Какие виды каналов используются для связи компьютеров в локальных сетях

Обновлено: 06.07.2024

Средой передачи информации называются те линии связи (или каналы связи), по которым производится обмен информацией между компьютерами. В подавляющем большинстве компьютерных сетей (особенно локальных) используются проводные или кабельные каналы связи, хотя существуют и беспроводные сети, которые сейчас находят все более широкое применение, особенно в портативных компьютерах.

Но это еще не все. Передача на большие расстояния при любом типе кабеля требует сложной передающей и приемной аппаратуры, так как при этом необходимо формировать мощный сигнал на передающем конце и детектировать слабый сигнал на приемном конце. При последовательной передаче для этого требуется всего один передатчик и один приемник. При параллельной же количество требуемых передатчиков и приемников возрастает пропорционально разрядности используемого параллельного кода. В связи с этим, даже если разрабатывается сеть незначительной длины (порядка десятка метров) чаще всего выбирают последовательную передачу.

К тому же при параллельной передаче чрезвычайно важно, чтобы длины отдельных кабелей были точно равны друг другу. Иначе в результате прохождения по кабелям разной длины между сигналами на приемном конце образуется временной сдвиг, который может привести к сбоям в работе или даже к полной неработоспособности сети. Например, при скорости передачи 100 Мбит/с и длительности бита 10 нс этот временной сдвиг не должен превышать 5—10 нс. Такую величину сдвига дает разница в длинах кабелей в 1—2 метра. При длине кабеля 1000 метров это составляет 0,1—0,2%.

Надо отметить, что в некоторых высокоскоростных локальных сетях все-таки используют параллельную передачу по 2—4 кабелям, что позволяет при заданной скорости передачи применять более дешевые кабели с меньшей полосой пропускания . Но допустимая длина кабелей при этом не превышает сотни метров. Примером может служить сегмент 100BASE-T4 сети Fast Ethernet .

Промышленностью выпускается огромное количество типов кабелей, например, только одна крупнейшая кабельная компания Belden предлагает более 2000 их наименований. Но все кабели можно разделить на три большие группы:

  • электрические (медные) кабели на основе витых пар проводов (twisted pair), которые делятся на экранированные ( shielded twisted pair, STP ) и неэкранированные (unshielded twisted pair, UTP );
  • электрические (медные) коаксиальные кабели ( coaxial cable );
  • оптоволоконные кабели ( fiber optic ).

Каждый тип кабеля имеет свои преимущества и недостатки, так что при выборе надо учитывать как особенности решаемой задачи, так и особенности конкретной сети, в том числе и используемую топологию.

Можно выделить следующие основные параметры кабелей, принципиально важные для использования в локальных сетях:

  • Полоса пропускания кабеля (частотный диапазон сигналов, пропускаемых кабелем) и затухание сигнала в кабеле. Два этих параметра тесно связаны между собой, так как с ростом частоты сигнала растет затухание сигнала . Надо выбирать кабель, который на заданной частоте сигнала имеет приемлемое затухание . Или же надо выбирать частоту сигнала, на которой затухание еще приемлемо. Затухание измеряется в децибелах и пропорционально длине кабеля.
  • Помехозащищенность кабеля и обеспечиваемая им секретность передачи информации. Эти два взаимосвязанных параметра показывают, как кабель взаимодействует с окружающей средой, то есть, как он реагирует на внешние помехи, и насколько просто прослушать информацию, передаваемую по кабелю.
  • Скорость распространения сигнала по кабелю или, обратный параметр – задержка сигнала на метр длины кабеля. Этот параметр имеет принципиальное значение при выборе длины сети. Типичные величины скорости распространения сигнала – от 0,6 до 0,8 от скорости распространения света в вакууме. Соответственно типичные величины задержек – от 4 до 5 нс/м.
  • Для электрических кабелей очень важна величина волнового сопротивления кабеля. Волновое сопротивление важно учитывать при согласовании кабеля для предотвращения отражения сигнала от концов кабеля. Волновое сопротивление зависит от формы и взаиморасположения проводников, от технологии изготовления и материала диэлектрика кабеля. Типичные значения волнового сопротивления – от 50 до 150 Ом.

В настоящее время действуют следующие стандарты на кабели:

  • EIA / TIA 568 (Commercial Building Telecommunications Cabling Standard) – американский;
  • ISO/IEC IS 11801 (Generic cabling for customer premises ) – международный;
  • CENELEC EN 50173 (Generic cabling systems ) – европейский.

Эти стандарты описывают практически одинаковые кабельные системы, но отличаются терминологией и нормами на параметры. В данном курсе предлагается придерживаться терминологии стандарта EIA / TIA 568.

Yanа123

Сделайте пожалуйста блок схемы!Первая блок схема С помощью цикла ПОКА y=x-4sinПx x∈[-2, 1], Δx=0,3Вторая блок схема С помощью цикла ДО x=sin(0,1y)-lny … y∈[15, 20], Δy=0,75Помогите пожалуйста!

Автоматическая фотокамера делает фотографии высокого разрешения с палитрой, содержащей 224 = 16 777 216 цветов. Средний размер фотографии составляет 1 … 5 Мбайт. Для хранения в базе данных фотографии преобразуют в формат с палитрой, содержащей 256 цветов. Другие преобразования и дополнительные методы сжатия не используются. Сколько Мбайт составляет средний размер преобразованной фотографии?

найдите разницу двух чисел FA0(16)-765(8)? в скобках указана система счисления ответ запишите только число в 10 системе счисления систему счисления пи … сать в ответе не нужно

Часть 1. Мое решение Раздели утверждения о компьютерных сетях на истинные и ложные. Роутер (маршрутизатор) — устройство, которое передаёт информацию о … т одного устройства другому Подключение к Сети может быть проводным или беспроводным Компьютерные сети бывают локальные и глобальные Все компьютеры в мире подключены к Интернету это локальная компьютерная Интернет- сеть К Интернету можно подключиться только с помощью беспроводного соединения​

Часть 1. Мое решение Раздели утверждения о компьютерных сетях на истинные и ложные. Роутер (маршрутизатор) — устройство, которое передаёт информацию о … т одного устройства другому Подключение к Сети может быть проводным или беспроводным Компьютерные сети бывают локальные и глобальные Все компьютеры в мире подключены к Интернету это локальная компьютерная Интернет- сеть К Интернету можно подключиться только с помощью беспроводного соединения​

Процесс записи информационной модели с помощью языка, в котором одинаковый набор символов всегда имеет одинаковый смысл. Выбери правильный вариант и … з списка:ОтладкаФормализацияКодирование​

ПОМОГИТЕ СРОЧНО ПОЖАЛУЙСТАМОЖЕТЕ СДЕЛАТЬ КАК ЭТО ВСЕ БУДЕТ ВЫГЛЯДЕТЬ В Excel ​

Построить блок-схему: 1.Найти площадь круга, если длина окружности l = 25 см. 2.Найти площадь треугольника, при a=5, b=10, если a,b - стороны треуго … льника. 3.Найти высоту равнобедренного треугольника, стороны треугольника вводятся пользователем. 4.Даны катеты прямоугольного треугольника, вычислить гипотенузу.

Отличительные признаки локальной вычислительной сети [1] :

-высокая скорость передачи информации (не менее 10 Мбит/с);

-низкий уровень ошибок передачи (высококачественные каналы связи) - допустимая вероятность ошибок передачи данных - 10 -8 .

высокоэффективный, быстродействующий механизм управления обменом;

-регламентированное количество компьютеров, подключаемых к сети.

При таких свойствах понятно, что глобальные сети отличаются от локальных тем, что они рассчитаны на неограниченное число абонентов. Кроме того, они чаще всего используют не слишком качественные каналы связи и относительно низкую скорость передачи данных, а механизм управления обменом в этих сетях не может быть гарантированно быстрым.

Сегодня достаточно сложно провести четкое разделение между локальными и глобальными сетями - большинство локальных сетей имеет выход в глобальную. Однако характер передаваемой информации, способы организации обмена, режимы доступа к ресурсам внутри локальной сети сильно отличаются от тех, что приняты в глобальной сети. Несмотря на то, что все компьютеры локальной сети включены также и в глобальную сеть, специфики локальной сети это не отменяет. Возможность выхода в глобальную сеть является одним из ресурсов, разделяемых пользователями локальной сети.

По локальной сети может передаваться разнообразная цифровая информация: данные, изображения, голосовой трафик, электронные письма и т.д. Чаще всего локальные сети используются для разделения (совместного использования) таких ресурсов, как дисковое пространство, принтеров и выхода в глобальную сеть, но это всего лишь малая доля тех возможностей, которые предоставляют средства локальных сетей. Например, они позволяют осуществлять обмен информацией между компьютерами разных типов [2] . Полноценными абонентами (узлами) сети могут быть не только компьютеры, но и другие устройства, поддерживающие сетевые технологии - принтеры, плоттеры, сканеры, дисковые массивы. Локальные сети дают также возможность организовать многопроцессорную вычислительную среду на всех компьютерах сети, что ускоряет решение сложных, ресурсоемких задач. С их помощью можно управлять работой технологической системы или исследовательской установки в режиме реального времени с нескольких компьютеров одновременно.

Вместе с тем компьютерные сети имеют и существенные недостатки:

-сеть требует дополнительных, иногда значительных материальных затрат на покупку оборудования, сетевого программного обеспечения, на создание сетевой инфраструктуры и обучение персонала;

-сеть требует приема на работу специалиста (администратора сети), который будет заниматься обеспечением работоспособности сети, ее модернизацией, управлением доступом к сетевым ресурсам, устранением неисправностей, защитой информации, резервным копированием и архивированием данных;

-проводная сеть ограничивает возможности перемещения компьютеров, подключенных к ней, так как в этом случае может понадобиться перекладка соединительных кабелей;

-сеть является средой для распространения компьютерных вирусов, поэтому вопросам защиты от них придется уделять больше внимания, чем в случае автономного использования компьютеров;

-сеть значительно повышает риск несанкционированного доступа к информации (информационная защита требует проведения комплекса, соответствующих организационных и технических мероприятий).

Основные определения и термины

Абонент (узел, хост, станция) - это устройство, подключенное к сети и активно участвующее в информационном обмене. Чаще всего абонентом (узлом) сети является компьютер, но абонентом также может быть сетевой принтер или другое периферийное устройство, имеющее возможность напрямую подключаться к сети.

Сервером называется абонент (узел) сети, который предоставляет свои ресурсы другим абонентам, но сам не использует их ресурсы. Таким образом, он обслуживает сеть. Выделенный сервер - это сервер, занимающийся только сетевыми задачами. Невыделенный сервер может помимо обслуживания сети выполнять и другие задачи пользователей. Специфический тип сервера - это сетевой принтер.

Клиентом называется абонент сети, который только использует сетевые ресурсы, но сам свои ресурсы в сеть не отдает. Компьютер-клиент также называют рабочей станцией.

Под сервером и клиентом понимают не только сами компьютеры, но и работающие на них программные приложения. В этом случае то приложение, которое только отдает ресурс в сеть, является сервером, а то приложение, которое только пользуется сетевыми ресурсами - клиентом.

[1] Кондратенко С., Новиков Ю. Основы локальных сетей [Электронный ресурс]

[2] Бабешко, В.Н. Распределенные информационно-вычислительные системы в туманных вычислительных сетях.

7. ФИЗИЧЕСКИЙ УРОВЕНЬ ПЕРЕДАЧИ ДАННЫХ

7.1. Каналы связи

Линия связи, ( line ) (рис. 21) состоит в общем случае из физической среды, по которой передаются электрические информационные сигналы, аппаратуры передачи дан­ных и промежуточной аппаратуры. Синонимом термина линия связи являет­ся термин канал связи ( channel ).


Рис. 21. Состав линии связи

Физическая среда передачи данных ( medium ) может представлять собой кабель, то есть набор проводов, изоляционных и защитных оболочек и соединительных разъемов, а также земную атмосферу или космическое пространство, через которые распространяются электромагнитные волны.

В зависимости от среды передачи данных линии связи разделяются на следующие (рис. 22):

· кабельные (медные и волоконно-оптические);

· радиоканалы наземной и спутниковой связи.


Рис. 22. Типы линий связи

Проводные (воздушные) линии связи представляют собой провода без каких-либо изолирующих или экранирующих оплеток, проложенные между столбами и вися­щие в воздухе. По таким линиям связи традиционно передаются телефонные или телеграфные сигналы. Скоростные качества и помехоза­щищенность этих линий минимальна. Сегодня проводные линии связи быстро вытесняются кабельными .

Кабельные линии представляют собой достаточно сложную конструкцию. Кабель состоит из проводников, заключенных в несколько слоев изоляции: электрической, электромагнитной, механической, а также климатической. Кроме того, кабель может быть оснащен разъемами, позволяющими быстро выполнять присо­единение к нему различного оборудования. В компьютерных сетях применяются три основных типа кабеля: кабели на основе скрученных пар медных проводов, коак­сиальные кабели с медной жилой, а также волоконно-оптические кабели.

Скрученная пара проводов называется витой парой ( twisted pair ). Витая пара существует в экранированном варианте ( Shielded Twistedpair , STP) и неэкранированном ( Unshielded TwistedPair , UTP). Скручивание проводов снижает влияние внешних помех на полезные сигналы, передаваемые по кабелю. Коаксиальный кабель ( coaxial ) имеет несимметричную конструкцию и состоит из внутренней медной жилы и оплетки, отделенной от жилы слоем изоляции. Суще­ствует несколько типов коаксиального кабеля, отличающихся характеристиками и областями применения — для локальных сетей, глобальных сетей, кабельно­го телевидения и т.п. Волоконно-оптический кабель ( opticalfiber ) состоит из тонких (5-60 мкм) волокон, по которым распространяются световые сигналы. Это наиболее качественный тип кабеля — он обеспечивает передачу данных с очень высокой скоростью (до 10 Гбит/ с и выше) и к тому же лучше других обеспечивает защиту данных от внешних помех.

Радиоканалы наземной и спутниковой связи образуются с помощью передатчика и приемника радиоволн. Существует большое количество различных типов каналов. Диапазоны коротких, средних и длинных волн (KB, СВ и ДВ), называемые также диапазонами амплитудной модуляции ( Amplitude Modulation , AM), обеспечивают дальнюю связь, но при невысокой скорости передачи данных. Более скоростными являются каналы, работающие на диапазонах ультракоротких волн (УКВ), для которых характерна частотная модуляция ( Frequency Modulation , FM), а также диапазонах сверхвысо­ких частот (СВЧ или microwaves ). В диапазоне СВЧ (свыше 4 ГГц) сигналы уже не отражаются ионосферой Земли и, для устойчивой связи, требуется наличие прямой видимости между передатчиком и приемником. Поэтому такие частоты используют либо спутниковые, либо радиорелейные каналы.

В компьютерных сетях сегодня применяются практически все описанные типы физических сред передачи данных, но наиболее перспективными являются волоконно-оптические. Спутниковые каналы и радиосвязь используются в тех случаях, когда кабельные связи применить нельзя — например, при прохождении канала через малонаселенную местность или же для связи с мобильным пользователем сети.

Аппаратура передачи данных ( АПД или DCEData Circuit terminating Equipment ) непосредственно связывает компьютеры или локальные сети и является, таким образом, пограничным оборудованием. Примерами DCE являются модемы, терминальные адаптеры сетей ISDN, оптические модемы, устройства подключения к цифровым каналам. Обычно DCE работает на физическом уровне, отвечая за передачу и прием сигнала нужной формы и мощности в физи­ческую среду.

Аппаратура пользователя линии связи, вырабатывающая данные и подключаемая непосредственно к аппаратуре передачи данных, обобщенно носит название оконечное оборудование данных (ООД или DTE — Data Terminal Equipment ). Примером DTE могут служить компьютеры или маршрутиза­торы локальных сетей. Эту аппаратуру не включают в состав линии связи.

Промежуточная аппаратура обычно используется на линиях связи большой протяженности и решает две основные задачи:

  • улучшение качества сигнала;
  • создание постоянного составного канала связи между двумя абонентами сети.

В глобальных сетях необходимо обеспечить качественную передачу сигналов на большие расстояния. Поэтому без усилителей сигналов, уста­новленных через определенные расстояния, построить территориальную линию связи невозможно.

Промежуточная аппаратура канала связи прозрачна для пользователя. В действительности промежуточная аппаратура образует сложную сеть, которую называют первичной сетью, так как сама по себе она никаких высокоуровневых служб не поддерживает, а только служит осно­вой для построения компьютерных, телефонных или иных сетей.

В зависимости от типа промежуточной аппаратуры все линии связи делятся на аналоговые и цифровые. В аналоговых линиях промежуточная аппаратура предназначена для усиления аналоговых сигналов. Для создания высокоскоростных каналов, которые мультиплексируют несколько низкоскоростных аналоговых абонентских каналов, обычно используется техника частотного мультиплексирования ( Frequency Division Multiplexing , FDM).

В цифровых линиях связи передаваемые сигналы имеют конечное число состоя­ний. С помощью таких сигналов передаются как компьютерные данные, так и оцифрованные речь и изображение. В цифровых каналах связи промежуточная аппаратура улучшает форму импульсов и обеспечивает их ресинхронизацию (то есть восстанавливает период их следования). Промежуточная аппаратура образования высокоскоростных цифровых каналов рабо­тает по принципу временного мультиплексирования каналов ( Time Division Multiplexing , TDM), когда каждому низкоскоростному каналу выделяется опреде­ленная доля времени (тайм-слот или квант) высокоскоростного канала.

К основным характеристикам линий связи относятся:

  • амплитудно-частотная характеристика;
  • полоса пропускания;
  • затухание;
  • помехоустойчивость;
  • перекрестные наводки на ближнем конце линии;
  • пропускная способность;
  • достоверность передачи данных;
  • удельная стоимость.

Основными являются пропускная способность и достоверность передачи данных. Они характеризуют как линии связи, так и способ передачи данных.


Рис.23. Представление периодического сигнала суммой синусоид


Рис.24. Спектральное разложение идеального импульса

Искажение передающим каналом синусоиды какой-либо частоты приводит к искажению передаваемого сигнала любой формы, особенно если синусоиды различных частот искажаются неодинаково. В результате сигналы могут плохо распознаваться.

Линия связи искажает передаваемые сигналы из-за того, что ее физические параметры отличаются от идеальных . Так, медные провода всегда представляют собой некоторую комбинацию активного сопротивления, емкостной и индуктивной нагрузки (это наиболее ярко проявляется в области высоких частот). Волоконно-оптический кабель также имеет отклонения, мешающие идеальному распространению света.

Кроме искажений сигналов, вносимых внутренними физическими параметрами линии связи, существуют и внешние помехи. Они создаются различными электричес­кими двигателями, электронными устройствами, атмосферными явлениями и т. д.

Степень искажения синусоидальных сигналов линиями связи оценивается с помо­щью таких характеристик, как амплитудно-частотная характеристика и полоса про­пускания.

Амплитудно-частотная характеристика (рис. 25) показывает, как затухает ам­плитуда синусоиды на выходе линии связи по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала.

Рис. 25. Амплитудно-частотная характеристика

Знание амплитудно-частотной характеристики реальной линии позволяет определить форму выходного сигнала для любого входного сигнала.

Полоса пропускания ( bandwidth ) - это непрерывный диапазон частот, для кото­рого отношение амплитуды выходного сигнала к входному превышает некоторый заранее заданный предел (обычно 0,5). То есть определяет диа­пазон частот синусоидального сигнала, которые передаются без значительных искажений. Этот параметр зависит от типа лин ии и ее протяженности.

Пропускная способность ( throughput ) линии характеризует максимально возможную скорость передачи данных по линии связи. Пропускная способность измеря­ется в битах в секунду — бит/с, а также в производных единицах, таких как килобит секунду (Кбит/с), мегабит в секунду (Мбит/с), гигабит в секунду (Гбит/с) и т. д.

Пропускная способность линий связи и коммуникационного сетевого оборудования традиционно изме­ряется в битах в секунду, а не в байтах в секунду. Это связано с тем, что данные в сетях передаются последовательно. Такие единицы измерения, как килобит, мегабит или гигабит, в сетевых технологиях строго соответствуют степеням 10 (килобит - это 1000 бит, а мегабит - это 1 000 000 бит).

Пропускная способность линии связи зависит не только от ее характеристик, таких как амплитудно-частотная характеристика, но и от спектра передаваемых сигналов. Если значимые гармоники сигнала попадают в полосу пропускания линии, то такой сигнал будет хорошо передаваться данной линией связи и приемник сможет правильно распознать информацию, отправленную по линии передатчиком (рис. 26).

Рис. 26. Соответствие между полосой пропускания линии связи и спектром сигнала

Выбор способа представления дискретной информации в виде сигналов, подаваемых на линию связи, называется физическим или линейным кодированием.

Теория информации говорит, что любое различимое и непредсказуемое измене­ние принимаемого сигнала несет в себе информацию. Так большинство способов кодирования используют изменение какого-либо параметра периодического сигнала — частоты, амплитуды и фазы синусоиды или же знак потенциала последовательности импульсов. Периодический сигнал, парамет­ры которого изменяются, называют несущим сигналом или несущей частотой.

Количество изменений информационного параметра несущего периодического сигнала в секунду измеряется в бодах ( baud ). Период времени между соседними изменениями информационного сигнала называется тактом работы передатчика. Пропускная способность линии в битах в секунду в общем случае не совпадает с числом бод, это соотношение зависит от способа кодирования.

На пропускную способность линии оказывает влияние не только физическое, но и логическое кодирование. Логическое кодирование выполняется до физического кодирования и подразумевает замену бит исходной информации новой последовательностью бит, несущей ту же информацию, но обладающей дополнительными свойствами. Дру­гим примером логического кодирования может служить шифрация данных, обес­печивающая их конфиденциальность при передаче через общественные каналы связи.

Чем выше частота несущего периодического сигнала, тем больше информации в единицу времени передается по линии и тем выше пропускная способность линии при фиксированном способе физического кодирования. Однако с увеличением частоты периодического несущего сигнала увеличивается его ширина спектра. Чем больше несоответствие между полосой пропускания линии и шириной спектра передавае­мых информационных сигналов, тем больше сигналы искажаются и тем вероятнее ошибки в распознавании информации принимающей стороной, а значит, скорость передачи информации оказывается меньше.

Связь между полосой пропускания лин ии и ее максимально возможной пропуск­ной способностью, вне зависимости от принятого способа физического кодирования, установил Клод Шеннон:

где С – максимальная пропускная способность линии, бит/с;

F – ширина полосы пропускания линии, Гц ;

РС – мощность сигнала;

РШ – мощность шума.

Из этого соотношения видно, что хотя теоретического предела пропускной спо­собности линии с фиксированной полосой пропускания не существует. Однако повышение мощности передатчика ведет к значительному уве­личению его габаритов и стоимости. Снижение уровня шума требует применения специальных кабелей с хорошими защитными экранами, что весьма дорого, а так­же снижения шума в передатчике и промежуточной аппаратуре, чего достичь весьма не просто. К тому же при достаточно типичном исходном отношении мощности сигнала к мощности шума в 100 раз повышение мощности передатчика в 2 раза даст только 15 % увеличения пропускной способ­ности линии.

Близким по сути к формуле Шеннона является соотношение, полу­ченное Найквистом, которое также определяет максимально возможную пропуск­ную способность линии связи:

где М — количество различимых состояний информационного параметра.

Хотя формула Найквиста явно не учитывает наличие шума, косвенно его влия­ние отражается в выборе количества состояний информационного сигнала. Для повышения пропускной способности канала увеличивают это количество до значительных величин, но на практике оно ограничено из-за шума на линии.

Помехоустойчивость линии определяет ее способность уменьшать уровень помех, создаваемых во внешней среде, на внутренних проводниках. Помехоустойчивость линии зависит от типа используемой физической среды, а также от экранирующих и подавляющих помехи средств самой линии. Наименее помехоустойчивыми явля­ются радиолинии, хорошей устойчивостью обладают кабельные линии и отличной — волоконно-оптические линии.

Перекрестные наводки на ближнем конце ( Near End Cross Talk — NEXT) опреде­ляют помехоустойчивость кабеля к внутренним источникам помех, когда электромаг­нитное поле сигнала, передаваемого выходом передатчика по одной паре проводников, наводит на другую пару проводников сигнал помехи. Показатель NEXT, выраженный в децибелах: , где РВЫХ и РНАВ — мощность выходного и наведенного сигнала.

В связи с тем, что в некоторых новых технологиях используется передача дан­ных одновременно по нескольким витым парам, в последнее время стал приме­няться показатель PowerSUM , являющийся модификацией показателя NEXT. Этот показатель отражает суммарную мощность перекрестных наводок от всех передаю­щих пар в кабеле.

Достоверность передачи данных или интенсивно­сть битовых ошибок ( Bit Error Rate , BER) характеризует вероятность искажения для каждого передаваемого бита данных. Величина BER для каналов связи составляет, как правило, 10 -4 -10 -6 , в оптоволоконных линиях связи — 10 -9 . Значение достоверности передачи данных, например, в 10 -4 говорит о том, что в среднем из 10 000 бит искажается значение одного бита.

Топология локальной сети

Первое к чему нужно приступать при изучении основ функционирования компьютерных сетей, это топология (структура) локальной сети. Существует три основных вида топологии: шина, кольцо и звезда.

Топология локальной сети – линейная шина

Линейная шина

Топология локальной сети – кольцо

Кольцо

В данной топологии каждый из компьютеров соединен только с двумя участниками сети. Принцип функционирования такой ЛВС заключается в том, что один из компьютеров принимает информацию от предыдущего и отправляет её следующему выступая в роли повторителя сигнала, либо обрабатывает данные если они предназначались ему. Локальная сеть, построенная по кольцевому принципу более производительна в сравнении с линейной шиной и может объединять до 1000 компьютеров, но, если где-то возникает обрыв сеть полностью перестает функционировать.

Топология локальной сети – звезда

Звезда

Топология звезда, является оптимальной структурой для построения ЛВС. Принцип работы такой сети заключается во взаимодействии нескольких компьютеров между собой по средствам центрального коммутирующего устройства (коммутатор или свитч). Топология звезда позволяет создавать высоконагруженные масштабируемые сети, в которых центральное устройство может выступать, как отдельная единица в составе многоуровневой ЛВС. Единственный минус в том, что при выходе из строя центрального коммутирующего устройства рушится вся сеть или её часть. Плюсом является то, что, если один из компьютеров перестаёт функционировать это никак не сказывается на работоспособности всей локальной сети.

Что такое MAC-адрес, IP-адрес и Маска подсети?

Прежде чем познакомиться с основными принципами взаимодействия сетевых устройств, необходимо подробно разобрать, что такое IP-адрес, MAC-адрес и Маска подсети.

MAC-адрес, IP-адрес и Маска подсети

MAC-адрес, IP-адрес и Маска подсети

MAC-адрес, IP-адрес и Маска подсети

Маска подсети – специальная запись, которая позволяет по IP-адресу вычислять адрес подсети и IP-адрес компьютера в данной сети. Пример записи маски подсети: 255.255.255.0. О том, как происходит вычисление IP-адресов мы рассмотрим чуть позже.

Что такое ARP протокол или как происходит взаимодействие устройств ЛВС?

ARP протокол или как происходит взаимодействие устройств ЛВС

Сетевой коммутатор и маршрутизатор (роутер)


Коммутатор содержит таблицу MAC-адресов устройств локальной сети непосредственно подключенных к его портам. Изначально таблица пуста и начинает заполняться при старте работы коммутатора, происходит сопоставление MAC-адресов устройств и портов, к которым они подключены. Это необходимо для того, чтобы коммутатор напрямую пересылал информационные пакеты тем участникам локальной сени, которым они предназначены, а не опрашивал все устройства ЛВС.

Таблица маршрута IPv4

Маршрутизатор также имеет таблицу, в которую заносит IP-адреса устройств на основе анализа локальной сети. Роутер может самостоятельно раздавать IP-адреса устройствам ЛВС благодаря протоколу динамического конфигурирования узла сети (DHCP). Таблица маршрутизации позволяет роутеру вычислять наикратчайшие маршруты для отправки информационных пакетов между различными узлами ЛВС. Данные узлы (компьютеры) могут находиться в любом сегменте многоуровневой сети невзирая на архитектуру той или иной подсети. К примеру, маршрутизатор связывает локальную сеть с глобальной (интернет) через сеть провайдера.

Пример маршрутизации

Допустим, в таблице маршрутизации есть такая запись:

СетьМаскаИнтерфейс
192.168.1.0255.255.255.0192.168.1.96

Роутер получает пакет, предназначенный для хоста с IP-адресом 192.168.1.96, после чего начинает обход таблицы маршрутизации и обнаруживает, что при наложении маски подсети 255.255.255.0 на IP-адрес 192.168.1.96 вычисляется сеть с IP-адресом 192.168.1.0. Пройдя строку до конца роутер находит IP-адрес интерфейса 192.168.1.96, на который и отправляет полученный пакет.

Как происходит вычисление IP-адреса сети и компьютера?

Для вычисления IP-адреса сети используется маска подсети. Начнем с того, что привычная для наших глаз запись IP-адреса представлена в десятеричном формате (192.168.1.96). На самом деле, сетевое устройство данный IP-адрес видит, как набор нолей и единиц, то есть в двоичной системе исчисления (11000000.10101000.00000001.01100000). Так же выглядит и маска подсети (255.255.255.0 -> 11111111.11111111.11111111.00000000).

IP-адрес назначения192.168.1.9611000000 10101000 00000001 01100000
Маска подсети255.255.255.011111111 11111111 11111111 00000000
IP-адрес сети192.168.1.011000000 10101000 00000001 00000000

Что получается? Какой бы у нас не был IP-адрес назначения (к примеру 192.168.1.96 или 192.168.1.54) при наложении на него маски подсети (255.255.255.0) будет получаться один и тот же результат (192.168.1.0). Происходит это из-за поразрядного (побитного) сравнения записей (1х1 = 1, 1х0 = 0, 0х1 = 0). При этом IP-адрес компьютера берётся из последней группы цифр IP-адреса назначения. Также стоит учитывать, что из общего диапазона адресов, в рамках одной подсети, доступно будет на два адреса меньше, потому что 192.168.1.0 – является IP-адресом самой сети, а 192.168.1.255 – служебным широковещательным адресом для передачи общих пакетов запросов.

Что такое NAT?

Принцип NAT заключается в следующем: при отправке пакета из ЛВС маршрутизатор подменяет IP-адрес локальной машины на свой собственный, а при получении производит обратную замену и отправляет данные на тот компьютер, которому они и предназначались.

Читайте также: