Led и ips в чем разница

Обновлено: 07.07.2024

LCD, TFT, IPS, AMOLED, P-OLED, QLED — это неполный список технологий дисплеев, которые сегодня можно встретить на массовом рынке потребительской электроники. Но что они все означают? Чем IPS отличается от AMOLED, да и верно ли такое сравнение? Мы расскажем, как они работают, какие преимущества и недостатки имеют и есть ли между ними разница с точки зрения конечного пользователя.

Liquid Crystal Display, то есть жидкокристаллический дисплей — именно эта технология в конце 1990-х позволила превратить мониторы и телевизоры из удобных лежанок для котиков с вредными для человека электронно-лучевыми трубками внутри в тонкие изящные устройства. Она же открыла путь к созданию компактных гаджетов: ноутбуков, КПК, смартфонов.

Жидкие кристаллы — вещество, которое одновременно является и текучим, как жидкость, и анизотропным, как кристалл. Последнее качество означает, что при разной ориентации молекул жидких кристаллов оптические, электрические и другие свойства меняются.

Типы экранов смартфонов: конец неразберихе

Кристаллическое, жидкристаллическое, жидкое: кристаллы переходят в другое агрегатное состояние под воздействием температуры

В дисплеях такое свойство ЖК используется для регулирования светопроводимости: в зависимости от сигнала с транзистора кристаллы ориентируются определённым образом. Перед ними находится поляризатор, «собирающий» световые волны в плоскость кристаллов. После них свет проходит через RGB-фильтр и становится красным, зелёным или синим соответственно. Затем, если не блокируется передним поляризатором, проступает на экране в виде субпикселя. Несколько таких световых потоков соединяются между собой, и на дисплее мы видим пиксель ожидаемого цвета, а его сочетание с соседними пикселями способно выдавать гамму sRGB-спектра.

Типы экранов смартфонов: конец неразберихе

Схема пикселя LCD

Когда дисплей включён, подсветка осуществляется белыми светодиодами, расположенными по периметру дисплея, и равномерно распределяется по всей площади благодаря специальной подложке. Отсюда возникают известные «болезни» LCD. Например, до пикселей, которые должны быть чёрными, свет всё равно доходит. В старых и некачественных дисплеях легко различимо «чёрное свечение».

Бывает, что кристаллы «застревают», то есть не двигаются даже при получении сигнала с транзистора, тогда на дисплее появляется «битый пиксель». Из-за специфики источника света по краям LCD-мониторов бывают видны белые засветы, а смартфоны с LCD не могут быть абсолютно безрамочными, хотя оба поколения Xiaomi Mi Mix и Essential Phone к этому стремятся.

Типы экранов смартфонов: конец неразберихе

Подсветка и подложка LCD Apple iPod Touch

Однако в спецификациях девайсов мы привыкли видеть не LCD, а загадочные TN, TFT, IPS или даже Retina. Разберёмся, что это значит.

TN, или TN+film. По факту, Twisted nematic — «базовая» технология, которая подразумевает поляризацию света и закручивание жидких кристаллов в спираль. Такие дисплеи недорогие и сравнительно просты в производстве, а на заре своего пребывания на рынке они имели самое низкое время отклика — 16 мс — но при этом характеризовались невысокой контрастностью и малыми углами обзора. Сегодня технологии сильно шагнули вперёд, и на смену стандарту TN пришёл более продвинутый IPS.

IPS (in-plane switching). В отличие от TN, жидкие кристаллы в IPS-матрице не закручиваются в спираль, а поворачиваются все вместе в одной плоскости, параллельной поверхности дисплея. Это позволило увеличить комфортные углы обзора до 178° (то есть фактически до максимума), существенно повысить контрастность изображения, сделать чёрный цвет намного более глубоким, сохранив при этом сравнительную безопасность для глаз.

Типы экранов смартфонов: конец неразберихе
Типы экранов смартфонов: конец неразберихе

Различие между матрицами TN и IPS на схеме

Типы экранов смартфонов: конец неразберихе

Наглядная разница между TN (на переднем плане) и IPS

Изначально IPS-матрицы обладали большим временем отклика и энергопотреблением, чем у дисплеев с технологией TN, поскольку для передачи сигнала требовалось повернуть весь массив кристаллов. Но со временем IPS-матрицы лишились этих недостатков, отчасти — за счёт внедрения тонкоплёночных транзисторов.

TFT LCD. По сути, это не отдельный тип матрицы, а скорее подвид, который характеризуется применением тонкоплёночных транзисторов (thin-film-transistor, TFT) в качестве полупроводника для каждого субпикселя. Размер такого транзистора составляет от 0,1 до 0,01 микрона, благодаря чему стало возможным создание небольших дисплеев с высоким разрешением. Во всех современных компактных дисплеях стоят такие транзисторы, причём не только в LCD, но и в AMOLED.

Преимущества LCD:

  • недорогое производство;
  • слабое негативное воздействие на глаза.

Недостатки LCD:

  • неэкономное распределение энергии;
  • «светящийся» чёрный цвет.

Organic light-emitting diode, или органический светодиод — грубо говоря, это полупроводник, который излучает свет в видимом спектре, если получает квант энергии. Он имеет два органических слоя, заключённых в катод и анод: при воздействии электрического тока в них происходит эмиссия и, как следствие, излучение света.

Типы экранов смартфонов: конец неразберихе

Из множества таких диодов состоит OLED-матрица. В большинстве случаев они красного, зелёного и синего цвета и вместе составляют пиксель (тонкости различного сочетания субпикселей опустим). Но дисплеи попроще могут быть монохромными и в основе иметь диоды одного цвета (например, в умных браслетах).

Типы экранов смартфонов: конец неразберихе

Однако одних «лампочек» мало — для правильного отображения информации требуется контроллер. И долгое время отсутствие адекватных контроллеров не позволяло производить светодиодные дисплеи в их сегодняшнем виде, так как корректно управлять таким массивом отдельных миниатюрных элементов крайне сложно.

PMOLED. По этой причине в первых OLED-дисплеях диоды управлялись группами. Контроллером в PMOLED служит так называемая пассивная матрица (passive matrix, PM). Она подаёт сигналы на горизонтальный и вертикальный ряд диодов, и точка их пересечения подсвечивается. За один такт можно просчитать только один пиксель, так что получить сложную картинку, да ещё и в высоком разрешении, таким образом невозможно. Из-за этого же производители ограничены и в размере дисплея: на экране с диагональю больше трёх дюймов качественного изображения не выйдет.

Типы экранов смартфонов: конец неразберихе

Раньше PMOLED-дисплеи ставились в такие MP3-плееры, сейчас они используются в тех же умных браслетах

AMOLED. Прорыв на рынке светодиодных дисплеев произошёл, когда появилась возможность использовать тонкоплёночные транзисторы и конденсаторы для управления каждым пикселем (точнее — субпикселем) в отдельности, а не группой. В такой системе, которая называется активной матрицей (active matrix, AM), один транзистор отвечает за начало и конец передачи сигнала в конденсатор, а второй — за передачу сигнала от диода на экран. Соответственно, если сигнала нет, диод не светится, и на выходе получается максимально глубокий чёрный цвет, ведь свечение отсутствует в принципе. Благодаря тому, что светятся сами диоды, лежащие практически на поверхности, углы обзора AMOLED-матрицы максимальные. Но при отклонении от оси взгляда может искажаться цвет — уходить в красный, синий или зелёный оттенок либо вовсе пойти RGB-волнами.

Такие дисплеи отличаются высокой яркостью и контрастностью картинки. Раньше это было настоящей проблемой: первые AMOLED-экраны почти всегда были «вырвиглазными», от них могли уставать и болеть глаза. В некоторых дисплеях использовалась широтно-импульсная модуляция (ШИМ) для того, чтобы тёмное изображение не «уходило» в фиолетовый оттенок, что тоже оказывалось болезненным для глаз. Из-за органического происхождения диоды порой выгорали за два-три года, особенно при длительном отображении неизменной картинки.

Типы экранов смартфонов: конец неразберихе

Пример выгорания AMOLED-дисплея

Впрочем, сегодня технологии ушли далеко вперёд, и перечисленные проблемы по большей части уже решены. AMOLED-дисплеи способны выдавать естественные цвета без сильной нагрузки на глаза, а IPS-дисплеи, напротив, подтянулись в области сочности красок и контрастности. В плане энергопотребления AMOLED-технология изначально была примерно в полтора раза более эффективна, нежели LCD, но по тестам разных устройств можно сказать, что сегодня этот показатель почти выровнялся.

Типы экранов смартфонов: конец неразберихе

Даже пять лет назад разница уже была не так высока, как в конце 2000-х

Тем не менее AMOLED бесспорно выигрывает в набирающих популярность направлениях. Речь идёт о безрамочных гаджетах, где разместить светодиоды значительно проще, чем жидкие кристаллы с боковой подсветкой, и об изогнутых (а в перспективе — гнущихся) дисплеях, для которых технология LCD непригодна в принципе. Но тут в игру вступает новый тип OLED-матриц.

P-OLED. На самом деле, есть доля лукавства в том, чтобы выделять данные дисплеи в отдельную категорию. Ведь по сути принципиальное отличие P-OLED (или POLED, не путать с PMOLED) от AMOLED одно — использование пластиковой (plastic, P) подложки, позволяющей изгибать дисплей, вместо стеклянной. Но она сложнее и дороже в производстве, чем стандартная стеклянная. К слову, AMOLED-дисплеи в силу меньшего количества «слоёв» намного тоньше LCD, а P-OLED, в свою очередь, тоньше AMOLED.

Типы экранов смартфонов: конец неразберихе

Во всех смартфонах с изогнутым дисплеем (преимущественно Samsung и LG) используется именно P-OLED. Даже во флагманах Samsung 2017 года, где, по уверению производителя, стоит сразу и Super AMOLED, и Infinity Display. Дело в том, что это маркетинговые названия, к фактическим технологиям производства не имеющие практически никакого отношения. С такой точки зрения там установлены дисплеи из органических светодиодов, которые управляются активной матрицей тонкоплёночных транзисторов и лежат на пластиковой подложке — то есть те же AMOLED, или P-OLED. К слову, в LG V30 дисплей хоть и не изгибается, а всё равно лежит на пластиковой подложке.

Преимущества OLED:

  • высокая контрастность и яркость;
  • глубокий и не энергозатратный чёрный цвет;
  • возможность использования в новых форм-факторах.

Недостатки OLED:

  • сильное воздействие на глаза;
  • дорогое и сложное производство.

Маркетинговые ходы

Retina и Super Retina. В переводе с английского это слово означает «сетчатка», и Стив Джобс выбрал его неспроста. Во время презентации iPhone 4 в 2010 году он сказал, что человеческий глаз не способен различать пиксели, если показатель дисплея ppi превышает 300. Строго говоря, любой соответствующий дисплей может называться Retina, но по понятным причинам никто, кроме Apple, данный термин не использует. Дисплей будущего iPhone X был назван Super Retina, хотя в нём будет установлен AMOLED-дисплей, а не IPS, как в остальных смартфонах компании. Иными словами, к технологии изготовления экрана название также не имеет никакого отношения.

iPhone 4 — первый смартфон с дисплеем Retina iPhone X — первый и пока единственный смартфон с дисплеем Super Retina

Super AMOLED. Данная торговая марка принадлежит компании Samsung, которая производит дисплеи как для себя, так и для конкурентов, в том числе Apple. Изначально главное отличие Super AMOLED от просто AMOLED заключалось в том, что компания убрала воздушную прослойку между матрицей и сенсорным слоем экрана, то есть объединила их в единый элемент дисплея. В результате при отклонении от оси взгляда картинка перестала расслаиваться. Очень скоро технология добралась практически до всех смартфонов, и сегодня не совсем ясно, чем «супер» лучше «обычных» AMOLED, производимых той же компанией.

Infinity Display. Тут всё совсем просто: «бесконечный дисплей» означает всего лишь практически полное отсутствие боковых рамок и наличие минимальных рамок сверху и снизу. С другой стороны, не представлять же на презентации какой-то там обычный безрамочный смартфон — надо назвать красиво.

Перспективные технологии

Micro-LED или ILED. Эта технология является логичной альтернативой органическим светодиодам: в её основе лежат неорганические (Inorganic, I) из нитрида галлия, очень маленького размера. По оценке специалистов, micro-LED смогут посоперничать с привычными OLED по всем ключевым параметрам: более высокая контрастность, лучший запас яркости, меньшее время отклика, долговечность, меньший размер и вдвое меньшее энергопотребление. Но, увы, такие диоды очень сложны в массовом производстве, поэтому пока технология не сумеет конкурировать на рынке с привычными решениями.

Впрочем, это не помешало Sony показать на выставке CES-2012 55-дюймовый телевизор с матрицей из неорганических светодиодов. Apple же в 2014 году купила компанию LuxVue, специализирующуюся на исследованиях в данной области. И хотя в iPhone X используется классический AMOLED, в будущих моделях уже могут быть установлены матрицы с micro-LED, которые, как нас уверяют, позволят увеличить плотность пикселей до 1500 ppi.

Типы экранов смартфонов: конец неразберихе

Прототип телевизора Sony с матрицей из micro-LED под названием Crystal LED

Quantum Dots, или QD-LED, или QLED. Эта перспективная технология взяла всего понемногу от уже существующих на рынке. От ЖК-дисплеев ей досталась внутренняя подсветка, вот только «бьёт» она не в жидкие кристаллы, а в очень маленькие кристаллы с эффектом свечения, напылённые прямо на экран — квантовые частицы. От размера каждой точки зависит, каким цветом она будет светить, диапазон составляет от двух до шести нанометров (для сравнения: толщина человеческого волоса — 100000 нанометров). В результате получаются яркие, насыщенные и в то же время натуральные цвета. Телевизоры с таким дисплеями впервые выпустила компания Sony в 2013 году. Сейчас на рынке есть несколько моделей от Samsung. Квантовые точки в них используются в слое подсветки. Пока это очень дорогая в производстве технология: средняя стоимость QLED-телевизоров составляет примерно $2500-3000. В мобильной электронике подобные дисплеи не используются, а будут ли и когда — неизвестно.

Типы экранов смартфонов: конец неразберихе

Квантовые точки производятся в виде микроскопического порошка и затем напыляются на экран

Выводы

На практике современные дисплеи LCD и AMOLED все меньше отличаются друг от друга по качеству изображения и энергоэффективности. А вот будущее — за светодиодными технологиями в том или ином виде. Жидкие кристаллы уже отжили свой век и держатся на рынке только за счёт дешевизны и простоты производства, хотя высокое качество картинки тоже присутствует. ЖК-дисплеи благодаря своей структуре толще, чем светодиодные, и бесперспективны с точки зрения новых трендов на изогнутость и безрамочность. Так что их уход с рынка уже виднеется на горизонте, тогда как LED-технологии уверенно развиваются сразу по нескольким направлениям и, что называется, ждут своего часа.

Если вы хотите узнать, как излучение экранов влияет на зрение, прочитатйте статью "Правда или нет? Синий свет экрана вреден".

Я надеюсь, что эта статья сможет помочь таким же, как я — тем людям, которые выбирают телевизор, но не очень-то владеют тонкими техническими вопросами в этой области. Хотел бы поделиться с вами своими размышлениями и практическими выводами по-поводу выбора большого и качественного телевизора.
Последние 3 года я смотрел 42" ЖК-CCFL (это когда изображение формируется поляризованных светом от люминесцентных ламп, пропущенным через светофильтры). В 2009-м году еще не было 3D, а тонкие телевизоры с LED-подсветкой только появлялись и стоили нечестных денег. Куплен он был без особых мук выбора за $1400.
За пару лет созерцания я понял, что мне чего-то не хватает в изображении. Чего — я не мог описать, так как не владел нужными познаниями в этой области. Я точно знал, что хочу бОльшую диагональ и более глубокий черный.

После изучения матчасти я прояснил некоторые моменты.

I Тип формирования изображения.

На сегодняшний день есть 3 типа формирования изображения на современных телевизорах:

1 LCD.

Самый распространенный вид телевизоров. Изображения в таких телевизора получается при помощи поляризованного света, нескольких светофильтров и управляемых жидких кристаллов.

1.1 Типы подсветок LCD-телевизоров.

Так как изображение, которое мы видим на экране LCD-телевизора, получается в результате прохождения поляризованного света от источника подсветки, необходимо обозначить 2 типа подсветки:
a) CCFL, она же — холодный катод. Подвид тонких люминисцентных ламп, располагающихся за матрицей.
Преимущества: равномерность подсветки.
Недостатки: большая толщина, энергопотребление, невозможность локального управления подсветкой.
b) LED — светоизлучающие диоды. В настоящее время практически полностью вытеснили телевизоры с холодным катодом.
Преимущества: возможно сделать очень тонкие телевизоры, низкое энергопотребление, возможность локального управления подсветкой.

Про локальное управление подсветкой и подразделение LED-подсветки нужно сказать пару слов. LED-подсветка разделяется на 2 типа: краевая (она же EDGE-LED, когда светодиоды расположены по краям матрицы, их свет попадает на диффузор и рассеивается) и ковровая (Full HD LED, LED Pro). Так как ЖК-пикселы сами по себе не излучают свет, им необходима подсветка (о чем сказано выше), которая включена всегда. Закрытые кристаллы все равно пропускают свет, поэтому добиться низкого уровня черного (чем ниже — тем лучше) и контрастных переходов в системах с краевой подсветкой невозможно. В телевизорах самого высокого уровня используется ковровая подсветка (когда светодиоды располагаются непосредственно за матрицей). Это позволяет повысить равномерность подсветки и внедрить сегментированное управление подсветкой, когда отдельные диоды, отвечающие за области на экране, могут приглушать яркость в зависимости от сцены на экране. На самом деле, ковровую подсветку имеют это всего 2 серии — 9-я серия Philips и 9-я серия Sony. В 9-й серии LG тоже есть ковровая подсветка, но ее реализация хуже, чем краевая у конкурентных решений.

Неравномерность подсветки.

Из-за того, что светодиоды располагаются с определенной периодичностью (свое влияние вносит рассеивание и много других факторов), практически в 100% случаев LCD телевизоры с LED-подсветкой имеют неравномерность подсветки (clouding) — когда области, которые должны оставаться черными имеют другую градацию серого.
Проблема частично решается сегментированной светодиодной подсветкой.

1.2 Типы матриц LCD-телевизоров с LED-подсветкой.
Не буду вдаваться в подробности формирования изображения разными типами матриц, а вкратце опишу их основные преимущества и недостатки.
a) IPS (сейчас производит только LG). Матрицы, которые, по-моему мнению, идеально подходят для ТВ низкого и среднего уровня.
Преимущества: большие углы обзора.
Недостатки: высокий уровень черного (
2. Плазма.

С этим словом связано очень много мифов и заблуждений. Любой несведущий продавец обязательно скажет вам, что плазма устарела. Это связано с набором стереотипов и проблем, имевших место быть.
Изображение формируется при помощи свечения люминофора под действием УФ-лучей.
Каждая плазменная ячейка является независимым источником света, поэтому телевизор не требует подсветки. Ранее плазменные телевизоры имели очень большую толщину и размер ячейки, поэтому были очень громоздкими и диагонали Full HD начинались с 50—60". Теперь толщина современных плазменных телевизоров не превышает 3—4 см, а диагонали начинаются с 42".

У плазменных телевизоро нет различных типов матриц с маркетинговыми названиями, но есть поколения панелей (самое совершенное — 15-е).

Сейчас плазма почти вытеснена LCD-телевизорами и ее производством занимается всего 3 компании: Panasonic, Samsung и LG (причем, собственные разработки имеют только первые 2). Связано это с убыточностью производства, конкуренцией со стороны ЖК-телевизоров и их популяризацией. Но плазма держит первые позиции в больших диагоналях.

3. OLED.

Органические светодиоды. Что-то среднее, между первыми 2-мя технологиями. Изображение формируется при помощи самоизлучающих диодов, которые светятся под воздействием электрического тока. Как и в плазме, каждая ячейка является самостоятельным источником света. Пока имеются только несколько серийных образцов таких телевизоров по очень высоким ценам. Разработками в этой области занимаются LG и Samsung.

Есть и другие типы телевизоров, например проеционные лазерные телевизоры, но их разработка уже прекращена.

Кратко о преимуществах и недостатках каждой технологии:

LCD:
Преимущества:
— относительно невысокая цена производства, что позволяет производителям получать достаточно высокую прибыль и инвестировать в производство.
— Статический метод формирования изображения (без дизеринга) хорош для отображения изображений и фотографий.
— Отлично подходит для статичного изображения и не боится его.
— LCD-телевизоры имеют высокую яркость и низкое энергопотребление
Недостатки
— Высокий уровень черного (от 0.02 нит в UV²А-матрице с ковровой подсветкой до 0.2 нит в IPS).
— Большое время отклика
— Отсутствие объема и и глубины изображения
— Динамическое разрешение без искусственных ухищрений 300 — 700 линий.

Плазма
Преимущества
— Общая глубина изображения. В целом, при подаче качественного контента, изображение на плазме заметно отличается от такового в LCD: обладает большей глубиной и насыщенностью цветов, имеет ярко выраженный эффект объема.
— Низкий уровень черного (0.008 нит в моделях Panasonic 2012 года).
— Имеют динамическое разрешение без искусственных ухищрений 1080 линий.
— Отлично подходят для динамического изображения (фильмы), хорошо раскрывают высококачественный контент.
— Фактически отсутствует время отклика.
— Свободнейшие углы обзора
Недостатки
— Совершенно не подходят для подключения к компьютеру из-за остаточного изображения
— Хуже показывают фотографии (так как градации получаются при помощи дизеринга)
— Большое энергопотребление, не все модели имеют высокую яркость.
— Высокая цена производства, низкая маржа — производителям все сложнее удержаться на плаву.

OLED
Самая новая технология формирования изображения в телевизорах. Используются самоизлучающие органические светодиоды. Как и плазма, это дисплеи с самоэмиссией света, не требующие подсветки.
Сейчас выпущено всего несколько серийных образцов по цене в десяток раз превосходящей аналогичные LCD и плазменные телевизоры, но LG обещает, что через 3 года OLED-телевизоры аналогичных LCD и плазма-диагоналям будут стоить в 1.5 раза дороже.
Преимущества:
— низкое время отклика и высокий контраст, как и у плазмы, т. к. нет механически поворачивающихся молекул и постоянной подсветки, как в LCD.
— экономичность
— широкие углы обзора.
Недостатки:
— различная деградация пикселов со временем (так же, как у плазмы, что приводит в остаточным изображениям и выгоранию пикселов). Сейчас это пытаются компенсировать программно.
— Низкое время службы: около 10 000 часов (к примеру, у LCD — 60 000 часов, у плазмы — 100 000 тысяч часов).

II Характеристики изображения

Выбирая новый телевизор я пришел к выводу, что некоторые характеристики изображения можно изменить, некоторые нельзя.
Измеряемые характеристики:
— Уровень черного (MLL, Minimum luminescence level) — тот уровень черного, который показывает телевизор при подаче сигнала 0. [нит]
— Яркость — тот уровень яркость, который показывает телевизор, когда на него подается сигнал 255.
Эти 2 характеристики измеряются вместе, когда на телевизор выводится «шахматная доска» (метод ANSI) — чередование черных и белых участков. Вычисляется яркость каждого участка, среднее арифметическое яркостей черных и белых областей.
— Контраст. Разница между средним арифметическим черных и белых областей, когда черные области приняты за единицу.
ANSI-контраст IPS матриц составляет

1000:1, S-PVA — 3500:1, UV²А — 5000:1, плазма — 12000:1.
— Точность цветопередачи (DeltaE, отклонение от эталона). Подается сигнал на входе, измеряется сигнал на выходе. Чем больше отклонение — тем менее точная цветопередача. Считается, что невооруженный глаз неспособен заметить отклонение DeltaE < 3, а нулем обозначается идеальная цветопередача.
— Углы обзора. Чем меньше угол обзора матрицы, тем больше искажается цвет. Наименьшие углы имеют LCD S-PVA матрицы. Наибольшие — плазменные панели.
— Динамическое разрешение. Как известно, практически все телевизоры имеют статическое разрешение 1080 линий (1920x1080 точек), но динамическое разрешение (то, что телевизор показывает, когда на экране происходит движение) часто отличается. Именно для этого в LCD-телевизорах вводится мерцание подсветки, интерполяция кадров и другие ухищрения.

Субъективные характеристики
К таковым можно отнести объемность изображения, которая формируется сочетанием уровня черного и цветонасыщенности, «киношность» изображения, эффект присутствия.

Спасибо за внимание.
Если статья покажется интересной, в следующей части я напишу о выборе диагонали, типах 3D, их практическом различии, об интерполяции изображения и попытаюсь развенчать некоторые мифы.

Если человека «встречают по одежке, а провожают по уму», то телевизор, компьютерный монитор, смартфон и планшет встречают по дисплею. И провожают зачастую тоже. При покупке такого устройства не всегда есть возможность оценить красоту и другие свойства его экрана воочию, ведь многие сделки совершаются через Интернет. Но если вы знаете, что означают 3 буквы, то легко составите представление о дисплее аппарата, даже не видя его.

Что такое AMOLED-дисплеи, OLED-дисплеи, отличия от IPS

Нет, это вовсе не те буквы, что пишут на заборе. И иногда их не 3, а больше. Например, LED, LCD, IPS, TFT, OLED, QLED, AMOLED. Всё это технологии изготовления экранов, которые определяют их характеристики. Поговорим, что такое LED-, AMOLED-, QLED-, OLED-дисплеи и в чем их отличия от IPS, TFT, LCD и т. д.

Сравнить несравнимое

LCD vs LED

LCD, TFT, LED, AMOLED и прочие «леды» – всего лишь сокращенные обозначения, а различий между ними –пропасть. Тем более что некоторые из этих понятий несопоставимы. Так, никто вам не скажет, какой телевизор лучше: LCD или LED, поскольку LCD (Liquid Crystal Display) – это дисплей на жидких кристаллах или просто ЖК, а LED (Light Emitting Diode) – один из видов его подсветки (светодиодный). То есть телевизор может быть LCD и LED одновременно.

Структурная схема LCD-экрана с LED-подсветкой показана на рисунке ниже:

Экран LCD с LED подсветкой.

LED-подсветка, в отличие от устаревшей люминесцентной (CCFL), обеспечивает равномерное распределение света по поверхности экрана и более высокий уровень яркости. Кроме того, она потребляет меньше энергии и дольше служит.

TFT vs LCD

«А как насчет телевизора с экраном TFT? Он лучше LCD или хуже?» Ни то, ни другое, ведь TFT (Thin Film Transistor) – это ЖК-дисплей с активной матрицей, разновидность LCD. Активная матрица – это система управления цветопередачей дисплея, где каждый пиксель регулируется собственной группой тонкопленочных микротранзисторов.

В отличие от пассивной матрицы, где оттенок пикселей регулируется линейно (по строчкам и столбцам), активная в 5-6 раз быстрее реагирует на смену картинки, имеет более высокую яркость, контрастность и углы обзора, а также потребляет меньше энергии.

Жидкокристаллические экраны всех современных TV, мониторов, смартфонов и планшетов имеют активную матрицу, поэтому сравнивать LCD и TFT в отношении этих устройств неуместно.

TFT vs IPS. Свойства и версии IPS

«Но ведь экраны IPS определенно лучше TFT, не зря об этом пишут на форумах!?» И снова те, кто так пишет, не угадали. IPS – это разновидность TFT. Такая же, как TN, PLS, VA, MVA, PVA и прочие. TFT-шками иногда ошибочно называют дисплеи TN (Twisted Nematic), которые действительно не блещут качеством картинки – из всех вариантов TFT у них наихудшая передача цвета, самые малые яркость и контраст и очень ограниченные углы обзора. Зато экраны TN отличаются низкой стоимостью, быстрым откликом и высокой частотой обновления.

Это интересно: Стратегический запас: выбираем лучший power bank 2019 года

Экраны IPS и TN.

IPS (In Plane Switching) – это следующий шаг в развитии технологии активных матриц, который устранил основные недостатки TN. Изменение положения кристаллов и точек подачи напряжения на ячейку привело к тому, что черный цвет стал действительно черным, а при взгляде на экран сбоку цвета остаются такими же, как если смотреть на него спереди. Кроме того, в экранах IPS заметно улучшилась цветопередача и увеличилась общая яркость и контрастность, но скорость отклика в сравнении с TN, наоборот, уменьшилась.

  • К линейке Hitachi и Panasonic относятся: IPS (Super TFT), S-IPS (Super-IPS), AS-IPS (Advanced super-IPS), IPS-Pro (IPS-provectus, IPS alpha, IPS alpha next gen).
  • Разработки NEC носят названия: SFT (Super fine TFT), A-SFT (Advanced SFT), SA-SFT (Super-advanced SFT), UA-SFT (Ultra-advanced SFT).
  • Продукция LG называется: S-IPS (Super-IPS), AS-IPS (Advanced super-IPS), H-IPS (Horizontal IPS), E-IPS (Enhanced IPS), P-IPS (Professional IPS), AH-IPS (Advanced high performance IPS).

Собственную версию IPS, которая получила название PLS (Plane to Line Switching), развивает и компания Samsung.

Матрица светодиодов.

Все разработчики совершенствуют технологию в одних и тех же направлениях. Это уменьшение времени отклика, увеличение контрастности, глубины и естественности цвета, улучшение углов обзора, устранение цветовых искажений, снижение энергопотребления, а главное – удешевление производства матриц. Компьютерные мониторы с экранами IPS последних лет по скорости отклика уже «наступают на пятки» TN и могут использоваться не только для профессиональной графики, но и для динамичных игр.

Большинство пользователей, кроме, пожалуй, профессионалов в области графики и дизайна, не заметят различий картинки на IPS-дисплеях разных марок, но отличия между их бюджетными и топовыми версиями есть и довольно существенные. Наивысшее качество изображения воспроизводят матрицы P-IPS и AH-IPS производства LG. Они же самые дорогие.

VA/MVA/PVA

Матрицы VA, MVA и PVA занимают промежуточное положение между TN и IPS как по качеству изображения, так и по цене. По сравнению с TN они имеют более широкие углы обзора и точнее передают глубину и естественность цвета, по сравнению с IPS они дешевле. Однако экраны этих типов не получили широкого распространения. Их используют в производстве мониторов для ПК и бюджетных серий телевизоров.

Да будет свет

Технология подсветки LCD-экранов LED представлена несколькими видами. Они различаются цветом, расположением светодиодов на ЖК-панели и способом регуляции свечения.

  • Тип подсветки, состоящий только из белых светодиодов, называется WLED. Он относительно прост по своей структуре, но имеет ограниченный цветовой охват.
  • Подсветка RGB LED, построенная на красных, зеленых и синих светодиодах, охватывает больший диапазон цветов, нежели WLED, но склонна к деградации (диоды разных цветов выгорают с различной скоростью), тяжеловесна и обременительна по цене.
  • GB-R LED – следующий шаг в развитии LCD, где вместо белого светодиода используется объединенный зеленый + синий, покрытый красным люминофором (самосветящимся пигментом). Такое решение позволило охватить 99% палитры RGB и избавиться от недостатков RGB LED. Технология GB-R LED используется в матрицах AH-IPS и PLS.
  • RB-G LED – вариация подсветки предыдущего типа. Вместо сине-зеленых светодиодов здесь стоят красно-синие, покрытые зеленым люминофором.
Это интересно: Лучшие SSD конца 2018 - начала 2019 года

Матрица белых светодиодов.

На основе WLED разработан еще один стандарт LCD-дисплеев – QDEF, где вместо белых диодов используется синие, а красный и зеленый цвета образует покрытие из квантовых точек (кристаллов, светящихся под действием электричества), нанесенное на лист пластика. QDEF-дисплеи воспроизводят до 60% оттенков, различимых человеческим глазом, что в разы выше, чем позволяет добиться WLED. А по затратам энергии и цене экраны WLED и QDEF примерно равнозначны.

QDEF также является одной из версий технологии QLED (Quantum-dot Light Emitting Diode), которая основана на квантово-точечных светодиодах.

По расположению светоизлучающих элементов на ЖК-панели различают следующие виды LED-подсветки:

  • Edge LED – светодиоды расположены линейно по периметру экрана. Это экономично, однако не позволяет добиться равномерности освещения и приемлемого уровня контрастности.
  • Direct LED – массив светодиодов распределен по всей площади дисплея. Такая технология дает более реалистичную картинку, но панели этого типа потребляют много энергии и имеют значительную толщину, что затрудняет их установку на сверхтонкие телевизоры.
  • Боковая подсветка – диоды расположены только по краям экрана, а освещение обеспечивают подключенные к ним световоды. Этот тип подсветки считается оптимальным, так как дает равномерность, сопоставимую с Direct LED, и при этом лишен его недостатков.

Каждый из трех типов подсветки делятся еще на 2 – с поддержкой локального затемнения (Local Dimming) и динамической контрастности (DCR) либо без поддержки. Изображение экранов с Local Dimming и DCR выглядит реалистичнее.

OLED и AMOLED

Понятие OLED хоть и созвучно с LED, но не имеет с ним практически ничего общего. OLED (Organic Light Emitting Diode) – это технология изготовления дисплеев, основанная на свойствах органических полупроводников – элементов, способных излучать свет под действием тока. Каждый субпиксель OLED-экрана – это отдельный органический светодиод. В отличие от ЖК, панели OLED не нуждаются в подсветке, поскольку светятся каждой своей точкой.

Другие свойства и особенности OLED-дисплеев в сравнении с LED:

  • Малая толщина и вес за счет уменьшения количества слоев.

LCD vs OLED.

  • Неограниченные углы обзора.
  • Равномерное освещение.
  • Минимальное время отклика.
  • Гибкость.
  • Значительно большие яркость, контрастность и насыщенность цветов.
  • Низкая чувствительность к внешним температурам, но высокая к влаге.
  • Короткий срок службы и склонность к деградации: диоды синего цвета выгорают в 3 раза быстрее, чем красного и почти в 10 раз быстрее, чем зеленого.
  • Зависимость исчерпания ресурса от яркости экрана – чем она выше, тем быстрее наступает выцветание.
  • Чувствительность к механическим повреждениям. Незначительный дефект приводит к полному выходу экрана из строя.
  • Мерцание за счет применения ШИМ (широтно-импульсной модуляции) для управления яркостью. Экраны OLED используют ШИМ опционально.
  • Высокая стоимость.
Это интересно: Сравнение Apple TV и Google Chromecast

AMOLED (Active Matrix Organic Light Emitting Diode) – это активная матрица на органических светодиодах, сочетание технологий TFT и OLED, где последняя применяется в качестве подсветки. Соответственно, экраны AMOLED обладают свойствами того и другого.

Технология AMOLED нашла широкое применение в производстве сенсорных дисплеев для мобильных устройств. И не только она, но и ветви ее развития – Super AMOLED и Super AMOLED плюс.

Отличие просто AMOLED от Super – заключается в отсутствии у второго воздушной прослойки между поверхностями тачскрина и матрицы, что увеличивает четкость картинки. А от Super AMOLED плюс – в количестве и расположении субпикселей (цветных составляющих пикселя). В последнем их на 50% больше и они размещены плотнее.

AMOLED vs IPS

Закономерно возникает вопрос: какой дисплей лучше – AMOLED или IPS? Вы уже знаете, что представляет собой тот и другой, поэтому давайте для наглядности сопоставим их характеристики в таблице.

IPS

AMOLED

Очевидно, что обе технологии имеют как достоинства, так и недостатки. Назвать одну из них явным лидером затруднительно, тем более что перспективы развития и совершенствования есть у той и другой. Как они покажут себя в дальнейшем, поживем и увидим. А пока выбирайте то, к чему больше лежит душа – останетесь в выигрыше в любом случае.


Технология не нова: экраны OLED состоят из излучающих свет органических диодов и уже несколько лет используются в смартфонах, планшетах и телевизорах. Исключением были ноутбуки, прежде всего из-за стоимости такого экрана.

Почему OLED?

Прежде чем вдаваться в детали, давайте поговорим об OLED технологии в целом. В то время, как обычные LCD экраны фактически являются фильтрами, которые пропускают через себя свет подсветки и регулируют интенсивность и цвет, OLED пиксели сами являются источниками света. У такого подхода есть несколько преимуществ:

  • Черные области экрана не светятся
  • Чем темнее становится экран, тем меньше энергии он потребляет
  • Углы обзора безупречны
  • Очень широкая цветовая палитра
  • Короткое время отклика
  • Отсутствие подсветки делает экраны намного тоньше
  • Максимальная яркость ограничена
  • Высокая стоимость производства
  • Возможны случаи выгорания пикселей экрана
  • Данные экраны не долговечны

В этой статье мы постараемся выяснить, каким образом экраны OLED в ноутбуках подвержены данным недостаткам.

Яркость и ее распределение

Как мы упомянули ранее, подсветка LCD экрана всегда горит с постоянной яркостью (технологии затемнения в телевизорах это исключение). Зона с белым цветом всегда абсолютно яркая и не важно, вся ли это картинка или только маленькая область экрана.

OLED дисплеи отличаются: для получения белого экрана все пиксели должны светиться максимально ярко белым светом, при этом очень сильно увеличивается энергопотребление. Чтобы увеличить срок службы экрана и снизить его энергопотребление, производители ограничивают яркость таких экранов.


ThinkPad X1 Yoga ведет себя в похожей манере: в то время, как IPS матрица (LG LP140QH1) обладает постоянной яркостью в 250 кд/м2, OLED версия экрана (Samsung ATNA40JU01) меняет яркость от 198 до 305 кд/м2. Пиковую яркость мы зафиксировали, измерив яркость одного белого пикселя, который находился на черном фоне. С большей белой областью экран показал другие результаты. Во время работы в Word или веб-серфинга яркость изменялась от 240 до 260 кд/м2. Стандартный тест в программе i1Profiler (40% белого) показал фиксированную яркость в 277 кд/м2.

Мы можем рассеять все опасения, экран меняет яркость настолько быстро и плавно, что это остается незаметным для человеческого глаза.

OLED Display

IPS Display

PWM и время отклика

Для того, чтобы пиксели в экране OLED никогда не достигали своего теоретического максимума яркости, ими нужно управлять через PWM. Управление происходит при частоте 240 Гц. Субъективно, мы не заметили никаких мерцаний на экране. У некоторых чувствительных людей возникают головные боли при работе за ноутбуками со стандартными LCD дисплеями, которые тоже используют PWM.

Мерцание экрана / PWM (широтно-импульсная модуляция)

Чтобы затемнить экран, некоторые ноутбуки циклически включают и выключают подсветку – это и есть метод, который называется PWM (широтно-импульсная модуляция). Частота «мерцания» в идеальном случае должна быть незаметна для человеческого глаза. Как мы уже сказали ранее, если частота слишком низкая, то у некоторых пользователей может заболеть голова.

Экран мерцает с частотой 240 Гц. Мерцание было зафиксировано и при 100% яркости. Это неправильно, при максимальной яркости мерцание должно пропадать.

Частота в 240 Гц слишком низкая, чтобы чувствительный пользователь ее не заметил.

Для сравнения: 56% протестированных нами устройств вовсе не использовали PWM, а те, которые делали этого, использовали частоту в 500 Гц.

Время отклика OLED панели находится в пределах нескольких микросекунд, поэтому она намного быстрее LCD. По этой причине ThinkPad X1 Yoga мог бы быть отличным игровым ноутбуком, но для этого явно недостаточно встроенной графики HD Graphics 520. Среди всех производителей, только Dell Alienware 13 R2 заявил о выпуске игрового ноутбука с экраном OLED.

Поскольку отклик черного/белого/серого цветов OLED панели слишком короткий, наши инструменты не смогли его зафиксировать.

Время отклика дисплея

Время отклика экрана показывает насколько быстро экран способен сменять один цвет на другой. Плохое время отклика может привести к эффекту размытия движущихся объектов. Особое внимание данному параметру уделяют игроки в 3D шутеры.

Экран показывает феноменально быстрое время отклика в наших тестах. Для сравнения, все протестированные нами устройства показывали время отклика от 0.9 до 172 мс.

Контраст и углы обзора

IPS панели последних поколений способны светиться на уровне одного к нескольким тысячам от максимальной яркости. Обладая яркостью в 300 кд/м2, панель покажет черный цвет с яркостью в 0.3 кд/м2. Производители OLED дисплеев заявляют контраст 20000:1, что означает яркость черного цвета в 0.00015 кд/м2 – слишком маленький показатель, чтобы его заметить и подтвердить глазами.

Попользовавшись OLED экраном какое-то время, можно с точностью сказать, что он показывает намного более насыщенные цвета, чем панель IPS. В темном помещении разница становится огромной и ее невозможно не заметить. IPS экраны показывают черный цвет как слабонасыщенный серый цвет, а OLED показывают настоящий черный цвет. При просмотре фильмов, особенно таких как Стар Трэк, Интерстэллар или Гравитация, появляется ощущение, что фильм смотрится намного лучше на 14-дюймовом экране ноутбука, чем на телевизоре, в несколько раз большем по диагонали.




При оценке углов обзора становится очевидным еще одно преимущество технологии OLED. В целом, IPS панели имеют хорошие углы обзора и стабильную цветопередачу при взгляде со стороны, но при этом непременно теряется яркость и контраст. Картинка на OLED экранах выглядит одинаково при любом угле обзора. При взгляде с 45 градусов OLED экран в два раза ярче, чем IPS экран.




Отображение цветов

Очень редко можно увидеть такие насыщенные цвета, палитра превосходит стандарт AdobeRGB.

Высокая цветовая насыщенность может быть важной при рассмотрении цветового пространства sRGB. Lenovo поставляет несколько цветовых профилей, которые могут быть выбраны на рабочем столе. В дополнение к режиму “Native”, имеются режимы “Standard” (цветовое пространство sRGB) и “PhotoPro” (эквивалент палитре AdobeRGB). Цветовая температура немного низкая, показатель среднего отклонения Delta-E равен 3.1 (ColorChecker sRGB) и 3.8 (ColorChecker AbobeRGB).

К сожалению, нам не удалось улучшить результат с помощью калибровки экрана. Все профили, которые мы создали в процессе настройки, оказались хуже предложенных Lenovo.

OLED display (profile "Standard", vs. sRGB)





OLED display (profile "Photo Pro", vs. AdobeRGB)






IPS display (as shipped, vs. sRGB)





IPS display (calibrated, vs. sRGB)






Энергопотребление и эффективность

Чтобы определить энергопотребление и эффективность обоих экранов, мы брали разницу между общим потреблением ноутбука и его потреблением с выключенным экраном.

Панель IPS показала практически линейную корреляцию между потребляемой мощностью и яркостью. При 2 кд/м2 мы определили потребление в 1.5 Вт, при 150 кд/м2 потребление составило 3.9 Вт и при 240 кд/м2 около 5.2 Вт.

При тестировании OLED дисплея мы получили немного большее минимальное потребление в 1.9 Вт. При минимальном количестве белых точек и повышении яркости до 300 кд/м2 потребление практически не менялось. Полностью белый фон при 198 кд/м2 привел к потреблению в целых 8.7 Вт.

Во время пользования интернетом или при работе с текстом около 50 -70% экрана остаются белыми. Это важно учитывать, потому что в таком режиме OLED экран будет потреблять намного больше, чем IPS и сильно сократит время автономной работы ноутбука. При просмотре фильмов OLED экран будет эффективнее или не хуже, чем IPS экран.





Выгорание и возраст

Статические элементы, например панель задач, очень часто встречаются в операционной системе Windows, поэтому выгорание может иметь место. Во время написания статьи мы не столкнулись с этой проблемой. Остается надеяться, что экран будет таким же ярким и качественным через несколько лет использования.

Еще одна потенциальная проблема для экранов OLED это старение пикселей, которое происходит для каждого из базовых цветов (красный, синий и зеленый). Samsung и другие производители стараются предотвратить данную проблему изменением размеров субпикселей. Обычно синие субпиксели самый крупные, это можно увидеть на фотографии с микроскопа. Что нельзя обойти, так это постепенное снижение яркости экрана. OLED дисплей теряет порядка 30-50% яркости после 20000 часов работы. Для нашего ноутбука, который использовался по 8 часов в день, срок службы экрана составит 7 лет.



Вердикт

Экраны для ноутбуков, сделанные по технологии OLED, это сильный скачок в сторону качества изображения. OLED дисплей окажется лучше, насыщеннее и контрастнее любой TN или IPS матрицы. У него отличный черный цвет и богатая цветовая палитра. В данный момент этот экран показывает лучшее качество на рынке.

Преимущества OLED дисплея на этом не заканчиваются: у матрицы очень быстрое время отклика и технология еще найдет себя в игровой индустрии и профессиональных мониторах для работы с графикой.

Читайте также: