Как вывести на дисплей часы реального времени

Обновлено: 07.07.2024

В данной статье мы рассмотрим, как сделать точные часы на базе Arduino или AVR-микроконтроллера микросхемы часов реального времени DS1307. Время будет выводиться на LCD дисплей.

Что необходимо

  • компьютер с установленной Arduino IDE; ;
  • микросхема DS1307 или модуль RTC на ее основе; ; ;
  • комплектующие из списка элементов.

Вы можете заменить плату Arduino на контроллер Atmel, но убедитесь, что у него достаточно входных и выходных выводов и есть аппаратная реализация интерфейса I2C. Я использую ATMega168A-PU. Если вы будете использовать отдельный микроконтроллер, то вам понадобится программатор, например, AVR MKII ISP.

Предполагается, что читатель знаком с макетированием, программированием в Arduino IDE и имеет некоторые знания языка программирования C. Обе программы, приведенные ниже, не нуждаются в дополнительном разъяснении.

Введение

Как микроконтроллеры отслеживают время и дату? Обычный микроконтроллер обладает функцией таймера, который стартует от нуля при подаче напряжения питания, а затем начинает считать. В мире Arduino мы можем использовать функцию millis() , чтобы узнать, сколько прошло миллисекунд с того времени, когда было подано напряжение питания. Когда вы снимете и снова подадите питания, она начнет отсчет с самого начала. Это не очень удобно, когда дело доходит до работы с часами и датами.

Вот здесь и будет удобно использование микросхемы RTC (Real Time Clock, часов реального времени). Эта микросхема с батарейкой 3В или каким-либо другим источником питания следит за временем и датой. Часы/календарь обеспечивают информацию о секундах, минутах, часах, дне недели, дате, месяце и годе. Микросхема корректно работает с месяцами продолжительностью 30/31 день и с високосными годами. Связь осуществляется через шину I2C (шина I2C в данной статье не обсуждается).

Если напряжение на главной шине питания Vcc падает ниже напряжения на батарее Vbat, RTC автоматически переключается в режим низкого энергопотребления от резервной батареи. Резервная батарея – это обычно миниатюрная батарея (в виде «монетки», «таблетки») напряжением 3 вольта, подключенная между выводом 3 и корпусом. Таким образом, микросхема по-прежнему будет следить за временем и датой, и когда на основную схему будет подано питание, микроконтроллер получит текущие время и дату.

В этом проекте мы будем использовать DS1307. У этой микросхемы вывод 7 является выводом SQW/OUT (выходом прямоугольных импульсов). Вы можете использовать этот вывод для мигания светодиодом и оповещения микроконтроллера о необходимости фиксации времени. Мы будем делать и то, и другое. Ниже приведено объяснение работы с выводом SQW/OUT.

Для управления работой вывода SQW/OUT используется регистр управления DS1307.

Ригистр управления DS1307
Бит 7Бит 6Бит 5Бит 4Бит 3Бит 2Бит 1Бит 0
OUT00SQWE00RS1RS0
Бит 7: управление выходом (OUT) Этот бит управляет выходным уровнем вывода SQW/OUT, когда выход прямоугольных импульсов выключен. Если SQWE = 0, логический уровень на выводе SQW/OUT равен 1, если OUT = 1, и 0, если OUT = 0. Первоначально обычно этот бит равен 0. Бит 4: включение прямоугольных импульсов (SQWE) Этот бит, когда установлен в логическую 1, включает выходной генератор. Частота прямоугольных импульсов зависит от значений битов RS0 и RS1. Когда частота прямоугольных импульсов настроена на значение 1 Гц, часовые регистры обновляются во время спада прямоугольного импульса. Первоначально обычно этот бит равен 0. Биты 1 и 0: выбор частоты (RS[1:0]) Эти биты управляют частотой выходных прямоугольных импульсов, когда выход прямоугольных импульсов включен. Следующая таблица перечисляет частоты прямоугольных импульсов, которые могут быть выбраны с помощью данных битов. Первоначально обычно эти биты равны 1. Выбор частоты прямоугольных импульсов и уровня на выводе SQW/OUT микросхемы DS1307
RS1RS0Частота импульсов и уровень на выходе SQW/OUTSQWEOUT
001 Гц1x
014,096 кГц1x
108,192 кГц1x
1132,768 кГц1x
xx000
xx101

Данная таблица поможет вам с частотой:

Выбор частоты прямоугольных импульсов DS1307
Частота импульсовБит 7Бит 6Бит 5Бит 4Бит 3Бит 2Бит 1Бит 0
1 Гц00010000
4,096 кГц00010001
8,192 кГц00010010
32,768 кГц00010011

Если вы подключили светодиод и резистор к выводу 7 и хотите, чтобы светодиод мигал с частотой 1 Гц, то должны записать в регистр управления значение 0b00010000. Если вам нужны импульсы 4,096 кГц, то вы должны записать 0b000100001. В этом случае, чтобы увидеть импульсы вам понадобится осциллограф, так как светодиод будет мигать так быстро, что будет казаться, что он светится постоянно. Мы будем использовать импульсы с частотой 1 Гц.

Аппаратная часть

Ниже показана структурная схема того, что нам необходимо.

Структурная схема часов на AVR микроконтроллере и RTC

Структурная схема часов на AVR микроконтроллере и RTC

  • разъем ISP (In System Programming, внутрисхемное программирование) для прошивки микроконтроллера;
  • кнопки для установки времени и даты;
  • микроконтроллер для связи с RTC через шину I2C;
  • дисплей для отображения даты и времени.

Часы на базе микроконтроллера AVR и RTC DS1307. Схема электрическая принципиальная

Часы на базе микроконтроллера AVR и RTC DS1307. Схема электрическая принципиальная

Перечень элементов

Ниже приведен скриншот из Eagle:

Часы на базе микроконтроллера AVR и RTC DS1307. Перечень элементов

Часы на базе микроконтроллера AVR и RTC DS1307. Перечень элементов

Программное обеспечение

В этом руководстве мы будем использовать два различных скетча: один, который записывает время и дату в RTC, и один, который считывает время и дату из RTC. Мы сделали так потому, что так вы сможете получить более полное представление о том, что происходит. Мы будем использовать одну и ту же схему для обеих программ.

Сперва мы запишем время и дату в RTC, что аналогично установке времени на часах.

Мы используем две кнопки. Одну для увеличения часов, минут, даты, месяца, года и дня недели, а вторую для выбора между ними. Приложение не считывает состояния каких-либо критически важных датчиков, поэтому мы будем использовать прерывания для проверки, нажата ли кнопка, и обработки дребезга контактов.

Следующий код устанавливает значения и записывает их в RTC:

Заключение

В данной статье мы рассмотрели микросхему DS1307 от Maxim Integrated и написали две демонстрационные программы: одну для установки времени и даты и вторую для чтения времени и даты. Для проверки нажатия кнопок мы использовали прерывания, в которых также избавлялись от влияния дребезга контактов.

Фото и видео

Макет часов на микроконтроллере AVR и RTC DS1307 Макет часов на микроконтроллере AVR и RTC DS1307

В данной статье рассматривается пример создания часов рального времени. На индикатор будет выводиться точное время, а двоеточие на нем будет моргать раз в секунду. Точное время будет автоматически устанавливаться во вермя компиляции прошивки.

Описание компонентов


В нашем проекте мы используем:

Часы реального времени


Мы используем модуль с часами реального времени от Seeed Studio. Они построены на базе микросхемы DS1307 от Maxim Integrated. Из элементов обвязки она требует три резистора, часовой кварц и батарейку, которые уже имеются на данном модуле. Модуль обладает следующими свойствами:

Подсчет времени (секунды, минуты, часы), даты (год, месяц, число), дня недели

Суть часов реального времени в том, что при наличии батарейки, они могут идти даже если основное устройство обесточено. Мы с такими часами сталкиваемся постоянно в ноутбуках или цифровых фотоаппаратах. Если достать из этих устройств аккумулятор, а через некоторое время вернуть их обратно, то время не сбросится. В этом заслуга часов реального времени, Real Time Clock (RTC).

Все необходимые библиотеки можно скачать с официального сайта.

Индикатор


Мы используем четырёхразрядный индикатор от Seeed Studio. Основное в индикаторе — микросхема TM1637, представляющая собой драйвер для отдельных 7-сегментных разрядов. В данном модуле используется 4 разряда. Модуль обладает следующими свойствами:

Данный модуль мы используем для показа времени: часов и минут. Удобство модуля в том, что подключается он всего по двум проводам и не требует программной реализации динамической индикации, поскольку все уже реализовано внутри модуля.

Динамическая индикация — это процесс, при котором индикаторы в нашем модуле загораются последовательно. Но мерцания мы не видим, поскольку человеческой глаз обладает большой инертностью. Данный метод позволяет очень хорошо экономить количество соединений между индикаторами и контроллером:

Статическая индикация: 4 цифры × 7 сегментов = 28 соединений. Динамическая индикация: 7 сегментов + 4 общих анода или катода = 11 соединений.

Библиотека для данного модуля также может быть скачана с сайта производителя.

Подключение

Модуль часов реального времени необходимо подключить к выводам SCL/SDA, относящимся к шине I²C. Также необходимо подключить линии питания (Vcc) и земли (GND).

Линии SDA/SCL имеют собственные отдельные пины на Arduino, однако внутри они так или иначе подключены к пинам общего назначения. Если рассмотреть Arduino Uno, линии SDA соответствует пин A4, а SCL — A5.

В комплекте с модулем поставляется шлейф с мама-контактами, которые удобнее подключать к Troyka Shield. Однако отдельные пины SDA и SCL на ней не выведены, поэтому мы осуществили подключение прямо через пины A5 и A4.

В плане подключения индикатора — все гораздо проще. Выводы CLK и DIO можно подключить к любым цифровым выводам. В данном случае используются 12-й и 11-й выводы соответственно.


Написание прошивки

Функция setup должна инициализировать часы реального времени и индикатор, а также записывать время компиляции во внутреннюю память часов реального времени. Все действие, а точнее, чтение времени из RTC и вывод его на индикатор, будет производиться в функции loop .

Код для этого выглядит следующим образом:

Теперь загружаем этот код в среду разработки, компилируем и заливаем. Смотрим на дисплей — бинго! Время на дисплее — время компиляции.


Объяснение функции getInt

Для начала необходимо понять, откуда же в массиве compileTime появляется время. Оно появляется в этой строчке:

unsigned char compileTime[] = __TIME__;

Компилятор вместо __TIME__ подставляет строку, содержащую время компиляции в виде __TIME__ = "hh:mm:ss" , где hh - часы, mm - минуты, ss - секунды.

Вернемся к коду, который необходимо объяснить:

Проблемы

Да, этот код рабочий, и часы будут идти. Однако, если отключить питание, а через несколько минут включить, то после включения время время вновь станет тем, которое было при компиляции.

Это происходит потому что после включения питания, вновь исполняется код, находящийся в функции setup . А он записывает в часы реального времени старое значение времени.

Чтобы этого избежать, нам необходимо еще чуть-чуть модифицировать код. Каждый раз в функции setup будет происходить подсчет «хэша» времени компиляции — будет рассчитываться количество секунд, прошедшее с 00:00:00 до времени компиляции. И этот хэш будет сравниваться с хэшем в EEPROM. Напомним EEPROM — память, которая не обнуляется при отключении питания.

Если значения посчитанного и сохранённого ранее хэша совпадают, то это значит, что перезаписывать время в модуль часов нет необходимости: это уже было сделано. А вот если эта проверка не проходит, то происходит перезапись времени в RTC.

Для записи/чтения числа типа unsigned int в/из EEPROM написаны две дополнительные функции EEPROMWriteInt и EEPROMReadInt . Они добавлены потому что функции EEPROM.read и EEPROM.write могуть читать и писать только данные типа char .

Заключение

В данной статье был показан пример работы с микросхемой часов реального времени RTC DS1307 и микросхемой-драйвером индикатора TM1637, также мы научились получать дату и время на этапе компиляции. Теперь, если выставить нужное время на часах, а потом отключить питание хоть на несколько часов, то после включения время вновь будет точным. Проверено!

Мы решили собрать большое руководство о том, как сделать часы на Ардуино, где расскажем о нескольких вариантах реализации такого проекта. Ранее мы уже делали электронные часы на основе этой платы.

Часы на Ардуино на основе ЖК-дисплея и часов реального времени

Цель первого урока показать, как сделать простые часы на основе Arduino с использованием ЖК-дисплея и часов реального времени.


Комплектующие

Для первого урока этого большого руководства нам понадобятся следующие комплектующие для наших часов на Ардуино:

    и Genuino UNO
  • PCF8563 (часы реального времени)
  • Кристалл 32 кГц
  • 10К потенциометры
  • Резистор 10k 1/4w
  • Резистор 220 Ом
  • LCD 16x2
  • Макет с набором проводов

В этом уроке будут использованы ЖК-дисплей и часы реального времени. Если вы хотите знать больше теме взаимодействия Arduino и ЖК-дисплеев - изучите уроки, которые мы публиковали ранее на нашем сайте.

Схема соединения

Схема очень проста. PCF8563 связывается с Arduino с помощью TWI, и когда данные принимаются, ЖК-дисплей обновляется, показывая новое время.


Установка даты и времени

Чтобы установить дату и время, используйте следующий скетч:

Код проекта

Теперь вы сможете использовать свои часы, загрузив этот скетч на Arduino:

Часы с выводом на экран Nokia 5110

Следующий урок - часы на Arduino, которые также простые для сборки, где вы сможете установить дату и время на последовательном мониторе.

В этом уроке используются лишь несколько компонентов - только перемычки, Arduino и дисплей Nokia 5110/3110.


Комплектующие

Детали, используемые в этом проекте ниже.

Оборудование

  • Arduino UNO и Genuino UNO × 1
  • Adafruit дисплей Nokia 5110 × 1
  • Соединительные провода (универсальные) × 1
  • Резистор 221 Ом × 1

Программное обеспечение

Схема соединения


Соединяем детали часов на Ардуино как на схеме выше:

  • контакт pin 3 - последовательный тактовый выход (SCLK) // pin 3 - Serial clock out (SCLK)
  • контакт pin 4 - выход серийных данных (DIN) // pin 4 - Serial date out (DIN)
  • контакт pin 5 - дата / выбор команды (D / C) // pin 5 - date/Command select (D/C)
  • контакт pin 6 - выбор ЖК-чипа (CS / CE) // pin 6 - LCD chip select (CS/CE)
  • контакт pin 7 - сброс ЖК (RST) // pin 7 - LCD reset (RST)

Код урока

Код второй версии часов вы можете скачать или скопировать ниже.

Часы с будильником, гигрометром и термометром

Эти часы сделаны с использованием платы Arduino Uno, датчика AM2302, модуля RTC DS3231 и TFT-дисплей 1,8" с ST7735.


Комплектующие

Компоненты, используемые в третьей версии часов на Ардуино перечислены ниже.

Компоненты оборудования

  • Arduino UNO и Genuino UNO × 1
  • Часы реального времени (RTC) × 1
  • Датчик температуры DHT22 × 1
  • Кнопочный переключатель 12мм
  • SparkFun Кнопочный переключатель 12 мм × 4
  • Соединительные провода (универсальные) × 1
  • Макет (универсальный) × 1
  • Adafruit ST7735 1,8 "дисплей × 1

Программное обеспечение


Схема соединения

Соедините все детали часов согласно схеме ниже.


Код урока

Скачайте или скопируйте код часов для Ардуино ниже и загрузите на плату используя Arduino IDE.

Важно! Не забудьте установить нужные библиотеки перед использованием кода для платы, которые вы можете скачать из нашего раздела Библиотеки.

Часы без RTC

Для начала мы должны понимать, что такое RTC. Из Википедии:

Часы реального времени (ЧРВ, RTC — англ. Real Time Clock ) — электронная схема, предназначенная для учёта хронометрических данных (текущее время, дата, день недели и др.), представляет собой систему из автономного источника питания и учитывающего устройства. Чаще всего часы реального времени встречаются в вычислительных машинах, хотя на самом деле ЧРВ присутствуют практически во всех электронных устройствах, которые должны хранить время.

В итоге в данной версии мы сделаем часы без RTC с индикатором температуры и влажности на Arduino с помощью модуля DHT11. Также мы используем 3 кнопки для установки часов.

Комплектующие

Вам понадобятся эти кусочки для этого проекта:

  • Arduino Uno плата
  • Кнопки 3 шт.
  • Потенциометр
  • Модуль LCD 1602
  • Модуль температуры и влажности DHT11
  • Макетная плата
  • Перемычки

Схема соединения

Соедините комплектующие часов как на схеме ниже.


Вы можете скопировать или скачать код часов на Ардуино ниже.

На этом пока всё. Мы постарались описать все основные варианты реализации часов на Ардуино.

image

В этой статье вы узнаете как Arduino Mega Server работает со временем и как можно создавать проекты на Ардуино, которые имеют привязку к реальному времени, вне зависимости от того, установлен ли в них «железный» RTC-модуль или нет. Все вопросы работы с реальным временем на Ардуино будут подробно разобраны и после прочтения этой статьи вы станете настоящим «мастером часовых дел».

Суть вопроса

Любой мало-мальски серьёзный проект на Ардуино должен иметь представление о текущем реальном времени. Например, показания датчиков должны быть привязаны ко времени (иначе никакой статистики и даже элементарных графиков невозможно будет построить), контроллер должен производить те или иные действия в зависимости от текущего времени суток, выходных, праздников и т. д. Если ваш контроллер не имеет представления о реальном времени, то он превращается в простой автомат, который может производить только элементарные действия по жёстко заданной программе.

Поскольку Arduino Mega Server это мощная и развитая система, то такое положение дел (отсутствие работы с реальным временем) меня, да и всех остальных пользователей системы, никак не могло устроить. Поэтому вопрос интеграции в систему RTC был одним из первых на повестке дня.

Виртуальные часы реального времени

Всё бы ничего, но ни у меня, ни у большинства пользователей AMS не было того самого «железного» модуля RTC, поэтому было принято решение сделать «ход конём» и, в качестве временной меры, организовать часы реального времени, работающие внутри системы, без настоящего физического модуля. Что и было с успехом реализовано.

Итак, как организовать виртуальный RTC, без настоящего модуля. Существует замечательная библиотека Time Library которая и выполняет львиную долю работы по обеспечению нас точным временем. Для начала работы с ней, её нужно скачать, разархивировать и поместить на стандартное место всех библиотек среды Arduino, а именно, в папку:


После этого нам становятся доступны все возможности работы со временем, которые она предоставляет.

Как это работает

Принцип очень простой. Библиотека «запускает» виртуальные часы «внутри» контроллера и предоставляет возможность синхронизировать их множеством способов, на выбор. Вы можете выбрать тот способ, который вам больше подходит. Поскольку Arduino Mega Server это сетевое устройство, то был выбран вариант синхронизации часов через сеть с серверами точного времени. Это могут быть сервера в Интернет или сервера в локальной сети, на которых работает соответствующая служба. Например, в базовом варианте AMS часы синхронизируются с сервером MajorDoMo, и для этого ничего настраивать не нужно, всё работает «из коробки».

Итак, для того, чтобы это заработало, нужно в начале скетча подключить соответствующие библиотеки.


Файл Time.h это собственно библиотека для работы со временем, а остальные файлы необходимы для работы с сетью и для синхронизации времени по протоколу NTP (библиотека Ethernet тоже должна быть у вас установлена).

Далее, вам нужно указать IP-адрес сервера, с которым вы хотите синхронизировать время


и соответствующий порт


но тут есть один момент: порт 8888 подходит для синхронизации в локальной сети, а в Интернет большинство серверов по нему не отвечает, поэтому, если вы планируете синхронизировать время с серверами точного времени в Интернет, то лучше установить порт 123:


осталось только указать временную зону


и создать объект EthernetUDP


На этом подготовительные операции можно считать законченными и можно описывать нужную вам функциональность работы со временем. Функция инициализации:


Здесь нужно обратить внимание на функцию


Эта функция устанавливает источник синхронизации времени (в данном случае это NTP синхронизация через сеть). Но это может быль любой другой источник, например, физический модуль RTC. Выполнение этой функции приводит к установке источника синхронизации (на будущее) и, одновременно, к самой синхронизации времени через этот источник. Именно в момент выполнения этой функции у вас в системе «появляется» точное время.

В самой библиотеке есть ещё одна интересная функция,


которая позволяет задать нужный интервал между синхронизациями (задаётся в секундах, сами синхронизации происходят автоматически, без какого-либо участия с вашей стороны).

image

Теперь вы можете пользоваться точным временем внутри скетча Ардуино, например, выводить в Serial монитор события не просто, а привязанными к конкретному точному времени. Делается это при помощи функции timeStamp():


которая является обёрткой для функции serialRTC():


Разбор механизма передачи и отображения времени в веб-интерфейсе AMS выходит за рамки данного повествования и достоин отдельной статьи и, если будет интерес, то можно будет написать продолжение и во всех подробностях объяснить, как происходит «магия» отображения времени в веб-интерфейсе Arduino Mega Server.

image

Собственно, всё. Так были организованы виртуальные часы реального времени в AMS вплоть до 0.12 версии включительно и так же вы можете организовать работу с точным временем в своих проектах, даже если у вас нет физического модуля часов реального времени. Но это ещё не конец истории, а скорее, только начало.

Полный код модуля RTC из Arduino Mega Server 0.12

/*
Modul Virtual RTC
part of Arduino Mega Server project
*/

IPAddress timeServer(192, 168, 2, 8);
unsigned int localPort = 8888; // local port to listen for UDP packets
EthernetUDP Udp;

const int timeZone = 4;
time_t prevDisplay = 0; // when the digital clock was displayed

void rtcInit() Udp.begin(localPort);
Serialprint(«Waiting for NTP sync… \n»);
setSyncProvider(getNtpTime);
modulRtc = 1;
>

void rtcWorks() if (timeStatus() != timeNotSet) if (now() != prevDisplay) < // update the display only if time has changed
setLifer();
prevDisplay = now();
//digitalClockDisplay();
>
>
>

void printDigits(int digits) if(digits < 10) Serial.print('0');
>
Serial.print(digits);
>

void serialRTC() Serial.print(year());
Serial.print("-");
printDigits(month());
Serial.print("-");
printDigits(day());
Serial.print(" ");
printDigits(hour());
Serial.print(":");
printDigits(minute());
Serial.print(":");
printDigits(second());
>

void timeStamp() serialRTC();
Serial.print(" ");
>

void printRTC() serialRTC();
Serial.println();
>

const int NTP_PACKET_SIZE = 48; // NTP time is in the first 48 bytes of message
byte packetBuffer[NTP_PACKET_SIZE]; //buffer to hold incoming & outgoing packets

time_t getNtpTime() while (Udp.parsePacket() > 0); // discard any previously received packets
Serialprint(«Transmit NTP request\n»);
sendNTPpacket(timeServer);
uint32_t beginWait = millis();
while (millis() — beginWait < 1500) int size = Udp.parsePacket();
if (size >= NTP_PACKET_SIZE) Serialprint(«Receive NTP response\n»);
Udp.read(packetBuffer, NTP_PACKET_SIZE); // read packet into the buffer
unsigned long secsSince1900;
// convert four bytes starting at location 40 to a long integer
secsSince1900 = (unsigned long)packetBuffer[40] << 24;
secsSince1900 |= (unsigned long)packetBuffer[41] << 16;
secsSince1900 |= (unsigned long)packetBuffer[42] << 8;
secsSince1900 |= (unsigned long)packetBuffer[43];
return secsSince1900 — 2208988800UL + timeZone * SECS_PER_HOUR;
>
>
Serialprint(«No NTP response\n»);
return 0; // return 0 if unable to get the time
>

// send an NTP request to the time server at the given address
void sendNTPpacket(IPAddress &address) // set all bytes in the buffer to 0
memset(packetBuffer, 0, NTP_PACKET_SIZE);
// Initialize values needed to form NTP request
// (see URL above for details on the packets)
packetBuffer[0] = 0b11100011; // LI, Version, Mode
packetBuffer[1] = 0; // Stratum, or type of clock
packetBuffer[2] = 6; // Polling Interval
packetBuffer[3] = 0xEC; // Peer Clock Precision
// 8 bytes of zero for Root Delay & Root Dispersion
packetBuffer[12] = 49;
packetBuffer[13] = 0x4E;
packetBuffer[14] = 49;
packetBuffer[15] = 52;
// all NTP fields have been given values, now
// you can send a packet requesting a timestamp:
Udp.beginPacket(address, 123); //NTP requests are to port 123
Udp.write(packetBuffer, NTP_PACKET_SIZE);
Udp.endPacket();
>

void showDuration(time_t duration) // prints the duration in days, hours, minutes and seconds
Serialprint(" (duration ");
if(duration >= SECS_PER_DAY) Serial.print(duration / SECS_PER_DAY);
Serialprint(" day ");
duration = duration % SECS_PER_DAY;
>
if(duration >= SECS_PER_HOUR) Serial.print(duration / SECS_PER_HOUR);
Serialprint(" hour ");
duration = duration % SECS_PER_HOUR;
>
if(duration >= SECS_PER_MIN) Serial.print(duration / SECS_PER_MIN);
Serialprint(" min ");
duration = duration % SECS_PER_MIN;
>
Serial.print(duration);
Serialprint(" sec) \n");
>

void checkEvent(time_t* prevEvent) time_t duration = 0;
time_t timeNow = now();

if (*prevEvent > 0) duration = timeNow — *prevEvent;
>
if (duration > 0) showDuration(duration);
>
*prevEvent = timeNow;
>

Приятная неожиданность

Я бы ещё долго не занялся интеграцией модулей RTC в систему (хватает и других актуальных задач), но тут, в рамках технологического сотрудничества с нашим проектом, компания CHIPSTER предоставила для тестирования и интеграции в AMS оборудование, среди которого оказались Ethernet модули на чипе W5500 и… модуль часов реального времени на чипе DS3231, что оказалось как нельзя более кстати и послужило толчком для интеграции модулей RTC в систему.

Оказалось, что компания CHIPSTER не только торгует электронным оборудованием, но и разрабатывает собственные изделия для Arduino и автоматизации под торговой маркой Geegrow и имеет большие планы на будущее в этом направлении, в частности, у неё есть проект по выпуску специализированной версии Arduino Mega 2560 с расширенными возможностями и «заточенной» специально под Arduino Mega Server. И, если эта плата будет выпущена, то это будет очень интересное событие. Но вернёмся к часам реального времени.

Реальные часы реального времени

Поскольку модуль RTC оказался у меня под руками, то грех было бы не интегрировать его в систему. Благо это оказалось совсем несложно благодаря всё той же Time Library. Но обо всём по порядку.

Для тех, кто не знает, модули реального времени бывают двух типов — «обычные» (как правило, на чипе DS1307) и «продвинутые» (на чипе DS3231, который мне и достался). Разница между ними заключается в том, что первые не очень точные и могут «убегать» очень быстро и очень сильно, а вторые это высокоточные часы с нормированным уходом не более двух минут в год, то есть реально применимые на практике. А точность достигается благодаря более сложной схемной реализации и встроенной термокомпенсации.

Но программно обе версии модулей совместимы и работать с библиотекой и кодом будут и те и другие. Разница будет только в точности хода.

И конечно, одним из главных свойств часов реального времени является возможность работы при отключении напряжения питания, за счёт встроенной батарейки.

Физическое подключение

Теперь давайте поговорим о том, как физически подключить модуль RTC к Arduino Mega Server или к вашему проекту на Ардуино. Сразу скажу, что это очень просто и вам понадобятся всего два резистора и несколько проводов.

Подключение тривиально: вам нужно найти на своём модуле четыре контакта — GND («земля»), VCC (напряжение питания), SCL (синхросигнал), SDA (данные). Остальные контакты используются в редких и специфических случаях и вы на них можете не обращать внимания.

image

Итак, вывод GND подключаем к «земле», вывод VCC — к напряжению питания контроллера. Здесь всё просто и никаких вопросов возникать не должно.

С остальными выводами дело обстоит ненамного сложнее. Модуль RTC общается с контроллером по интерфейсу I2C, у которого всего два провода: синхронизация и данные и в контроллерах Arduino уже предусмотрены контакты для подключения этого интерфейса. У Arduino Uno это A4 (SDA) и A5 (SCL), а у arduino Mega это D20 (SDA) и D21 (SCL).

Единственная тонкость заключается в том, что выводы SCL и SDA нужно «подтянуть» к источнику питания через резисторы 4,7 КОм. Если у вас нет точно такого номинала, то можно использовать резисторы из диапазона 2 КОм — 10 КОм.

image

Программная поддержка

Теперь осталось только дописать поддержку модуля в коде AMS или вашего проекта. Как я уже сказал, это будет очень просто потому, что с модулем будет работать всё та же библиотека Time Library. Правда нам нужно будет добавить ещё одну библиотеку, а именно DS1307RTC Library. Её тоже распаковываем и помещаем в стандартную папку для библиотек:


Добавляем в код вашего скетча следующие строки


Теперь мы во всеоружии и можем приступать к написанию кода самого скетча, работающего с физическим модулем RTC. В функции


и внутреннее время Arduino Mega Server (или вашего контроллера) будет синхронизироваться с «железным» контроллером RTC, а не с серверами в Интернет или локальной сети. Таким образом, вызывая функции setSyncProvider(getNtpTime) и setSyncProvider(RTC.get) вы можете манипулировать источниками синхронизации времени и синхронизировать время так, как вам будет угодно, в зависимости от различных условий.

Ещё одна функция, о которой вам необходимо знать, это


которая позволяет узнать синхронизировано ли время и в зависимости от данного условия предпринять нужные действия.

Тонкий момент

Нужно различать две вещи: время, идущее в «железном» модуле RTC и время, идущее в вашем контроллере. Это не одно и то же. «Главным» для вас является время в контроллере, а время в модуле является лишь источником для синхронизации.

Но! поскольку время в физическом RTC тоже постепенно «уходит», то его тоже нужно подстраивать, синхронизируя с более точными источниками, например, с серверами в Интернет.

Поэтому, оптимальный алгоритм должен быть такой: если есть возможность, то синхронизируем все часы с серверами в Интернет, если сеть недоступна, то начинаем синхронизировать время в контроллере с модулем RTC, как только появляется сеть — переходим опять на синхронизацию через Интернет.

Если вы находитесь в экстремальных условиях, без доступа к каким-либо источникам синхронизации, то можно вручную время от времени корректировать ход «железных» часов.

Давайте, для примера, рассмотрим функцию синхронизации внутренних часов контроллера и модуля RTC через сеть:


Здесь мы сначала получаем точное время по сети


затем, в случае удачи, устанавливаем его в модуль RTC


а затем уже из этого модуля устанавливаем время контроллера

Начальный запуск

Но и это ещё не всё. Существует ещё проблема начального запуска, когда модуль RTC только подключён, но время в нём не выставлено и синхронизироваться с ним поэтому нельзя. Нужно каким-то образом выставить в нём правильное время. В Arduino Mega Server существует два способа решения этой проблемы: можно синхронизировать физический RTC через сеть (если доступны сервера точного времени) или при помощи утилиты Arduino Serial Commander.

Для установки времени в модуле RTC достаточно… нажать на кнопку. Всё остальное сделают за вас два молодца по имени Arduino Mega Server и Arduino Serial Commander. Если вы не пользуетесь AMS, а разрабатываете свой собственный проект, можете взять код из дистрибутива Arduino Mega Server (код доступен и полностью свободен) или поискать решение этой проблемы в Интернет (там есть несколько вариантов решения).

image

Версия с поддержкой настоящего RTC

И, конечно, я выражаю признательность компании CHIPSTER за сотрудничество и предоставленное для тестирования и интеграции оборудование (о модуле W5500 и о ускорении сетевой работы AMS я расскажу вам в одной из следующих статей).

Дополнение. Открыт канал на Youtube и вот промо ролик Arduino Mega Server, который демонстрирует работу с реальной системой.

Читайте также: