Как проверить диоды шотки на плате бп компьютера без выпаивания

Обновлено: 07.07.2024

Современная электроника давно взяла курс на развитие технологий и уменьшение размера приборов. Для того чтобы сделать прибор меньше, производятся миниатюрные радиодетали, собранные в максимально маленькие, но эффективные электрические схемы.

Диоды Шоттки

В сегодняшней статье будет подробно раскрыта тема — диод Шоттки. Пользователь получит информацию о том, как проверить диод Шоттки мультиметром, назначении этих элементов, принципу действия и основных разновидностях.

Назначение

Основное назначение диода Шоттки заключается в создании барьера для падения напряжения, подаваемого в общую цепь. Данный элемент также является полупроводником, как и все диоды. Особенность конструкции является используемый металл в качестве барьера. Основное отличие от обычного диода заключается в величине снижаемого на выходе напряжения. Оно составляет всего 0.2–0.4 вольта, против 0.6–0.8 у обычного полупроводника.

Принцип действия

Принцип работы диода Шоттки почти не отличается от полупроводниковых диодов. Особенностью является наличие металла. В обычном полупроводнике используется 2 вещества, которые формируют внутри себя электроны с положительным и отрицательным зарядом. При прохождении электрического тока, часть заряда теряется на образование этих электронов.

Обозначение на платах и схемах

В диоде Шоттки используется металл и полупроводник. В качестве металлического барьера при производстве используют золото, кремний, германий. Диод также состоит из анода и катода. При подаче напряжения на анод, металл создает магнитный барьер для прямого прохождения напряжения. На его поверхности создаются электроны с отрицательным зарядом. При образовании значительного магнитного поля элемент импульсно разряжается. Такой разряд способен повторятся бесконечное количество раз, при условии соблюдения рабочего напряжения и температуры.

Принцип работы

Ток утечки

Наиболее комфортным напряжением для этого типа диодов является параметр 40–60 вольт. Именно это напряжение позволяет осуществлять переход без потери доли напряжения и без увеличения температуры.

Температура также играет значительную роль для быстрого перехода зарядов. При малом напряжении на входе создается повышение температуры. За счет этого увеличивается количество заряженных электронов, которые быстрее преодолевают металлический барьер.

Разновидности

Диоды Шоттки используются с современной электронике в качестве выпрямителей напряжения. Они способствуют простому, быстрому переходу частиц без существенных потерь на выходе. Основное использование — в диодных схемах импульсных блоков питания. Также они используются для создания импульсного напряжения. Существует 2 основных разновидности этих элементов:

  1. Обычный диод Шоттки в корпусе с анодом и катодом.
  2. Сдвоенные диоды.

Сдвоенные элементы бывают 3 типов:

  1. 2 анода и один катод.
  2. 2 катода и один анод.
  3. Удвоенная сборка с несколькими анодами и катодами.

Разновидности диодов Шоттки

Такие элементы используются для: выпрямления напряжения солнечных батарей; высоковольтных выпрямителей тока с мощностью до 10 ампер. Сдвоенные элементы используются для максимальной миниатюризации печатной платы приборов. По своей сути это 2 или 3 одинаковых элемента в одном корпусе.

Проверка

Далее будут подробно описаны способы проверки диода Шоттки с помощью цифрового мультиметра. Эти радиодетали можно тестировать описанными ниже способами и аналоговыми измерительными приборами.

Перед тестированием описываемой радиодетали необходимо знать следующие нюансы:

  1. Каждый одиночный диод маркируется белым или серым кольцом. Таким образом указывается катод устройства. Через эту ножку протекает отрицательный заряд или она является запорным входом.
  2. При прозвонке стоит знать, что диоды показывают свою работоспособность только со стороны открытого входа.
  3. Проверяемые элементы и измерительные щупы нельзя держать в руках. Тестер покажет сопротивление человека, что может привести к ошибкам в замерах.
  4. Также стоит знать, какое напряжение поступает от тестера при замерах в режиме прозвонки и сопротивления. Это необходимо, чтобы сопоставлять результат с характеристикой проверяемой детали. Например, тестер выдает 9 вольт для прозвонки, падение напряжения диода составляет 5 вольт. Значит при замере элемент должен выдать данные в пределах 4–4.5 вольт.
  5. Нельзя выполнять проверку подключенного через фазу переменного тока устройства.

Итак, теперь можно приступить к проверке.

Один диод

Тестирование одиночного элемента начинается с включения мультиметра в режим замера сопротивления. Далее необходимо:

  1. Черный измерительный щуп соединить со стороной промаркированной кольцом, то есть с катодом.
  2. Красный измерительный щуп соединяется с анодом.
  3. Тестер должен показать сопротивление перехода. Если в этом положении высвечивается «0» или «1», то элемент можно считать неисправным.
  4. Далее проверяется обратная проводимость. Для этого нужно сменить положение измерительных щупов. При смене полярности сопротивления быть не должно. Если есть хоть незначительные показания, то устройство неисправно.

Проверка мультиметром диода

Точно таким же способом проверяется устройство и в режиме прозвонки. При правильной полярности, тестер должен выдать результат с разницей 300 мВ. При смене полярности результата быть не должно.

Проверка в гнезде «PNP/NPN»

Современные мультиметры оснащаются специальным разъемом для проверки целостности транзисторов. Этот разъем можно использовать для теста диода Шоттки. Для этого необходимо:

  1. Мультиметр перевести в режим «hFE».
  2. Анод вставить в отверстие «P».
  3. Катод в отверстие «N».
  4. Тестер покажет проводимость элемента. Далее потребуется сменить полярность. Просто перевернуть диод и вставить обратно. Отсутствие проводимости укажет на целостность устройства.

Диод в гнезде тестера

Эти проверки точно укажут на коэффициент потери тока на выходе, а также на общую работоспособность детали.

Проверка сдвоенных элементов

Такие детали выполнены в одном корпусе схожим с транзистором. Имеют один анод и 2 катода или наоборот. Перед проверкой необходимо убедиться, какая деталь перед вами. Например, необходимо провести тест элемента с одним анодом в центре и двумя катодами по краям. Далее необходимо:

  1. Тестер переводится на режим прозвонки.
  2. Измерительный щуп красного цвета соединяется с центральной ножкой детали.
  3. Черный измерительный щуп соединяется с «1» катодом.
  4. Тестер должен выдать звуковой сигнал и результат замера с вычетом потери до 300 мВ.
  5. Таким же способом тестируется ножка «2». Результат должен быть аналогичным.
  6. Если при этом положении измерительных щупов элемент прошел проверку, то необходимо сменить полярность и повторить тест.

Проверка сдвоенных элементов

Такая же проверка покажет целостность элементов у сдвоенной сборки, состоящих из 4 диодов.

Диодный мост

Диоды Шоттки активно используются в качестве составных деталей диодных мостов для разного рода блоков питания, выпрямителей. Диодный мост состоит из 4 деталей, которые соединены последовательно друг с другом. На такой схеме есть 2 контакта для входящего переменного напряжения и 2 контакта для выхода постоянного тока. При помощи цифрового тестера можно легко проверить целостность этого устройства.

Диодный мост

Делается это следующим образом:

  1. Перед тестированием блок питания нужно обесточить.
  2. Дать разредиться конденсаторам.
  3. Перевести мультиметр на режим прозвонки.
  4. Измерительный щуп красного цвета соединяется с контактом «1» входа.
  5. Измерительный щуп черного цвета соединяется с контактом «2» входа.
  6. Отсутствие зуммера указывает на работоспособность диодов на входе.

Проверка диодного моста

Далее проверяется отдельно каждая пара.

  1. Измерительный щуп красного цвета соединяется с контактом «-».
  2. Черный измерительный щуп с любым контактом входа «

Далее нужно повторить проверку, но сменить положение щупов. Измерительный щуп черного цвета соединить с «-», а красным проверить контакты входа. Тестер не должен выдать никаких значений или только «1». Это указывает на то, что переход внутри диодов с этой стороны закрыт. Если данные есть, мост не пригоден к включению в сеть.

Далее проводится проверка выхода постоянного напряжения. Для этого нужно:

  1. Измерительный щуп черного цвета соединить с контактом «+».
  2. Измерительным щупом красного цвета сделать замеры на контактах входа переменного тока.
  3. Результат должен быть в пределах 500 мВ.
  4. При смене полярности и повторной проверке, результата быть не должно или он будет равен «1».

Данная проверка укажет на целостность устройства. Если в диодном мосту обнаружилась неисправность диодов, то их необходимо заменить на точные аналоги. После того как был выполнен их монтаж, необходимо провести повторную проверку на целостность моста, а только после этого проверять с подключением переменного напряжения.

Проверка на плате

Выполнять проверку диода Шоттки на плате можно. Но для этого лучше провести выпаивание катода элемента. Таким образом полностью снимается проблема ошибочного замера с измерением сопротивлений вмонтированных рядом радиодеталей.

Заключение

Статья подробно раскрыла основную информацию о диодах Шоттки, методах проверки этого элемента. Начинающим радиолюбителям необходимо серьезно отнестись к разновидностям этой детали. Перед тем как сменить элемент, необходимо проверить по таблице максимальный ток вхождения, номинал утечки и проводимости. Любые несоответствия могут стать причиной выхода из строя всей цепи прибора.

Обычно выходят из строя силовые, выпрямительные диоды, т. к. через них проходит значительный прямой ток. Причиной неисправностей диодов может быть их перегрев, нарушение теплового контакта с радиатором или увеличение температуры окружающей среды, выход из строя других элементов схемы которые вызвали увеличение допустимого напряжение на диоде, низкое качество их исполнения.

Как проверить диод мультиметром 01

Неисправность выпрямительных диодов может быть причиной повышения напряжения питания на компонентах схемы и возникновения дополнительных неисправностей. Отказ диода может выражаться в коротком замыкании между разными полупроводниками p-n слоя, отсутствию контакта между ними (обрыв) и появлению тока утечки.

Используя это свойство p-n полупроводников не трудно проверить работоспособность диода мультиметром. На некоторых мультиметрах есть режим проверки диодов, отмечается он символом диода. При касании красным щупом прибора анода полупроводника, а отрицательного катода другим щупом, то на экране измерительного прибора, при исправном элементе, отобразится напряжение на переходе, в случае германиевых диодов от 0,3 до 0,7 В, и от 0,7 до 1 В для кремниевых полупроводников.

Различие величины прямого падения напряжения этих полупроводников зависят от различных сопротивлений переходов. Если перевернуть щупы, к положительному аноду прикоснуться чёрным щупом, а к отрицательному катоду красным, то дисплей отобразит падение напряжения близкое к нулю, (в случае рабочего элемента). Если у мультиметра отсутствует такой режим проверки, тогда работоспособность элемента проверяется в режиме сопротивления.

Ставят переключатель мультиметра в положении измерения сопротивлений 1 Ком, и далее красный щуп прикладывают к аноду элемента, а чёрный к катоду. Экран прибора должен отобразить значение сопротивления прямого перехода для исправного диода от десятков до сотен Ом, что зависит от типа полупроводника. Если материал полупроводника германий, то сопротивление прямого перехода меньше, чем у кремниевых элементов.

Если щупы перевернуть, то сопротивление p-n перехода будет велико (при исправном полупроводнике) от нескольких сотен Ком до Мом. Когда сопротивление обратного перехода заметно ниже, тогда можно говорить о недопустимом токе утечки и неисправном элементе.

Как проверить светодиод, стабилитрон, диод Шоттки мультиметром

Диод Шоттки проверяется способом проверки обычного диода. Стабилитрон тоже проверяется в разных положениях электродов. Но этого для проверки стабилитронов недостаточно. Мультиметр может показать допустимые значения сопротивлений в обоих направлениях перехода, а напряжение стабилизации будет отличаться от необходимого значения.

R = U1-U2/I = 12 -9/0,005 = 600 Ом.

U1 – напряжение источника питания,

U2 – напряжение стабилизации стабилитрона,

I – номинальный ток стабилитрона.

Как проверить диодный мост мультиметром

Простой диодный мост состоит из четырех диодов, собранных по мостовой схеме и предназначен для первичного выпрямления переменного напряжения. В случае грубой проверке диодного моста можно измерить сопротивление переходов отдельных диодов как обычно. Но тогда ток утечки нельзя будет проверить.

Для проверки этого важного параметра нужно отсоединить любой электрод полупроводника от электрической схемы. Проверить наличие тока утечки отдельных силовых диодов, не отключая их от схемы, возможно по разнице температуры корпусов полупроводников. У неисправного полупроводника температура корпуса будет выше, чем у исправных элементов.

Для такого метода проверки диодов на ток утечки важно чтобы они были отдельно стоящими и без радиаторов. Руками (при выключенном источнике питания) проверить разницу температуры не всегда получается. Поэтому температуру лучше измерять датчиком мультиметра, который имеет такой режим. Грубо проверить диод мультиметром, не выпаивая из платы можно обычным способом, и в большинстве случаев этого вполне достаточно.


В этой статье, я немного расскажу об основах ремонта компьютерных, импульсных блоков питания стандарта ATX. Это одна из первых моих статей, я написал её примерно 5 лет назад, по этому прошу строго не судить.

Меры предосторожности.
Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.

Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Инструментарий.

Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
Отсос для припоя и (или) оплетка. Служат для удаления припоя.
Отвертка
Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
Мультиметр
Пинцет
Лампочка на 100Вт
Очищенный бензин или спирт. Используется для очистки платы от следов пайки.
Устройство БП.

Немного о том, что мы увидим, вскрыв блок питания.


Внутреннее изображение блока питания системы ATX

A – диодный мост, служит для преобразования переменного тока в постоянный

B – силовые конденсаторы, служат для сглаживания входного напряжения

Между B и C – радиатор, на котором расположены силовые ключи

C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки

между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений

D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе

E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе

Распиновка разъема 24 pin и измерение напряжений.

Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.


Визуальный осмотр.

Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.

Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

Первичная диагностика.

Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

Неисправности:

БП не запускается, отсутствует напряжение дежурного питания
БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
БП уходит в защиту,
БП работает, но воняет.
Завышены или занижены выходные напряжения
Предохранитель.


Если вы обнаружили, что сгорел плавкий предохранитель, не спешите его менять и включать БП. В 90% случаев вылетевший предохранитель это не причина неисправности, а её следствие. В таком случае в первую очередь надо проверять высоковольтную часть БП, а именно диодный мост, силовые транзисторы и их обвязку.

Варистор


Задачей варистора является защита блока питания от импульсных помех. При возникновении высоковольтного импульса сопротивление варистора резко уменьшается до долей Ома и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. При перенапряжении в сети варистор резко уменьшает свое сопротивление, и возросшим током через него выжигается плавкий предохранитель. Остальные элементы блока питания при этом остаются целыми.

Варистор выходит из строя из-за скачков напряжения, вызванными например грозой. Так же варисторы выходят из строя, если по ошибке вы переключили БП в режим работы от 110в. Вышедший из строя варистор обычно определить не сложно. Обычно он чернеет и раскалывается, а на окружающих его элементах появляется копоть. Вместе с варистором обычно перегорает предохранитель. Замену предохранителя можно производить только после замены варистора и проверки остальных элементов первичной цепи.

Диодный мост
Диодный мост представляет собой диодную сборку или 4 диода стоящие рядом друг с другом. Проверить диодный мост можно без выпаивания, прозвонив каждый диод в прямом и обратном направлениях. В прямом направлении падение напряжения должно быть около 500мВ, а в обратном звониться как разрыв.



Диодные сборки измеряются следующим образом. Ставим минусовой щуп мультиметра на ножку сборки с отметкой «+», а плюсовым щупом прозваниваем в направления указанных на картинке.


Конденсаторы
Вышедшие из строя конденсаторы легко определить по выпуклым крышкам или по вытекшему электролиту. Конденсаторы заменяются на аналогичные. Допускается замена на конденсаторы немногим большие по ёмкости и напряжению. Если из строя вышли конденсаторы в цепи дежурного питания, то блок питания будет включаться с n-ого раза, либо откажется включаться совсем. Блок питания с вышедшими из строя конденсаторами выходного фильтра будет выключаться под нагрузкой либо так же полностью откажется включаться, будет уходить в защиту.

Иногда, высохшие, деградировавшие, конденсаторы выходят из строя, без каких либо видимых повреждений. В таком случае следует, предварительно выпаяв конденсаторы проверить их емкость и внутренние сопротивление. Если емкость проверить нечем, меняем все конденсаторы на заведомо рабочие.

Основные узлы блока питания

Состоит блок питания компьютера из двух основных половин. Первая часть гальванически связана с питающей сетью и содержит фильтр, выпрямитель, схему источника питания дежурного режима, транзисторные ключи преобразователя. При ремонте этой половины нужно соблюдать необходимые меры безопасности!

Ремонт блока питания компьютера. Бп компьютера, Ремонт, Типичные неисправности, Длиннопост

Также, здесь подключается схема коррекции фактора мощности (PFC), если предусмотрено ее использование.

Ремонт блока питания компьютера. Бп компьютера, Ремонт, Типичные неисправности, Длиннопост

Вторая часть включает в себя выпрямители и фильтры выходных напряжений, схему управления и стабилизации на микросхеме ШИМ-контроллера, выпрямитель и стабилизатор напряжения дежурного режима. Эта часть схемы развязана от питающей сети, поэтому работа с ее элементами безопасна.

Ремонт блока питания компьютера. Бп компьютера, Ремонт, Типичные неисправности, Длиннопост

Отделяют части три импульсных трансформатора. Силовые элементы схемы размещены на двух радиаторах охлаждения.

Общее представление о компьютерном блоке питания получили, переходим к практике.

Поиск неисправности в блоке питания компьютера лучше производить в определенном порядке. Поэтому разделим действия на шаги, которые в результате приведут к определению и устранению поломки. Даже если на одном из этапов будет найдена неисправная деталь, нужно пройти все шаги до последнего, на котором и включим блок для проверки.

Разберите блок, снимите плату и разрядите конденсаторы сетевого выпрямителя лампой накаливания.

Начинаем с внешнего осмотра. На этом этапе выявляются вздутые конденсаторы, сгоревшие элементы схемы – варисторы, резисторы. Также нужно внимательно осмотреть плату с обратной стороны для выявления плохой пайки или подгоревших участков. Обнаруженные детали заменяются, плата очищается и пропаивается. Соблюдайте полярность при установке элементов.

Проверьте, насколько легко вращается вентилятор охлаждения, зачастую именно он является причиной перегрева блока.

Проверяем сетевой предохранитель, диоды моста выпрямителя. Если предохранитель сгоревший, в цепи есть короткое замыкание, которое нужно найти и устранить. Для этого проверяем отдельно каждый диод моста выпрямителя. Помните, диод может быть не только пробит, но и иметь незначительную утечку в обратном направлении – при проверке отпаивайте один контакт элемта.

Исправный мост должен иметь бесконечное сопротивление на входе. На выходе моста, при подключении тестера, сопротивление должно измениться от низкого до высокого. Это происходит из-за заряда подключенных параллельно конденсаторов.

Шаг 3, если есть схема активного PFC

Транзисторы ключей схемы PFC (см. схему в первой части) подключены через дроссель параллельно выпрямителю напряжения сети. При пробое транзисторов вход оказывается закороченным и сгорает предохранитель. Как правило, вместе с ключами выходят из строя резисторы, подключенные к затворам и микросхема PWM-контроллера. Как проверить работу схемы PFC, рассмотрим ниже.

Проверяем транзисторы ключей преобразователя. Транзисторы подключены таким образом, что пробой одного из них может не вызвать замыкания питания и сгорания предохранителя, при этом блок питания просто не запускается.

Причиной неисправности в этом узле часто служат электролитические конденсаторы, подключенные к базе. При их утечке или потере емкости, транзистор переходит из ключевого режима работы в усилительный, что вызывает перегрев элемента.

Ремонт блока питания компьютера. Бп компьютера, Ремонт, Типичные неисправности, Длиннопост

Эти элементы и конденсатор, обозначенный синим кругом на схеме выше, также являются причиной потери выходной мощности блока питания компьютера. При этом подключенный к системной плате блок не запускается, а без нагрузки работает. Из-за неисправности этих конденсаторов повышаются пульсации на выходе блока питания, что приводит к перезагрузкам и сбоям в работе системы. Эти элементы нужно обязательно выпаивать и проверять.

Если пробиваются транзисторы ключей, резисторы и диоды, подключенные к базе, часто также сгорают.

Неисправность, рассмотренная в предыдущем шаге, зачастую вызвана завышенным напряжением питающей сети. Источник питания +5в дежурного режима работает постоянно и из-за скачков напряжения страдает первым. Наступила очередь его проверки.

При пробое силового транзистора нужно проверить, а лучше вообще заменить на заведомо исправные все полупроводниковые элементы схемы – транзисторы, диоды, оптопару. Затем проверяем все резисторы и конденсаторы, выпаивая их по очереди. Почему все?

Это очень капризная и важная часть блока питания, от нее запитана микросхема ШИМ-контроллера и схема включения материнской платы. При выходе источника из режима стабилизации, на эти узлы подается завышенное напряжение, что в лучшем случае приводит к сгоранию ШИМ-контроллера блока, а в худшем – потере материнской платы.

Второй случай, когда источник не запускается, +5 дежурного на выходе просто нет. Начальное напряжение для запуска схема получает через резисторы, подключенные к +310в. Зачастую они подгорают, изменяя значение своего сопротивления на гораздо большее, хотя внешне выглядят исправными. Учитывая высокие значения сопротивления резисторов при проверке детали нужно обязательно выпаивать.

Схема также может не запускаться из-за замыкания или перегрузки выходных цепей. Виновником этого может быть пробитый диод выпрямителя, сгоревший ШИМ-контроллер или устанавливаемый в качественных блоках питания защитный стабилитрон.

Ремонт блока питания компьютера. Бп компьютера, Ремонт, Типичные неисправности, Длиннопост

Всегда проверяйте конденсатор, обозначенный на схеме выше восклицательными знаками. От его исправности зависит значение выходного напряжения блока питания, а расположен он в зоне с повышенной рабочей температурой. Если в схеме блока не установлен защитный стабилитрон, именно из-за этого конденсатора выходит из строя материнская плата.

Переходим к выпрямителям выходных напряжений. Выпрямители собраны на спаренных диодах, проверяем от центрального вывода оба крайних на наличие пробоя. Нужно обязательно проверить все элементы схемы стабилизатора 3.3в, потому что блоки с микросхемой ШИМ-контроллера TL494 не имеют обратной связи для контроля этого выхода. Блок питания будет запускаться вхолостую, но не работать под нагрузкой.

Также проверьте диоды выпрямителей для напряжений -5в, -12в. Учитывайте, что каждый выход блока нагружен низкоомным резистором, если появились сомнения в исправности одного из диодов, элемент лучше выпаять.

Добрались до микросхемы ШИМ-контроллера. Возможности проверки исправности микросхемы без включения блока питания ограничены. Но, если в шаге 5, были обнаружены какие либо неисправности, а тем более, если при внешнем осмотре найден сгоревший резистор в цепи питания ШИМ-контроллера, микросхему нужно заменить заведомо исправной.

Выходы микросхемы подключены к двум транзисторам (C945 или 2N2222), если меняете микросхему, проверьте их также.

После устранения всех неисправностей обнаруженных в предыдущих шагах, блок можно подключить к питающей сети, конечно при соблюдении всех мер предосторожности.

Если при подключении сгорел сетевой предохранитель – возвращаемся к шагу 1 и следующим, чтобы найти пропущенную неисправность.

Измеряем значение напряжения дежурного режима +5в на 9 (фиолетовый) контакте разъема. Подключаем нагрузку, подойдет резистор сопротивлением 3-4Ом мощностью около 7Ватт. Снова измеряем напряжение.

Ремонт блока питания компьютера. Бп компьютера, Ремонт, Типичные неисправности, Длиннопост

Если блок питания выдает заниженное значение (4.3в - 4.8в) нужно заменить оптопару, TL431 и электролитические конденсаторы схемы стабилизатора. Напряжения нет вообще, повторяем шаг 5.

При нормальной работе источника дежурного питания, напряжение на входе PS ON (14,зеленый) в пределах 2.3-5в, на остальных– 0в. Замыкаем 14 и 15 контакты перемычкой, блок должен запуститься.

Если старта не произошло, возвращаемся к шагу 4. Возможна ситуация, когда блок питания запустился на короткий промежуток времени, при этом дернулся вентилятор. Это происходит при неисправности выходных выпрямителей или микросхемы ШИМ-контроллера, снова проходим шаги 6 и 7.

Для блоков с системой активной PFC на этом этапе нужно проверить работоспособность схемы. Измеряем напряжение на конденсаторе сетевого выпрямителя, схема PFC поддерживает его значение в пределах 380-400в, если прибор показывает 310в – схема не работает и нужно повторить шаг 3.

У запущенного блока измеряем напряжение на выходе PG (8, серый), правильное значение +5в. Затем проверяем все выходные напряжения - +12в, -12в, +5в, -5в, +3.3в. Нагружать при тестировании все выходы блока было бы правильно, но часто проблематично. Поэтому можно ограничиться нагрузкой каждого выхода по-отдельности. Для нагрузки можно использовать автомобильные лампы накаливания подходящей мощности.

Компьютер после ремонта блока питания обязательно нужно тестировать в течение 3-6 часов.

В заключение дадю несколько советов по доработке БП, что позволит сделать его работу более стабильной:

во многих недорогих блоках производители устанавливают выпрямительные диоды на два ампера, их следует заменить более мощными (4-8 ампер);

диоды шоттки на каналах +5 и +3,3 вольт также можно поставить помощнее, но при этом у них должно быть допустимое напряжение, такое же или большее;

выходные электролитические конденсаторы желательно поменять на новые с емкостью 2200-3300 мкФ и номинальным напряжением не менее 25 вольт;

бывает, что на канал +12 вольт вместо диодной сборки устанавливаются спаянные между собой диоды, их желательно заменить на диод шоттки MBR20100 или аналогичный;

если в обвязке ключевых транзисторов установлены емкости 1 мкФ, замените их на 4,7-10 мкФ, рассчитанные под напряжение 50 вольт.

Такая незначительная доработка позволит существенно продлить срок службы компьютерного блока питания.

Ремонт блока питания компьютера. Бп компьютера, Ремонт, Типичные неисправности, Длиннопост

ЗАПОМНИТЕ. Измерять непосредственно на контактах БП с нагрузкой и не доверять программам мониторинга! (у прибора должны быть надлежащего качества и напряжения элементы питания (не аккумы!))

ЗЫ: Взял где взял, обобщил и добавил немного.

ЗЫ2: Кому не нужно - проходим мимо.

ЗЫ3: LF! ,kzl rjgbgfcnf!

Простите за качество некоторых картинок (чем богаты).

Берегите себя и своих близких!

Смысл этого поста? Без наглядных изображений БП те, кто не шарит в электронике, все равно ничего не поймут, а те, кто шарит - в нем не нуждаются от слова вообще.

Иллюстрация к комментарию

хотелось бы попросить света, у меня блок есть huntkey lw-6550hg на нем перестал работать вентилятор, и он сгорел видимо от перегрева, (то что у него не хватило мощности что бы тянуть установленное железо исключено, тк железо не особо сильное а сам блок 550 Вт)

пыхнул с шумом и дымом, на плате почернение в области детали на радиаторе по виду похожа на транзистор, но это может быть и диодная пара (или как такое назвается)

вопрос таков, если что то такое сгорело - есть ли смысл возиться с БП в принципе?

ЗЫ конденсаотры прозвонил все рабочие и не вздутые.

"когда блок питания запустился на короткий промежуток времени, при этом дернулся вентилятор. Это происходит при неисправности выходных выпрямителей или микросхемы ШИМ-контроллера, снова проходим шаги 6 и 7."

У меня такое было когда вспухли конденсаторы, после замены всё заработало. При этом они сверху выглядели абсолютно нормально, чисто случайно заметил что у них днище выдавило.

"во многих недорогих блоках производители устанавливают выпрямительные диоды на два ампера, их следует заменить более мощными (4-8 ампер)"

В какой цепи? На какое напряжение?

"диоды шоттки на каналах +5 и +3,3 вольт также можно поставить помощнее, но при этом у них должно быть допустимое напряжение, такое же или большее;"

Просто помощнее? На сколько мощнее? Какие?

По замене конденсаторов:

Там много где стоят конденсаторы low ESR, так что нужно не тупо менять их на б0льшую емкость, а подбирать по параметрам. И ставить нормальные, типа panasonic FR, но они и стоят нормально.

Лютый минус по следующим причинам:

1. Ничего своего, тупая копипаста

2. Ничего нового - всё сотни раз разжевано на соответствующих форумах

3. Схемы древнегавённые, упоминать TL494 в 2017 году - оскорбление пользователей, тут впору звать @moclerator.

Спасибо, лишним не будет.

включать ремонтируемый бп можно только через лампу накаливания ватт на 40, если лапа горит- бп неисправен.. Половину понял, каша в голове, рекомендую снять видео

как правильно написано овчинка выделки не стоит. это актуально только если блок какой то очень дорогой или редкий/нестандртный


Ремонт и диагностика техники с помощью ножа, воды и соли

Во время учёбы в институте, у меня вышел из строя ноут. Интересная поломка оказалась. А ещё интереснее то, что диагностику и починку пришлось делать с помощью "каках и палок", ну ладно, с помощью "соли, воды, огня и ножа".

Ситуация такая: блок питания подключён к ноуту, лампа питания горит, но ноут не включается. Аккумулятор ноута умер 100 лет назад, так что на аккумуляторе его не запустить для проверки. Схожего БП не нашёл, хотя это обычный HP с самым обычным разьемом.

Ну что делать, нести в мастерскую? Наверняка возьмут не меньше 500-1000 только для разборки-диагностики. А я сам с усам, только у меня в общаге кроме столовых приборов и учебников ничего нет. В общем решил сам попробовать восстановить ноут с помощью подручных инструментов и смекалки.

Для восстановления у меня имелась отвёртка и нож, для случая, если отвёртка не подойдёт. Это все. Паяльник мог одолжить у кого-то, мультиметра не было.

Для начала нужно определить что не работает, что разбирать. Визуально поломку скорее всего не опрелелить, я и так знаю. Но попытка не пытка. Так разбирать ноут? Может БП накрылся?

Взял соль, воду, смешал и бросил конец (провода) БП в этот раствор. БП на 19В, 4.75А на выходе. Вижу пузырьки водорода. Но вот выделение его идёт не интенсивно. В той пропорции и при параметрах тока вода должна сильнее бурлить, а там выделение шло как от БП 1В / 50мА. В общем понятно, БП как-то накрылся.

Смотрю на БП, не могу понять как разобрать. Вертел его в руках с час. У меня есть такое хобби - догадаться как разобрать устройство. Это достаточно интересное занятие, лучше любого пазла. Но тут я сдался, полез в интернет за подсказкой. Ну и что бы вы думали? Специалисты-ремонтеры-то наверняка знают, что БП заварены и их не разобрать без "расколачивания".

Теперь нож пригодился в качестве ножа. Ножами открывать БП не советую, можно травмировать себя. Лучше использовать лобзик. Но я от безисходности как-то открыл все ножом.

Смотрю внутрь. Мало того, что провода БП стали со временем "деревянными", так ещё и пайка отошла. Но отошла так, что небольшое напряжение он как-то выдавал. Провод отошёл совсем, но вот как-то одним из атомом в одном из узлов решётки все же немного касался нужной дорожки и создавал впечатление, что все работает. Пропаял, проверил, комп включается.

Да, с паяльником была ещё та история. Парень сказал, что есть паяльник. Прихожу, а он мне даёт доисторический музейный экспонат - молот с куском меди на конце, который на костре только разогревать можно. Ну. Ну. Не знаю, иметь хоть что-то, чем ничего все же лучше. Запаял как-то, удалось не все залить там оловом XD

А что теперь, корпус разбит. Можно клеить моментом, эпоксидкой, но прочность конструкции будет сильно нарушена. Можно было бы заклеить жидким клеем под температурой и было бы самое то, но клея не было. Материал корпуса - не полиэтилен, пластик. Причём пластик обычный, бытовой, не какой-то особый, типа высокого класса термостойкости как в чайниках. Такой пластик можно расплавить по периметру раствором дихлорэтана, причём можно и не раствором, а просто. Все это склеится так, как жидкий термоклей бы не склеил.

Ну что, замутил дихлорэтан, вышел на 70 руб, промазываю все по периметру и клею. Результат - внешне, конечно, не как новый, но намного лучше того, что показывают в некоторых видосах на ютубе. Прочность корпуса восстановлена.

Читайте также: