Как найти соотношение стороны треугольника вписанного в него треугольника

Обновлено: 04.07.2024

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

Как найти неизвестную сторону треугольника

a , b , c - стороны произвольного треугольника

α , β , γ - противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

Формула стороны треугольника по теореме косинусов

* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), ( a):

Формула стороны по теореме синусов

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

Формулы для прямоугольного треугольника

a , b - катеты

c - гипотенуза

α , β - острые углы

Формулы для катета, ( a ):

Формулы катета прямоугольного треугольника

Формулы для катета, ( b ):

Формулы катета прямоугольного треугольника

Формулы для гипотенузы, ( c ):

Формулы гипотенузы прямоугольного треугольника

формула гипотенузы прямоугольного треугольника

Формулы сторон по теореме Пифагора, ( a , b ):

Формула стороны по теореме Пифагора

Формула стороны по теореме Пифагора

Формула стороны по теореме Пифагора

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

Формулы сторон равнобедренного треугольника

b - сторона (основание)

a - равные стороны

α - углы при основании

β - угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Формулы длины стороны (основания), (b):

Формулы длины стороны (основания), (b):

Формулы длины равных сторон , (a):

Формулы длины равных сторон

Формулы длины равных сторон

4. Найти длину высоты треугольника

Высота- перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется - ортоцентр.

Найти длину высоты треугольника

H - высота треугольника

a - сторона, основание

b, c - стороны

β , γ - углы при основании

p - полупериметр, p=(a+b+c)/2

R - радиус описанной окружности

S - площадь треугольника

Формула длины высоты через стороны, ( H ):

Формула длины высоты через стороны

Формула длины высоты через сторону и угол, ( H ):

Формула длины высоты через сторону и угол

Формула длины высоты через сторону и площадь, ( H ):

Формула длины высоты через сторону и площадь

Формула длины высоты через стороны и радиус, ( H ):

Формула длины высоты через стороны и радиус

5. Формулы высоты прямого угла в прямоугольном треугольнике

В прямоугольном треугольнике катеты, являются высотами. Ортоцентр - точка пересечения высот, совпадает с вершиной прямого угла.

Формулы высоты прямого угла в прямоугольном треугольнике

H - высота из прямого угла

a, b - катеты

с - гипотенуза

c 1 , c 2 - отрезки полученные от деления гипотенузы, высотой

α , β - углы при гипотенузе

Формула длины высоты через стороны, ( H ):

Формула длины высоты через стороны

Формула длины высоты через гипотенузу и острые углы, ( H ):

Формула длины высоты через гипотенузу и острые углы

Формула длины высоты через катет и угол, ( H ):

Формула длины высоты через катет и угол

Формула длины высоты через составные отрезки гипотенузы , ( H ):

Формула длины высоты через составные отрезки гипотенузы

6. Найти длину биссектрисы в треугольнике

L - биссектриса, отрезок |OB|, который делит угол ABC пополам

a, b - стороны треугольника

с - сторона на которую опущена биссектриса

d, e - отрезки полученные делением биссектрисы

γ - угол ABC , разделенный биссектрисой пополам

p - полупериметр, p =(a+b+ c )/2

Длина биссектрисы через две стороны и угол, ( L ):

Длина биссектрисы через две стороны и угол

Длина биссектрисы через полупериметр и стороны, ( L ):

Длина биссектрисы через полупериметр и стороны

Длина биссектрисы через три стороны, ( L ):

Длина биссектрисы через три стороны

Длина биссектрисы через стороны и отрезки d , e , ( L ):

Длина биссектрисы через стороны и отрезки d, e

Точка пересечения всех трех биссектрис треугольника ABC, совпадает с центром О, вписанной окружности.

7. Биссектриса прямоугольного треугольника

1. Найти по формулам длину биссектрисы из прямого угла на гипотенузу:

Биссектриса прямого угла прямоугольного треугольника

L - биссектриса, отрезок ME , исходящий из прямого угла (90 град)

a, b - катеты прямоугольного треугольника

с - гипотенуза

α - угол прилежащий к гипотенузе

Формула длины биссектрисы через катеты, ( L ):

Формула длины биссектрисы через катеты

Формула длины биссектрисы через гипотенузу и угол, ( L ):

Формула длины биссектрисы через гипотенузу и угол

2. Найти по формулам длину биссектрисы из острого угла на катет:

Биссектриса из острого угла прямоугольного треугольника

L - биссектриса, отрезок ME , исходящий из острого угла

a, b - катеты прямоугольного треугольника

с - гипотенуза

α , β - углы прилежащие к гипотенузе

Формулы длины биссектрисы через катет и угол, ( L ):

Формула биссектрисы из острого угла прямоугольного треугольника через катет и угол

Формула биссектрисы из острого угла прямоугольного треугольника через катет и угол

Формула длины биссектрисы через катет и гипотенузу, ( L ):

Формула биссектрисы из острого угла прямоугольного треугольника через катет и гипотенузу

8. Длина биссектрисы равнобедренного треугольника

Длина биссектрисы равнобедренного треугольника

L - высота = биссектриса = медиана

a - одинаковые стороны треугольника

b - основание

α - равные углы при основании

β - угол образованный равными сторонами

Формулы высоты, биссектрисы и медианы, через сторону и угол, ( L ):

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

Формула высоты, биссектрисы и медианы, через стороны, ( L ):

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

9. Найти медиану биссектрису высоту равностороннего треугольника

Формула для вычисления высоты = биссектрисы = медианы.

В равностороннем треугольнике: все высоты, биссектрисы и медианы, равны. Точка их пересечения, является центром вписанной окружности.

Найти медиану биссектрису высоту равностороннего треугольника

L - высота=биссектриса=медиана

a - сторона треугольника

Формула длины высоты, биссектрисы и медианы равностороннего треугольника, ( L ):

Формула длины высоты, биссектрисы и медианы равностороннего треугольника

10. Найти длину медианы треугольника по формулам

Медиана - отрезок |AO|, который выходит из вершины A и делит противолежащею сторону c пополам.

Медиана делит треугольник ABC на два равных по площади треугольника AOC и ABO.

Найти длину медианы треугольника по формулам

M - медиана, отрезок |AO|

c - сторона на которую ложится медиана

a, b - стороны треугольника

γ - угол CAB

Формула длины медианы через три стороны, ( M ):

Формула длины медианы через три стороны

Формула длины медианы через две стороны и угол между ними, ( M ):

Формула длины медианы через две стороны и угол между ними

11. Длина медианы прямоугольного треугольника

Медиана, отрезок |CO|, исходящий из вершины прямого угла BCA и делящий гипотенузу c , пополам.

Медиана в прямоугольном треугольнике ( M ), равна, радиусу описанной окружности ( R ).


Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.

Нарисуем стандартный треугольник и запишем теорему формулой:


стандартный треугольник

Формула теоремы синусов:


Формула теоремы синусов

Докажем теорему с помощью формулы площади треугольника через синус его угла.


Докажем теорему с помощью формулы площади треугольника

Из этой формулы мы получаем два соотношения:

Из этих двух соотношений получаем:


Из этих двух соотношений получаем

Теорема синусов для треугольника доказана.

Эта теорема пригодится, чтобы найти:

  • Стороны треугольника, если даны два угла и одна сторона.
  • Углы треугольника, если даны две стороны и один прилежащий угол.

Доказательство следствия из теоремы синусов

У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.


рассмотрим следствие через радиус

рассмотрим следствие через радиус шаг 2

где R — радиус описанной около треугольника окружности.

Так образовались три формулы радиуса описанной окружности:


три формулы радиуса описанной окружности

Основной смысл следствия из теоремы синусов заключен в этой формуле:


основная формула

Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.

Для доказательства следствия теоремы синусов рассмотрим три случая.

1. Угол ∠А = α — острый в треугольнике АВС.


острый в треугольнике АВС

Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.

Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.

Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.

BA1 = 2R, где R — радиус окружности

Следовательно: R = α/2 sinα

Для острого треугольника с описанной окружностью теорема доказана.

2. Угол ∠А = α — тупой в треугольнике АВС.

Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.

Следовательно, ∠А1 = 180° - α.


тупой в треугольнике АВС

Вспомним свойство вписанного в окружность четырёхугольника:


свойство вписанного в окружность четырёхугольника

Также известно, что sin(180° - α) = sinα.

В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:

α = 2R sin (180° - α) = 2R sinα

Следовательно: R = α/2 sinα

Для тупого треугольника с описанной окружностью теорема доказана.

Часто используемые тупые углы:

  • sin120° = sin(180° - 60°) = sin60° = 3/√2;
  • sin150° = sin(180° - 30°) = sin30° = 1/2;
  • sin135° = sin(180° - 45°) = sin45° = 2/√2.

3. Угол ∠А = 90°.


Угол ∠А = 90

В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.


формула

Для прямоугольного треугольника с описанной окружностью теорема доказана.

Теорема о вписанном в окружность угле

Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.

Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.

Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.


Теорема о вписанном угле

∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.

Формула теоремы о вписанном угле:


Формула теоремы о вписанном угле

Следствие 1 из теоремы о вписанном в окружность угле

Вписанные углы, опирающиеся на одну дугу, равны.


Следствие 1 из теоремы о вписанном в окружность угле

∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).

Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:


лучи, которые опираются на одну и ту же дугу, то получим

На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.

Следствие 2 из теоремы о вписанном в окружность угле

Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.


Следствие 2 из теоремы о вписанном в окружность угле

ВС — диаметр описанной окружности, следовательно ∠COB = 180°.


 диаметр описанной окружности, следовательно ∠COB = 180°

Следствие 3 из теоремы о вписанном в окружность угле

Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:


Следствие 3 из теоремы о вписанном в окружность угле

Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.

Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.

Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.

Следовательно: α + γ = 180°.

Поэтому: ∠A + ∠C = 180°.

Следствие 4 из теоремы о вписанном в окружность угле

Синусы противоположных углов вписанного четырехугольника равны. То есть:

sinγ = sin(180° - α)

Так как sin(180° - α) = sinα, то sinγ = sin(180° - α) = sinα

Примеры решения задач

Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.

Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.

    Согласно теореме о сумме углов треугольника:

∠B = 180° - 45° - 15° = 120°

Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.

В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:


решение 1


решение 2

Значит x = sin (4/5) ≈ 53,1°.

Ответ: угол составляет примерно 53,1°.

Запоминаем

Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.

Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:

228. В этой главе мы будем главным образом понимать под обозначениями отрезков AB, AC и т. д. выражающие их числа.

Мы знаем (п. 226), что если даны геометрически два отрезка a и b, то мы можем построить средний пропорциональный между ними. Пусть теперь отрезки даны не геометрически, а числами, т. е. под a и b будем понимать числа, выражающие 2 данных отрезка. Тогда нахождение среднего пропорционального отрезка сведется к нахождению числа x из пропорции a/x = x/b, где a, b и x числа. Из этой пропорции имеем:

229. Пусть имеем прямоугольный треугольник ABC (чер. 224).

Прямоугольный треугольник

Опустим из вершины его прямого угла (∠B прямой) перпендикуляр BD на гипотенузу AC. Тогда из п. 225 мы знаем:

1) AC/AB = AB/AD и 2) AC/BC = BC/DC.

Отсюда мы получаем:

AB 2 = AC · AD и BC 2 = AC · DC.

Сложив по частям полученные равенства, получим:

AB 2 + BC 2 = AC · AD + AC · DC = AC(AD + DC).

т. е. квадрат числа, выражающего гипотенузу, равен сумме квадратов чисел, выражающих катеты прямоугольного треугольника .

Сокращенно говорят: Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов .

Если мы дадим полученной формуле геометрическое толкование, то получим уже известную нам теорему Пифагора (п. 161):

квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на катетах.

Из уравнения AB 2 + BC 2 = AC 2 иногда приходится находить катет прямоугольного треугольника, по гипотенузе и другому катету. Получим, напр.:

Нахождение длины катета

AB 2 = AC 2 – BC 2 и, следов.,

230. Найденное числовое соотношение между сторонами прямоугольного треугольника позволяет решать множество вычислительных задач. Решим некоторые из них:

1. Вычислить площадь равностороннего треугольника по данной его стороне .

Равносторонний треугольник

Пусть ∆ABC (чер. 225) равносторонний и каждая его сторона выражается числом a (AB = BC = AC = a). Для вычисления площади этого треугольника надо узнать сначала его высоту BD, которую мы назовем чрез h. Мы знаем, что в равностороннем треугольнике высота BD делит основание AC пополам, т. е. AD = DC = a/2. Поэтому из прямоугольного треугольника DBC имеем:

BD 2 = BC 2 – DC 2 ,

h 2 = a 2 – a 2 /4 = 3a 2 /4 (выполняем вычитание).

Вычисление высоты треугольника

(выносим множитель из под корня).

Следовательно, называя число, выражающее площадь нашего треугольника, чрез Q и зная, что площадь ∆ABC = (AC · BD)/2, находим:

Вычисление высоты треугольника

Мы можем смотреть на эту формулу, как на один из способов измерения площади равностороннего треугольника: надо измерить его сторону в линейных единицах, возвести найденное число в квадрат, умножить полученное число на √3 и разделить на 4 — получим выражение площади в квадратных (соответствующих) единицах.
2. Стороны треугольника равны 10, 17 и 21 лин. един. Вычислить его площадь .

Площадь треугольника

Опустим высоту h в нашем треугольнике (чер. 226) на большую сторону — она непременно пройдет внутри треугольника, так как в треугольнике тупой угол может быть расположен только против большей стороны. Тогда большая сторона, = 21, разделится на 2 отрезка, один из которых обозначим чрез x (см. чертеж) — тогда другой = 21 – x. Получим два прямоугольных треугольника, из которых имеем:

h 2 = 10 2 – x 2 и h 2 = 17 2 – (21 – x) 2

Так как левые части этих уравнений одинаковы, то

10 2 – x 2 = 17 2 – (21 – x) 2

Выполняя действия получим:

10 2 – x 2 = 289 – 441 + 42x – x 2

Упрощая это уравнение, найдем:

Тогда из уравнения h 2 = 10 2 – x 2 , получим:

h 2 = 10 2 – 6 2 = 64

Тогда искомая площадь найдется:

Q = (21 · 8)/2 квад. един. = 84 квад. един.

3. Можно решить общую задачу:

как вычислить площадь треугольника по его сторонам?

Площадь треугольника по его сторонам

Пусть стороны треугольника ABC выражены числами BC = a, AC = b и AB = c (чер. 227). Положим, что AC есть большая сторона; тогда высота BD пойдет внутри ∆ABC. Назовем: BD = h, DC = x и тогда AD = b – x.

Из ∆BDC имеем: h 2 = a 2 – x 2 .

Из ∆ABD имеем: h 2 = c 2 – (b – x) 2 ,

откуда a 2 – x 2 = c 2 – (b – x) 2 .

Решая это уравнение, последовательно получаем:

2bx = a 2 + b 2 – c 2 и x = (a 2 + b 2 – c 2 )/2b.

Далее, подставляя это выражение в уравнение h 2 = a 2 – x 2 , найдем

Вычисление

(Последнее написано на том основании, что числителя 4a 2 b 2 – (a 2 + b 2 – c 2 ) 2 можно рассматривать, как равность квадратов, которую разлагаем на произведение суммы на разность).

​Вычисление [Нажмите и перетащите] ​

Эту формулу преобразовывают, вводя периметр треугольника, который обозначим чрез 2p, т. е.

Вычитая по 2c из обеих частей равенства, получим:

a + b + c – 2c = 2p – 2c или a + b – c = 2(p – c):

c + a – b = 2(p – b) и c – a + b = 2(p – a).

Вычисление

(p выражает полупериметр треугольника).
Этою формулою можно пользоваться для вычисления площади треугольника по трем его сторонам.

231. Упражнения.

Дроби

  1. Основание равнобедренного треугольника равно 10 дм., а его площадь = 60 кв. дм. Найти (вычислить) его периметр.
  2. Параллельные стороны равнобочной трапеции равны 16 и 40 дм., а каждая из непараллельных сторон = 37 дм. Вычислить его площадь.
  3. Стороны трапеции равны: параллельные 15 и 36 дм., а непараллельные 13 и 20 дм. Вычислить их площадь.
  4. Сторона ромба и его меньшая диагональ одинаковы. Найти формулу для измерения площади такого ромба по его стороне.
  5. Катеты прямоугольного треугольника равны соответственно 6 и 8 дм. Найти отрезок гипотенузы, заключенный между биссектором прямого угла треугольника и высотою, опущенною из вершины прямого угла.
  6. Биссектор прямого угла прямоугольного треугольника делит гипотенузу на 2 отрезка, равные соответственно лин. един. Вычислить его площадь.
  7. Найти сторону квадрата, равновеликого равнобедренному треугольнику, боковая сторона которого = 12 ½ лин. един., а высота относится к основанию, как 2 : 3.
  8. Стороны параллелограмма равны a и b и один из его углов = 45°. Найти формулу для его площади.
  9. Угол параллелограмма = 30°; выразить его площадь чрез его стороны (a и b).

232. В п. 229 мы нашли зависимость между сторонами прямоугольного треугольника. Можно найти подобную же зависимость для сторон (с присоединением еще одного отрезка) косоугольного треугольника.

Треугольник

Пусть имеем сначала ∆ABC (чер. 228) такой, чтобы ∠A был острый. Постараемся найти выражение для квадрата стороны BC, лежащей против этого острого угла (подобно тому, как в п. 229 нашли выражение для квадрата гипотенузы).

Построив BD ⊥ AC, получим из прямоугольного треугольника BDC:

BC 2 = BD 2 + DC 2

Заменим BD2, определяя его из ABD, откуда имеем:

BD 2 = AB 2 – AD 2 ,

а отрезок DC заменим чрез AC – AD (очевидно, что DC = AC – AD). Тогда получим:

BC 2 = AB 2 – AD 2 + (AC – AD) 2 = AB 2 – AD 2 + AC 2 – 2AC · AD + AD 2

Выполнив приведение подобных членов, найдем:

BC 2 = AB 2 + AC 2 – 2AC · AD.

Эта формула читается: квадрат стороны треугольника, лежащей против острого угла, равен сумме квадратов двух его других сторон, минус удвоенное произведение одной из этих сторон на ее отрезок от вершины острого угла до высоты .

233. Пусть теперь ∠A и ∆ABC (чер. 229) тупой. Найдем выражение для квадрата стороны BC, лежащей против тупого угла.

Треугольник с тупым углом

Построив высоту BD — она теперь расположится несколько иначе: на 228 где ∠A острый, точки D и C располагаются по одну сторону от A, а здесь, где ∠A тупой, точки D и C расположатся по разные стороны от A. Тогда из прямоугольного ∆BDC получим:

BC 2 = BD 2 + DC 2

Мы можем BD2 заменить, определяя его из прямоугольного ∆BDA:

BD 2 = AB 2 – AD 2 ,

а отрезок DC = AC + AD, что очевидно. Заменяя, получим:

BC 2 = AB 2 – AD 2 + (AC + AD) 2 = AB 2 – AD 2 + AC 2 + 2AC · AD + AD 2

Выполняя приведение подобных членов найдем:

BC 2 = AB 2 + AC 2 + 2AC · AD,

т. е. квадрат стороны треугольника, лежащей против тупого угла, равен сумме квадратов двух его других сторон, плюс удвоенное произведение одной из них на ее отрезок от вершины тупого угла до высоты .
Эта формула, а равно и формула п. 232, допускают геометрическое истолкование, которое легко найти.

234. Пользуясь свойствами пп. 229, 232, 233, мы можем, если нам даны стороны треугольника в числах, узнать, есть ли у этого треугольника прямой или тупой угол.

Прямой или тупой угол в треугольнике может быть расположен лишь против большей стороны, каков же угол против нее, легко узнать: этот угол острый, прямой или тупой, смотря по тому, будет ли квадрат большей стороны меньше, равен или больше суммы квадратов двух других сторон.

Узнать, имеется ли прямой или тупой угол в следующих треугольниках, определяемых своими сторонами:

1) 15 дм., 13 дм. и 14 дм.; 2) 20, 29 и 21; 3) 11, 8 и 13; 4) 7, 11 и 15.

235. Пусть имеем параллелограмм ABCD (чер. 230); построим его диагонали AC и BD и его высоты BK ⊥ AD и CL ⊥ AD.

Параллелограмм

Тогда, если ∠A (∠BAD) острый, то ∠D (∠ADC) непременно тупой (ибо их сумма = 2d). Из ∆ABD, где ∠A считаем острым, имеем:

BD 2 = AB 2 + AD 2 – 2AD · AK,

а из ∆ACD, где ∠D тупой, имеем:

AC 2 = AD 2 + CD 2 + 2AD · DL.

Заменим в последней формуле отрезок AD равным ему отрезком BC и DL равным ему AK (DL = AK, ибо ∆ABK = ∆DCL, в чем легко убедиться). Тогда получим:

AC2 = BC2 + CD2 + 2AD · AK.

Сложив выражение для BD2 с последним выражением для AC 2 , найдем:

BD 2 + AC 2 = AB 2 + AD 2 + BC 2 + CD 2 ,

так как члены –2AD · AK и +2AD · AK взаимно уничтожаются. Полученное равенство можем прочитать:

Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон.

236. Вычисление медианы и биссектора треугольника по его сторонам . Пусть в треугольнике ABC (чер. 231) построена медиана BM (т. е. AM = MC). Зная стороны ∆ABC: BC = a, AC = b и AB = c, вычислить медиану BM.

Прямоугольник и треугольник

Продолжим BM и отложим отрезок MD = BM. Соединив D с A и D с C, получим параллелограмм ABCD (выяснить это легко, так как ∆AMD = ∆BMC и ∆AMB = ∆DMC).

Называя медиану BM чрез m, получим BD = 2m и тогда, пользуясь предыдущим п., имеем:

Вычисления

237. Вычисление радиуса, описанного около треугольника круга. Пусть около ∆ABC (чер. 233) описан круг O. Построим диаметр круга BD, хорду AD и высоту треугольника BH.

Радиус круга, описанного около треугольника

∆BCH (∠A = ∠H = d — угол A прямой, потому что он вписанный, опирающийся на диаметр BD и ∠D = ∠C, как вписанные, опирающиеся на одну дугу AB). Поэтому имеем:

или, называя радиус OB чрез R, высоту BH чрез h и стороны AB и BC, как и раньше, соответственно чрез c и a:

но площадь ∆ABC = Q = bh/2, откуда h = 2Q/b.

Следовательно, R = (abc) / (4Q).

Мы умеем (п. 230 зад. 3) вычислять площадь треугольника Q по его сторонам. Отсюда можем вычислить R по трем сторонам треугольника.

238. Вычисление радиуса вписанного в треугольник круга. Впишем в ∆ABC, стороны которого даны (чер. 234), круг O. Соединив его центр O с вершинами треугольника и с точками касания D, E и F сторон к кругу, найдем, что радиусы круга OD, OE и OF служат высотами треугольников BOC, COA и AOB.

С помощю этого онлайн калькулятора можно решить треугольники, т.е. найти неизвестные элементы (стороны, углы) треугольника. Теоретическую часть и численные примеры смотрите ниже.

Решение треугольников − это нахождение всех его элементов (трех сторон и трех углов) по трем известным элементам (сторонам и углам). В статье Треугольники. Признаки равенства треугольников рассматриваются условия, при которых два треугольника оказываются равными друг друга. Как следует из статьи, треугольник однозначно определяется тремя элементами. Это:

  1. Три стороны треугольника.
  2. Две стороны треугольника и угол между ними.
  3. Две стороны и угол противостоящий к одному из этих сторон треугольника.
  4. Одна сторона и любые два угла.

Заметим, что если у треугольника известны два угла, то легко найти третий угол, т.к. сумма всех углов треугольника равна 180°.

Решение треугольника по трем сторонам


Пусть известны три стороны треугольника a, b, c (Рис.1). Найдем .



Из (1) и (2) находим cosA, cosB и углы A и B (используя калькулятор). Далее, угол C находим из выражения

Пример 1. Известны стороны треугольника ABC: Найти (Рис.1).

Решение. Из формул (1) и (2) находим:



.


.

Используя онлайн калькулятор для arcsin и arccos находим углы A и B:


,
.

И, наконец, находим угол C:



Решение треугольника по двум сторонам и углу между ними

Пусть известны стороны треугольника a и b и угол между ними C (Рис.2). Найдем сторону c и углы A и B.

Найдем сторону c используя теорему косинусов:

Далее, из формулы

найдем cosA:

Далее из (3) с помощью калькулятора находим угол A.

Поскольку уже нам известны два угла то находим третий:

Пример 2. Известны две стороны треугольника ABC: и (Рис.2). Найти сторону c и углы A и B.

Решение. Иcпользуя теорму косинусов найдем сторону c:




.

Из формулы (3) найдем cosA:



Поскольку уже нам известны два угла то находим третий:



.

Решение треугольника по стороне и любым двум углам

Пусть известна сторона треугольника a и углы A и B (Рис.4). Найдем стороны b и c и угол C.


Так как, уже известны два угла, то можно найти третий:

Далее, для находждения сторон b и c воспользуемся тероемой синусов:


,
.

,
.

Пример 3. Известна одна сторона треугольника ABC: и углы (Рис.3). Найти стороны b и c и угол С.

Решение. Поскольку известны два угла, то легко можно найти третий угол С:

Читайте также: