртуальное адресное пространство (представленное словами или байтами): набор всех логических адресов, сгенерированных программой.
  • Физический адрес (представлен в битах): адрес, фактически доступный в блоке памяти.
  • Физическое адресное пространство (выраженное словами или байтами): набор всех физических адресов, соответствующих логическим адресам.
  • Если логический адрес = 31 бит, то логическое адресное пространство = 2 31слово = 2 G слов (1 G = 2 30 )
  • Если логическое адресное пространство = 128 M слов = 2 7* 2 20 слов, то логический адрес = log 2 2 27 = 27 бит
  • Если физический адрес = 22 бита, то физическое адресное пространство = 2 22слова = 4 M слов (1 M = 2 20 )
  • Если физическое адресное пространство = 16 M слов = 2 4* 2 20 слов, то физический адрес = log 2 2 24 = 24 бита.

Преобразование виртуального адреса в физический выполняется блоком управления памятью (MMU), который является аппаратным устройством, и это преобразование известно как метод подкачки.

  • Физическое адресное пространство концептуально разделено на несколько блоков фиксированного размера, называемых кадрами.
  • Логическое адресное пространство также разделено на блоки фиксированного размера, называемые страницами.
  • Размер страницы = Размер кадра
  • Физический адрес = 12 бит, тогда физическое адресное пространство = 4 К слов
  • Логический адрес = 13 бит, затем логическое адресное пространство = 8 К слов
  • Размер страницы = размер кадра = 1 тыс. Слов (предположение)

Адрес, генерируемый ЦП, делится на

Адрес, генерируемый ЦП, делится на

  • Номер страницы (p):количество битов, необходимых для представления страниц в логическом адресном пространстве или номер страницы.
  • Смещение страницы (d):количество битов, необходимых для представления определенного слова на странице или размер страницы логического адресного пространства, или номер слова страницы или смещение страницы.

Физический адрес делится на

  • Номер кадра (f):количество битов, необходимых для представления кадра физического адресного пространства или кадра номера кадра.
  • Смещение кадра (d):количество битов, необходимых для представления конкретного слова в кадре, или размер кадра в физическом адресном пространстве, или номер слова кадра, или смещение кадра.

Аппаратная реализация таблицы страниц может быть выполнена с использованием выделенных регистров. Но использование регистра для таблицы страниц является удовлетворительным только в том случае, если таблица страниц мала. Если таблица страниц содержит большое количество записей, мы можем использовать TLB (буфер просмотра трансляции), специальный небольшой аппаратный кеш для быстрого просмотра.

  • TLB — это ассоциативная высокоскоростная память.
  • Каждая запись в TLB состоит из двух частей: тега и значения.
  • Когда эта память используется, то элемент сравнивается со всеми тегами одновременно. Если элемент найден, то соответствующее значение возвращается.

Время доступа к основной памяти

Время доступа к основной памяти = м

Если таблица страниц хранится в основной памяти,

Эффективное время доступа = m (для таблицы страниц) + m (для конкретной страницы в таблице страниц)

Менеджер памяти - часть операционной системы, отвечающая за управление памятью.

Основные методы распределения памяти:

Без использования внешней памяти (например: HDD)

С использованием внешней памяти

6.2 Методы без использования внешней памяти

6.2.1 Однозадачная система без подкачки на диск

Память разделяется только между программой и операционной системой.

Схемы разделения памяти:

Схемы разделения памяти

Третий вариант используется в MS-DOS. Та часть, которая находится в ПЗУ, часто называется BIOS.

6.2.2 Распределение памяти с фиксированными разделами.

Память просто разделяется на несколько разделов (возможно, не равных). Процессы могут быть разными, поэтому каждому разделу необходим разный размер памяти.

Системы могут иметь:

общую очередь ко всем разделам

к каждому разделу отдельную очередь

Распределение памяти с фиксированными разделами

Недостаток системы многих очередей очевиден, когда большой раздел может быть свободным, а к маленькому выстроилась очередь.

Алгоритмы планирования в случае одной очереди:

выбирается задача, которая максимально займет раздел

Также может быть смешанная система.

6.2.3 Распределение памяти динамическими разделами

В такой системе сначала память свободна, потом идет динамическое распределение памяти.

Распределение памяти динамическими разделами.

Перемещаемые разделы

Это один из методов борьбы с фрагментацией. Но на него уходит много времени.

Рост разделов

Иногда процессу может понадобиться больше памяти, чем предполагалось изначально.

Настройка адресов и защита памяти

В предыдущих примерах мы можем увидеть две основные проблемы.

Настройка адресов или перемещение программ в памяти

Защита адресного пространства каждой программы

Решение обоих проблем заключается в оснащении машины специальными аппаратными регистрами.

Базовый (указывает начало адресного пространства программы)

Предельный (указывает конец адресного пространства программы)

6.3 Методы с использованием внешней памяти (свопинг и виртуальная память)

Так как памяти, как правило, не хватает. Для выполнения процессов часто приходится использовать диск.

Основные способы использования диска:

Свопинг (подкачка) - процесс целиком загружается в память для работы

Виртуальная память - процесс может быть частично загружен в память для работы

6.3.1 Свопинг (подкачка)

При нехватке памяти процессы могут быть выгружены на диск.

т.к. процесс С очень большой, процесс А был выгружен временно на диск,
после завершения процесса С он снова был загружен в память.

Как мы видим процесс А второй раз загрузился в другое адресное пространство, должны создаваться такие условия, которые не повлияют на работу процесса.

Свопер - планировщик, управляющий перемещением данных между памятью и диском.

Этот метод был основным для UNIX до версии 3BSD.

Управление памятью с помощью битовых массивов

Вся память разбивается на блоки (например, по 32бита), массив содержит 1 или 0 (занят или незанят).

Чтобы процессу в 32Кбита занять память, нужно набрать последовательность из 1000 свободных блоков.

Такой алгоритм займет много времени.

битовые массивы и списки

Управление памятью с помощью связных списков

Этот способ отслеживает списки занятых (между процессами) и свободных (процессы) фрагментов памяти.

Запись в списке указывает на:

занят (P) или незанят (H) фрагмент

адрес начала фрагмента

Четыре комбинации соседей для завершения процесса X

Алгоритмы выделения блока памяти:

первый подходящий участок.

следующий подходящий участок, стартует не сначала списка, а с того места на котором остановился в последний раз.

самый подходящий участок (медленнее, но лучше использует память).

самый неподходящий участок, расчет делается на то, что программа займет самый большой участок, а лишнее будет отделено в новый участок, и он будет достаточно большой для другой программы.

6.3.2 Виртуальная память

Основная идея заключается в разбиении программы на части, и в память эти части загружаются по очереди.

Программа при этом общается с виртуальной памятью, а не с физической.

Диспетчер памяти преобразует виртуальные адреса в физические.

Страничная организация памяти

Страничные блоки - единицы физической памяти.

Х - обозначает не отображаемую страницу в физической памяти.

Страничное прерывание - происходит, если процесс обратился к странице, которая не загружена в ОЗУ (т.е. Х). Процессор передается другому процессу, и параллельно страница загружается в память.

Таблица страниц - используется для хранения соответствия адресов виртуальной страницы и страничного блока.

Таблица может быть размещена:

в аппаратных регистрах (преимущество: более высокое быстродействие, недостаток - стоимость)

Типичная запись в таблице страниц

Присутствие/отсутствие - загружена или незагружена в память

Защита - виды доступа, например, чтение/запись.

Изменение - изменилась ли страница, если да то при выгрузке записывается на диск, если нет, просто уничтожается.

Обращение - было ли обращение к странице, если нет, то это лучший кандидат на освобождение памяти.

Информация о адресе страницы когда она хранится на диске, в таблице не размещается.

Для ускорения доступа к страницам в диспетчере памяти создают буфер быстрого преобразования адреса, в котором хранится информация о наиболее часто используемых страниц.

Страничная организация памяти используется, и в UNIX, и в Windows.

Хранение страничной памяти на диске

Статическая область свопинга

После запуска процесса он занимает определенную память, на диске сразу ему выделяется такое же пространство. Поэтому файл подкачки должен быть не меньше памяти. А в случае нехватки памяти даже больше. Как только процесс завершится, он освободит память и место на диске.

На диске всегда есть дубликат страницы, которая находится в памяти.

Этот механизм наиболее простой.

Статический и динамический методы организации свопинга.

Динамическая область свопинга

Предполагается не выделять страницам место на диске, а выделять только при выгрузке страницы, и как только страница вернется в память освобождать место на диске.

Этот механизм сложнее, так как процессы не привязаны к какому-то пространству на диске, и нужно хранить информацию (карту диска) о местоположении на диске каждой страницы.

Читайте также: