Кто и когда создал гидравлический компьютер

Обновлено: 04.07.2024

Компьютер, но не электрический.
Гидроинтегратор — гидравлический вычислитель:


Вода, перетекающая из одной стеклянной трубки в другую, позволяла решать дифференциальные уравнения с частными производными.

Дело было в период индустриализации СССР, когда свежеиспеченный инженер Владимир Лукьянов попал на строительство железной дороги и столкнулся в проблемой невысокого качества бетонирования (при застывании бетон растрескивался). Лукьянов предположил, что это связано с температурными напряжениями и обобщил существующие теоретические наработки. Процесс описывался дифференциальными уравнениями, требующими длительных расчетов, но Лукьянов увидел главное — аналогию между уравнениями, описывающими теплообмен, и уравнениями, описывающими течение жидкости. Т.е. первый процесс можно было смоделировать с помощью второго.

Через нескольких лет Лукьянов создает аппарат для решения этой совершенно конкретной задачи — анализа изменения температуры в бетоне в зависимости от его состава, технологии заливки и внешних условий.

Пример решаемой задачи

Теплопередача в нестационарных условиях — охлаждение многослойной плоской стенки.

Модель собирается из ряда цилиндрических сосудов, последовательно соединенных между собой калиброванными трубками. Каждый из сосудов имитирует теплосодержание слоя стенки, на которые разбито исследуемое ограждение. Сосуды наполняются водой до уровней, соответствующих начальной температуре в каждом из слоев, после чего открываются краны, и вода из сосудов начинает вытекать. Изменение уровней воды в сосудах при этом будет аналогичным изменению температур в соответствующих слоях стенки при ее охлаждении.



Использованы следующие аналогии с теплотехническими параметрами исследуемых ограждающих конструкций:
а) уровни воды в сосудах в см соответствуют разностям температур слоев и воздуха в градусах;
б) площади поперечного сечения сосудов в см соответствуют теплоемкости слоев в ккал/градус;
в) количество воды в сосудах в см соответствует теплосодержанию слоев в ккал;
г) гидравлические сопротивления трубок в мин/см(?), соединяющих сосуды между собой, соответствуют термическим сопротивлениям слоев в град-ч/ккал;
д) гидравлическое сопротивление у выходной трубки соответствует сопротивлению теплопереходу от поверхности стены к воздуху в град-ч/ккал;
е) расход воды в см/мин соответствует тепловому потоку в ккал/ч.
Масштаб времени, т. е. отношение фактической продолжительности процесса теплопередачи в часах к длительности процесса на гидроинтеграторе в минутах, равен произведению отношения теплоемкости к площади сечения сосуда на отношение термического сопротивления к гидравлическому сопротивлению.

Для возможности фиксации температур (уровней воды в сосудах) в определенные моменты времени гидроинтегратор имел специальное приспособление, одновременно перекрывающее все краны между сосудами. В этот момент нужно было отметить на миллиметровой бумаге, расположенной за трубками, уровни воды в пьезометрах. Затем краны открывали, и так до следующего замера. Полученная в итоге кривая являлась решением уравнения.

Иными словами, интегратор позволял заменить процесс, прямое наблюдение за которым затруднено, аналогичным, но более наглядным процессом. При этом важно то, что оба процесса описывались одинаковыми математическими зависимостями.

Судьба проекта

Дело на этом, как ни странно, не кончилось. Инженер В.С. Лукьянов со временем стал доктором технических наук и получил Сталинскую премию. Он сконструировал двухмерные и трехмерные гидравлические интеграторы в виде стандартных унифицированных блоков, которые можно было компоновать в зависимости от решаемой задачи. Более того — гидроинтеграторы были запущены в серийное производство. Это с их, в частности, помощью рассчитывали проекты Каракумского канала, Байкало-Амурской магистрали, первой в мире гидроэлектростанции из сборного железобетона — Саратовской. Их использовали в геологии (движение грунтовых вод), металлургии (остывание отливок), ракетостроении и др.


Два гидроинтегратора Лукьянова представлены в коллекции аналоговых машин московского Политехнического музея. Один из них:



Фотография сделана в Политехническом музее


В 1936 году советский инженер и учёный Владимир Лукьянов создал вычислительную машину, все математические операции в которой выполняла текущая вода. Гидравлический интегратор Лукьянова — первая в мире вычислительная машина для решения дифференциальных уравнений в частных производных — на протяжении полувека был единственным средством вычислений, связанных с широким кругом задач математической физики.

Публикуем сокращенный вариант одной из статей сборника "Инженерное наследие Москвы в собрании Политехнического музея", рассказывающей об интереснейших экспонатах музея — гидроинтеграторах В. С. Лукьянова.


Владимир Сергеевич Лукьянов (1902-1980)

В 20-30-е годы строительство железных дорог велось медленно. Основными рабочими инструментами были лопата, кирка и тачка, а земляные работы и бетонирование производились только летом. Но качество работ все равно оставалось невысоким, появлялись трещины — бич железобетонных конструкций.

Лукьянов заинтересовался причинами образования трещин в бетоне. Его предположение об их температурном происхождении сталкивается со скептическим отношением специалистов. Молодой инженер начинает исследования температурных режимов в бетонных кладках в зависимости от состава бетона, используемого цемента, технологии проведения работ и внешних условий. Распределение тепловых потоков описывается сложными соотношениями между температурой и меняющимися со временем свойствами бетона. Эти соотношения выражаются так называемыми уравнениями в частных производных. Однако существовавшие в то время (1928 год) методы расчетов не смогли дать быстрого и точного их решения.

В поисках путей решения проблемы Лукьянов обращается к трудам математиков и инженеров. Верное направление он находит в трудах выдающихся российских ученых — академиков А. Н. Крылова, Н. Н. Павловского и М. В. Кирпичева.

Инженер-кораблестроитель, механик, физик и математик академик Алексей Николаевич Крылов (1863-1945) в конце 1910 года построил уникальную механическую аналоговую вычислительную машину — дифференциальный интегратор для решения обыкновенных дифференциальных уравнений 4-го порядка.

Академик Николай Николаевич Павловский (1884-1937) занимался вопросами гидравлики. В 1918 году доказал возможность замены одного физического процесса другим, если они описываются одним и тем же уравнением (принцип аналогии при моделировании).

Академик Михаил Викторович Кирпичев (1879-1955) — специалист в области теплотехники, разработал теорию моделирования процессов в промышленных установках — метод локального теплового моделирования. Метод позволял в лабораторных условиях воспроизводить явления, наблюдаемые на больших промышленных объектах.

Лукьянов сумел обобщить идеи великих ученых: модель — вот высшая степень наглядности математической истины. Проведя исследования и убедившись, что законы течения воды и распространения тепла во многом сходны, он сделал вывод — вода может выступать в роли модели теплового процесса. В 1934 году Лукьянов предложил принципиально новый способ механизации расчетов неустановившихся процессов — метод гидравлических аналогий и спустя год создал тепловую гидромодель для демонстрации метода. Это примитивное устройство, сделанное из кровельного железа, жести и стеклянных трубок, успешно разрешило задачу исследования температурных режимов бетона.

Дело в том, что многие естественные процессы, на первый взгляд мало схожие друг с другом, развиваются по очень близким законам и нередко даже описываются одинаковыми формулами. Поэтому одно явление, которое легко заметить и описать, может служить хорошей аналогией другого, гораздо более сложного для наблюдений и расчетов.

Например, движение воды (гидродинамика) в некоторых случаях позволяет довольно точно моделировать распространение тепла (термодинамику). «Трудоемкий процесс расчета изменения температуры во времени, связанный с применением метода конечных разностей, может быть значительно упрощен при применении гидравлического моделирования, осуществляемого на гидроинтеграторе В. С. Лукьянова», — писали «Известия АН СССР» в 1947 г.


Вычисления на двухмерном гидроинтеграторе.

Главным его узлом стали вертикальные основные сосуды определенной емкости, соединенные между собой трубками с изменяемыми гидравлическими сопротивлениями и подключенные к подвижным сосудам. Поднимая и опуская их, меняли напор воды в основных сосудах. Пуск или остановка процесса расчета производились кранами с общим управлением.

Составив расчетную схему интересующего процесса, изобретатель собирал хитрое устройство из сосудов и трубок, отношения между которыми описывалось теми же формулами, что и исходный процесс. Затем, задав начальные условия в одной группе сосудов, оставалось наполнить их водой, замерить уровни воды в другой группе сосудов — и получить нужные данные расчетов.

В 1936 году заработала первая в мире вычислительная машина для решения уравнений в частных производных — гидравлический интегратор Лукьянова.

Для решения задачи на гидроинтеграторе необходимо было:

1) составить расчетную схему исследуемого процесса;

2) на основании этой схемы произвести соединение сосудов, определить и подобрать величины гидравлических сопротивлений трубок;

3) рассчитать начальные значения искомой величины;

4) начертить график изменения внешних условий моделируемого процесса.

После этого задавали начальные значения: основные и подвижные сосуды при закрытых кранах наполняли водой до рассчитанных уровней и отмечали их на миллиметровой бумаге, прикрепленной за пьезометрами (измерительными трубками) — получалась своеобразная кривая. Затем все краны одновременно открывали, и исследователь менял высоту подвижных сосудов в соответствии с графиком изменения внешних условий моделируемого процесса. При этом напор воды в основных сосудах менялся по тому же закону, что и температура. Уровни жидкости в пьезометрах менялись, в нужные моменты времени краны закрывали, останавливая процесс, и на миллиметровой бумаге отмечали новые положения уровней. По этим отметкам строили график, который и был решением задачи.

Возможности гидроинтегратора оказались необычайно широки и перспективны. В 1938 году В. С. Лукьяновым была основана лаборатория гидравлических аналогий, которая вскоре превратилась в базовую организацию для внедрения метода в народное хозяйство страны. Руководителем этой лаборатории он оставался в течение сорока лет.

Главным условием широкого распространения метода гидравлической аналогии стало совершенствование гидроинтегратора. Создание конструкции, удобной в практическом применении, позволило решать задачи различных типов — одномерные, двухмерные и трехмерные. Например, течение воды в прямолинейных границах — одномерный поток. Двумерное движение наблюдается в районах крупных излучин рек, вблизи островов и полуостровов, а грунтовые воды растекаются в трех измерениях.

Первый гидроинтегратор ИГ-1 был предназначен для решения наиболее простых — одномерных — задач. В 1941 году сконструирован двухмерный гидравлический интегратор в виде отдельных секций.

В 1949 году постановлением Совета Министров СССР в Москве создан специальный институт "НИИСЧЕТМАШ", которому были получены отбор и подготовка к серийному производству новых образцов вычислительной техники. Одной из первых таких машин стал гидроинтегратор. За шесть лет в институте разработана новая его конструкция из стандартных унифицированных блоков, и на Рязанском заводе счетно-аналитических машин начался их серийный выпуск с заводской маркой ИГЛ (интегратор гидравлический системы Лукьянова). Ранее единичные гидравлические интеграторы строились на Московском заводе счетно-аналитических машин (САМ). В процессе производства секции были модифицированы для решения трехмерных задач.

В 1951 году за создание семейства гидроинтеграторов В. С. Лукьянову присуждена Государственная премия.


На снимках: гидроинтеграторы. Лукьянова в экспозиции Политехнического музея — демонстрационный ИГ-3 (внизу) и одномерный 1-ИГЛ-1-3. На снимках: гидроинтеграторы. Лукьянова в экспозиции Политехнического музея — демонстрационный ИГ-3 (внизу) и одномерный 1-ИГЛ-1-3.

После организации серийного производства интеграторы стали экспортироваться за границу: в Чехословакию, Польшу, Болгарию и Китай. Но самое большое распространение они получили в нашей стране. С их помощью провели научные исследования в поселке "Мирный", расчеты проекта Каракумского канала и Байкало-Амурской магистрали. Гидроинтеграторы успешно использовались в шахтостроении, геологии, строительной теплофизике, металлургии, ракетостроении и во многих других областях.

Особенно наглядно проявилась эффективность метода гидравлических аналогий при изготовлении железобетонных блоков первой в мире гидроэлектростанции из сборного железобетона — Саратовской ГЭС им. Ленинского комсомола (1956-1970). Требовалось разработать технологию изготовления около трех тысяч огромных блоков весом до 200 тонн. Блоки должны были быстро вызревать без трещин на поточной линии во все времена года и сразу устанавливаться на место. Очень сложные расчеты температурного режима с учетом непрерывного изменения свойств твердеющего бетона и условий электропрогрева произвели своевременно и в нужном объеме только благодаря гидроинтеграторам Лукьянова. Теоретические расчеты в сочетании с испытаниями на опытном полигоне и на производстве позволили отработать технологию изготовления блоков безукоризненного качества.

Появившиеся в начале 50-х годов первые цифровые электронно-вычислительные машины (ЦЭВМ) не могли составить конкуренции "водяной" машине. Основные преимущества гидроинтегратора — наглядность процесса расчета, простота конструкции и программирования. ЭВМ первого и второго поколений были дороги, имели невысокую производительность, малый объем памяти, ограниченный набор периферийного оборудования, слабо развитое программное обеспечение, требовали квалифицированного обслуживания. В частности, задачи мерзлотоведения легко и быстро решались на гидроинтеграторе, а на ЭВМ — с большими сложностями. Более того, предварительное применение метода гидравлических аналогий помогало поставить задачу, подсказать путь программирования ЭВМ и даже проконтролировать ее во избежание грубых ошибок. В середине 1970-х годов гидравлические интеграторы применялись в 115 производственных, научных и учебных организациях, расположенных в 40 городах нашей страны. Только в начале 80-х годов появились малогабаритные, дешевые, с большим быстродействием и объемом памяти цифровые ЭВМ, полностью перекрывающие возможности гидроинтегратора.






На снимках: гидроинтегратор Лукьянова в экспозиции Политехнического музея. На вертикальных вращающихся барабанах укрепляется график изменения внешних условий. Его считывают при помощи указателя — иглы на стойке, передвигая вращением рукоятки. Синхронно с указателем поднимаются и опускаются подвижные сосуды. Уровни воды в пьезометрах "рисуют" на миллиметровке кривую — решение уравнения.

Два гидроинтегратора Лукьянова представлены в коллекции аналоговых машин Политехнического музея в Москве. В 1956 г. рязанский завод САМ передал Политеху ультрасовременное по тем временам вычислительное устройство ИГ-3. Сегодня, в эпоху повсеместного распространения компьютеров, «Интегратор гидравлический, модель №3» особенно интригует посетителей экспозиции музея на ВДНХ. Оригинальные вычислительные устройства вызывают неизменный интерес посетителей и входят в число самых ценных экспонатов отдела вычислительной техники.

Буквально только сейчас узнал о совершенно потрясающем устройстве – водяном компьютере. Гидравлический интегратор Лукьянова - первая в мире вычислительная машина для решения дифференциальных уравнений в частных производных - на протяжении полувека был единственным средством вычислений, связанных с широким кругом задач математической физики.

В 1936 году он создал вычислительную машину, все математические операции в которой выполняла текущая вода. Слышали ли вы о таком?


Первый гидроинтегратор ИГ-1 был предназначен для решения наиболее простых – одномерных задач. В 1941 году сконструирован двухмерный гидравлический интегратор в виде отдельных секций. В последствии интегратор был модифицирован для решения трехмерных задач.
После организации серийного производства интеграторы стали экспортироваться за границу: в Чехословакию, Польшу, Болгарию и Китай. Но самое большое распространение они получили в нашей стране. С их помощью провели научные исследования в поселке "Мирный", расчеты проекта Каракумского канала и Байкало-Амурской магистрали. Гидроинтеграторы успешно использовались в шахтостроении, геологии, строительной теплофизике, металлургии, ракетостроении и во многих других областях.

Появившиеся в начале 50-х годов первые цифровые электронно-вычислительные машины (ЦЭВМ) не могли составить конкуренции "водяной" машине. Основные преимущества гидроинтегратора - наглядность процесса расчета, простота конструкции и программирования. ЭВМ первого и второго поколений были дороги, имели невысокую производительность, малый объем памяти, ограниченный набор периферийного оборудования, слабо развитое программное обеспечение, требовали квалифицированного обслуживания. В частности, задачи мерзлотоведения легко и быстро решались на гидроинтеграторе, а на ЭВМ - с большими сложностями. В середине 1970-х годов гидравлические интеграторы применялись в 115 производственных, научных и учебных организациях, расположенных в 40 городах нашей страны. Только в начале 80-х годов появились малогабаритные, дешевые, с большим быстродействием и объемом памяти цифровые ЭВМ, полностью перекрывающие возможности гидроинтегратора.

И еще немного для тех, кому интересны подробности.

Создание гидроинтегратора продиктовано сложной инженерной задачей, с которой молодой специалист В. Лукьянов столкнулся в первый же год работы.

В 20-30-е годы строительство железных дорог велось медленно. Основными рабочими инструментами были лопата, кирка и тачка, а земляные работы и бетонирование производились только летом. Но качество работ все равно оставалось невысоким, появлялись трещины - бич железобетонных конструкций.

Лукьянов заинтересовался причинами образования трещин в бетоне. Его предположение об их температурном происхождении сталкивается со скептическим отношением специалистов. Молодой инженер начинает исследования температурных режимов в бетонных кладках в зависимости от состава бетона, используемого цемента, технологии проведения работ и внешних условий. Распределение тепловых потоков описывается сложными соотношениями между температурой и меняющимися со временем свойствами бетона. Эти соотношения выражаются так называемыми уравнениями в частных производных. Однако существовавшие в то время (1928 год) методы расчетов не смогли дать быстрого и точного их решения.

В поисках путей решения проблемы Лукьянов обращается к трудам математиков и инженеров. Верное направление он находит в трудах выдающихся российских ученых - академиков А. Н. Крылова, Н. Н. Павловского и М. В. Кирпичева.

Инженер-кораблестроитель, механик, физик и математик академик Алексей Николаевич Крылов (1863-1945) в конце 1910 года построил уникальную механическую аналоговую вычислительную машину - дифференциальный интегратор для решения обыкновенных дифференциальных уравнений 4-го порядка.

Академик Николай Николаевич Павловский (1884-1937) занимался вопросами гидравлики. В 1918 году доказал возможность замены одного физического процесса другим, если они описываются одним и тем же уравнением (принцип аналогии при моделировании).


Академик Михаил Викторович Кирпичев (1879-1955) - специалист в области теплотехники, разработал теорию моделирования процессов в промышленных установках - метод локального теплового моделирования. Метод позволял в лабораторных условиях воспроизводить явления, наблюдаемые на больших промышленных объектах.

Лукьянов сумел обобщить идеи великих ученых: модель - вот высшая степень наглядности математической истины. Проведя исследования и убедившись, что законы течения воды и распространения тепла во многом сходны, он сделал вывод - вода может выступать в роли модели теплового процесса. В 1934 году Лукьянов предложил принципиально новый способ механизации расчетов неустановившихся процессов - метод гидравлических аналогий и спустя год создал тепловую гидромодель для демонстрации метода. Это примитивное устройство, сделанное из кровельного железа, жести и стеклянных трубок, успешно разрешило задачу исследования температурных режимов бетона.

Главным его узлом стали вертикальные основные сосуды определенной емкости, соединенные между собой трубками с изменяемыми гидравлическими сопротивлениями и подключенные к подвижным сосудам. Поднимая и опуская их, меняли напор воды в основных сосудах. Пуск или остановка процесса расчета производились кранами с общим управлением.

В 1936 году заработала первая в мире вычислительная машина для решения уравнений в частных производных - гидравлический интегратор Лукьянова.

Для решения задачи на гидроинтеграторе необходимо было:

1) составить расчетную схему исследуемого процесса;

2) на основании этой схемы произвести соединение сосудов, определить и подобрать величины гидравлических сопротивлений трубок;

3) рассчитать начальные значения искомой величины;

4) начертить график изменения внешних условий моделируемого процесса.

После этого задавали начальные значения: основные и подвижные сосуды при закрытых кранах наполняли водой до рассчитанных уровней и отмечали их на миллиметровой бумаге, прикрепленной за пьезометрами (измерительными трубками) - получалась своеобразная кривая. Затем все краны одновременно открывали, и исследователь менял высоту подвижных сосудов в соответствии с графиком изменения внешних условий моделируемого процесса. При этом напор воды в основных сосудах менялся по тому же закону, что и температура. Уровни жидкости в пьезометрах менялись, в нужные моменты времени краны закрывали, останавливая процесс, и на миллиметровой бумаге отмечали новые положения уровней. По этим отметкам строили график, который и был решением задачи.

Возможности гидроинтегратора оказались необычайно широки и перспективны. В 1938 году В. С. Лукьяновым была основана лаборатория гидравлических аналогий, которая вскоре превратилась в базовую организацию для внедрения метода в народное хозяйство страны. Руководителем этой лаборатории он оставался в течение сорока лет.

Главным условием широкого распространения метода гидравлической аналогии стало совершенствование гидроинтегратора. Создание конструкции, удобной в практическом применении, позволило решать задачи различных типов - одномерные, двухмерные и трехмерные. Например, течение воды в прямолинейных границах - одномерный поток. Двумерное движение наблюдается в районах крупных излучин рек, вблизи островов и полуостровов, а грунтовые воды растекаются в трех измерениях.

Первый гидроинтегратор ИГ-1 был предназначен для решения наиболее простых - одномерных - задач. В 1941 году сконструирован двухмерный гидравлический интегратор в виде отдельных секций.

В 1949 году постановлением Совета Министров СССР в Москве создан специальный институт "НИИСЧЕТМАШ", которому были получены отбор и подготовка к серийному производству новых образцов вычислительной техники. Одной из первых таких машин стал гидроинтегратор. За шесть лет в институте разработана новая его конструкция из стандартных унифицированных блоков, и на Рязанском заводе счетно-аналитических машин начался их серийный выпуск с заводской маркой ИГЛ (интегратор гидравлический системы Лукьянова). Ранее единичные гидравлические интеграторы строились на Московском заводе счетно-аналитических машин (САМ). В процессе производства секции были модифицированы для решения трехмерных задач.

В 1951 году за создание семейства гидроинтеграторов В. С. Лукьянову присуждена Государственная премия.

После организации серийного производства интеграторы стали экспортироваться за границу: в Чехословакию, Польшу, Болгарию и Китай. Но самое большое распространение они получили в нашей стране. С их помощью провели научные исследования в поселке "Мирный", расчеты проекта Каракумского канала и Байкало-Амурской магистрали. Гидроинтеграторы успешно использовались в шахтостроении, геологии, строительной теплофизике, металлургии, ракетостроении и во многих других областях.

Особенно наглядно проявилась эффективность метода гидравлических аналогий при изготовлении железобетонных блоков первой в мире гидроэлектростанции из сборного железобетона - Саратовской ГЭС им. Ленинского комсомола (1956-1970). Требовалось разработать технологию изготовления около трех тысяч огромных блоков весом до 200 тонн. Блоки должны были быстро вызревать без трещин на поточной линии во все времена года и сразу устанавливаться на место. Очень сложные расчеты температурного режима с учетом непрерывного изменения свойств твердеющего бетона и условий электропрогрева произвели своевременно и в нужном объеме только благодаря гидроинтеграторам Лукьянова. Теоретические расчеты в сочетании с испытаниями на опытном полигоне и на производстве позволили отработать технологию изготовления блоков безукоризненного качества.

Появившиеся в начале 50-х годов первые цифровые электронно-вычислительные машины (ЦЭВМ) не могли составить конкуренции "водяной" машине. Основные преимущества гидроинтегратора - наглядность процесса расчета, простота конструкции и программирования. ЭВМ первого и второго поколений были дороги, имели невысокую производительность, малый объем памяти, ограниченный набор периферийного оборудования, слабо развитое программное обеспечение, требовали квалифицированного обслуживания. В частности, задачи мерзлотоведения легко и быстро решались на гидроинтеграторе, а на ЭВМ - с большими сложностями. Более того, предварительное применение метода гидравлических аналогий помогало поставить задачу, подсказать путь программирования ЭВМ и даже проконтролировать ее во избежание грубых ошибок. В середине 1970-х годов гидравлические интеграторы применялись в 115 производственных, научных и учебных организациях, расположенных в 40 городах нашей страны. Только в начале 80-х годов появились малогабаритные, дешевые, с большим быстродействием и объемом памяти цифровые ЭВМ, полностью перекрывающие возможности гидроинтегратора.

Два гидроинтегратора Лукьянова представлены в коллекции аналоговых машин Политехнического музея в Москве. Это редкие экспонаты, имеющие большую историческую ценность, памятники науки и техники. Оригинальные вычислительные устройства вызывают неизменный интерес посетителей и входят в число самых ценных экспонатов отдела вычислительной техники.


Современный человек, садясь за компьютер, редко задумывается, что эти умные машины совершенно не обязаны быть электронными. Тем не менее в 19 веке (!) англичанин Чарльз Бэббидж создал первый в мире компьютер, который был механическим. А в первой половине 20 века советский ученый Владимир Лукьянов создал еще более удивительную вычислительную машину, способную решать дифференциальные уравнения в частных производных. Ее принцип действия основывался на перетекании воды по системе стеклянных трубок.

В 1925 году молодой выпускник строительного факультета МИИПС Владимир Лукьянов получил направление работать инженером на строительстве уральских железных дорог. Работы по прокладке железнодорожных путей в те времена велись медленно, поскольку бетонирование могло проводиться только в теплое время года. Но даже летом качество бетонирования было невысоким, бетон постоянно растрескивался.

Молодой специалист предположил, что появление трещин в бетоне связано с температурными перепадами и возникающими вследствие этого напряжениями. Однако более опытные коллеги скептически отнеслись к предположению вчерашнего студента. Лукьянов самостоятельно начинает исследовать свойства бетона в зависимости от температуры и влажности окружающей среды, качества исходных материалов. Математические расчеты требовали решения дифференциальных уравнений в частных производных, а это дело непростое даже для опытного математика. Да и не имелось в 1928 году расчетных методов, которые могли дать оперативное и верное решение.

Однако еще в 1918 году ученый-гидравлик академик Николай Павловский смог доказать, что можно смоделировать один процесс заменив его другим, при условии, что оба процесса описываются одинаковыми математическими уравнениями. А другой академик теплотехник Михаил Кирпичев разработал технологию моделирования производственных процессов в лабораторных условиях.

Объединить воедино идеи этих ученых и удалось Владимиру Лукьянову. Он понял, что процесс изменения температурных показателей во время охлаждения бетона можно смоделировать при помощи гидравлических процессов, благо охлаждение бетона и процессы перелива жидкостей описываются одними и теми дифференциальными уравнениями.

Для расчетов требовалась вычислительная машина, и тут Лукьянову пришло на помощь изобретение сделанное в 1910 году инженером-кораблестроителем академиком Алексеем Крыловым. Этот русский ученый создал аналоговый интегратор — счетную машину, способную решать дифуры 4-го порядка.

Объединив идеи предшественников, Лукьянов в 1934 обосновал гидравлический метод аналогий для механизации расчетов теплотехнических процессов. В 1935 на свет появился первая модель гидрокомпьютера, выполненная из примитивных материалов — трубки из стекла, жесть и кровельное железо. Еще через год был запущен настоящий гидроинтегратор Лукьянова, способный решать дифференциальные уравнения в частных производных.

Основным узлом новоявленной вычислительной машины были сосуды фиксированной емкости, которые соединялись трубками. Для трубок была предусмотрена возможность менять гидравлическое сопротивление, чтобы моделировать различные начальные условия. Трубки подключались к подвижным сосудам, которые можно было перемещать вверх или вниз, что позволяло менять напор жидкости в главных сосудах. Процесс расчета запускался или останавливался кранами, имеющими совместное управление.

Принцип программирования гидроинтегратора для решения конкретной задачи разделялся на несколько частей:

  1. Составление расчетной схемы процесса, который предстоит исследовать.
  2. Соединение сосудов на основании созданной схемы, определение и подбор параметров гидравлических сопротивлений соединительных трубок.
  3. Произведение расчета начальных значений искомой величины.
  4. Создание графика изменений начальных условий процесса, который следует смоделировать.

После выполнения всех этих предварительных задач следовало задание начальных значений — подвижные и главные сосуды заполняли до расчетной величины водой. Начальные положения воды в измерительных трубках (пьезометрах) отмечали на миллиметровке. Краны открывали, вода начинала переливаться, через некоторые промежутки времени краны закрывались, а новые положения жидкости в пьезометрах также отмечались на миллиметровке. В результате благодаря отметкам составлялся график, он являлся решением поставленной задачи.

Перспективы гидравлического компьютера оказались для своего времени поистине революционными. Руководство страны сумело по достоинству оценить открывавшиеся перспективы и доверило Владимиру Лукьянову создание и руководство лаборатории гидравлических аналогий, которой ученый бессменно руководил на протяжении 4 десятков лет.

Первый интегратор ИГ-1 мог решать только самые простые одномерные задачи, но уже в 1941 году был создан, состоящий из отдельных секций, двумерный интегратор. Вторая Мировая война не прервала работу лаборатории, и к 1955 году удалось создать гидравлический компьютер способный моделировать трехмерные процессы. Самому ученому в 1951 году за создание гидроинтеграторов присудили Государственную премию.

Примитивные ЭВМ 50-х годов отличались сложностью программирования и медленной скоростью. На их фоне гидроинтеграторы смотрелись нагляднее и проще, многие важные расчеты в стране проводились именно на компьютерах Лукьянова. Здесь следует вспомнить БАМ, проект Каракумского канала, строительство Саратовской ГЭС.

К середине 70-х годов в СССР гидравлические интеграторы использовались в 115 организациях, работали компьютеры Лукьянова и в странах СЭВ.

Появление в 80-х годах компактных быстродействующих ЭВМ, привело к быстрому вытеснению гидроинтеграторов. Сейчас 2 из оставшихся в строю компьютера Лукьянова находятся в столичном Политехническом музее в коллекции аналоговых машин.

Читайте также: