Набор микросхем предназначенных для временного хранения данных когда компьютер включен

Обновлено: 06.07.2024

Базовая аппаратная конфигурация персонального компьютера.

Персональный компьютер — универсальная техническая система. Его конфигурацию (состав оборудования) можно гибко изменять по мере необходимости. Тем не менее, существует понятие базовой конфигурации .

С истемный блок Монитор Клавиатура Мышь Внутреннее устройство системного блока Содержание:

Системный блок Системный блок представляет собой основной узел , внутри которого установлены наиболее важные компоненты . Устройства , находящиеся внутри системного блока, называют внутренними , а устройства, подключаемые к нему снаружи, называют внешними . Внешние дополнительные устройства , предназначенные для ввода, вывода и длительного хранения данных, также называют периферийными .

Монитор Монитор - устройство для визуального воспроизведения символьной и графической информации. Служит в качестве устройства вывода. В настольных компьютерах обычно используются мониторы на электронно-лучевой трубке (ЭЛТ) или плоские мониторы на жидких кристаллах (ЖК).

Клавиатура Клавиатура — клавишное устройство управления персональным компьютером. Служит для ввода алфавитно-цифровых ( знаковых) данных, а также команд управления. Комбинация монитора и клавиатуры обеспечивает простейший интерфейс пользователя . С помощью клавиатуры управляют компьютерной системой , а с помощью монитора получают от нее отклик.

Мышь Мышь — устройство управления манипуляторного типа . Представляет собой плоскую коробочку с двумя-тремя кнопками . Перемещение мыши по плоской поверхности синхронизировано с перемещением графического объекта ( указателя мыши) на экране монитора.

Внутреннее устройства системного блока : Материнская плата Жесткий диск Дисковод гибких дисков Дисковод компакт-дисков C D - ROM Видеокарта ( видеоадаптер) Звуковая карта

Материнская плата Материнская плата — основная плата персонального компьютера . На ней размещаются: процессор — основная микросхема , выполняющая большинство математических и логических (АЛУ, принцип Фон Неймана) операций; микропроцессорный комплект (чипсет) — набор микросхем, управляющих работой внутренних устройств компьютера и определяющих основные функциональные возможности материнской платы; шины — наборы проводников, по которым происходит обмен сигналами между внутренними устройствами компьютера; оперативная память (оперативное запоминающее устройство, ОЗУ) — набор микросхем, предназначенных для временного хранения данных, когда компьютер включен; ПЗУ (постоянное запоминающее устройство) — микросхема, предназначенная для длительного хранения данных, в том числе и когда компьютер выключен; разъемы для подключения дополнительных устройств (слоты).

Жесткий диск Жесткий диск — основное устройство для долговременного хранения больших объемов данных и программ. На самом деле это не один диск, а группа соосных дисков, имеющих магнитное покрытие и вращающихся с высокой скоростью. Управление работой жесткого диска выполняет специальное аппаратно - логическое устройство — контроллер жесткого диска . К основным параметрам жестких дисков относятся емкость и производительность . Емкость дисков зависит от технологии их изготовления. В настоящее время большинство производителей жестких дисков используют изобретенную компанией IBM технологию с использованием гигантского магниторезистивного эффекта (GMR — Giant Magnetic Resistance ).

Дисковод гибких дисков С 2012 года выпуск прекращён в связи с неэффективностью использования. Для оперативного переноса небольших объемов информации используют гибкие магнитные диски ( дискеты), которые вставляют в специальный накопитель — дисковод. Основными параметрами гибких дисков являются: технологический размер (измеряется в дюймах), плотность записи (измеряется в кратных единицах) и полная емкость. Первый компьютер IBM PC (родоначальник платформы) был вылущен в 1981 году .

Дисковод компакт-дисков CD-ROM Принцип действия: считывании числовых данных с помощью лазерного луча, отражающегося от поверхности диска. Цифровая запись на компакт-диске отличается от записи на магнитных дисках очень высокой плотностью, и стандартный компакт-диск может хранить примерно 650Мбайт данных. Большие объемы данных характерны для мультимедийной информации (графика, музыка, видео), поэтому дисководы CD-ROM относятся к аппаратным средствам мультимедиа. Программные продукты , распространяемые на лазерных дисках, называют мультимедийными изданиями . Основным недостатком стандартных дисководов CD-ROM является невозможность записи данных, но параллельно с ними существуют и устройства однократной записи CD-ROM( Compact Disk Recorder ), и устройства многократной записи CD-RW . Основным параметром дисководов CD-ROM является скорость чтения данных. Она измеряется в кратных долях. За единицу измерения принята скорость чтения в первых серийных образцах, составлявшая 150Кбайт/с.

Видеокарта (видеоадаптер) Совместно с монитором видеокарта образует видеоподсистему персонального компьютера . Видеокарта не всегда была компонентом ПК . Ранее в общей области оперативной памяти существовала небольшая выделенная экранная область памяти, в которую процессор заносил данные об и зображении . С переходом от черно-белых мониторов к цветным и с увеличением разрешения экрана (количества точек по вертикали и горизонтали ) области видеопамяти стало недостаточно для хранения графических данных , а процессор перестал справляться с построением и обновлением изображения . Тогда и произошло выделение всех операций, связанных с управлением экраном, в отдельный блок, получивший название видеоадаптер. Физически видеоадаптер выполнен в виде отдельной дочерней платы, которая вставляется в один из слотов материнской платы и называется видеокартой . Видеоадаптер взял на себя функции видеоконтроллера , видеопроцессора и видеопамяти.

Звуковая карта Она подключается к одному из слотов материнской платы в виде дочерней карты и выполняет вычислительные операции, связанные с обработкой звука, речи, музыки. Основным параметром звуковой карты является разрядность , определяющая количество битов, используемых при преобразовании сигналов из аналоговой в цифровую форму и наоборот. Чем выше разрядность , тем меньше погрешность, связанная с оцифровкой, тем выше качество звучания.

Шины - Адресная шина К ней и подключается процессор для копирования данных из ячейки в один из своих регистров . - Шина данных По этой шине происходит копирование данных из оперативной памяти в регистры процессора и обратно. - Шина команд Для того чтобы процессор мог обрабатывать данные, ему нужны команды. Эти команды поступают в процессор тоже из оперативной памяти, но не из тех областей, где хранятся массивы данных, а оттуда, где хранятся программы. - Микросхема ПЗУ и система Bios Программы, находящиеся в ПЗУ, называют «зашитыми» — их записывают туда на этапе изготовления микросхемы. Комплект программ, находящихся в ПЗУ, образует базовую систему ввода-вывода.

3.2. Внутренние устройства системного блока

3.2.1. Материнская плата

Материнская плата — основная плата персонального компьютера. На ней размещаются:

Внешний вид типовой материнской платы для процессора Pentium показан на рис. 3.4. Устройства, входящие в состав материнской платы, рассматриваются отдельно в разделе 3.3.

3.2.2. Жесткий диск

Жесткий диск — основное устройство для долговременного хранения больших объемов данных и программ. На самом деле это не один диск, а группа соосных дисков, имеющих магнитное покрытие и вращающихся с высокой скоростью. Таким образом, этот “диск” имеет не две поверхности, как должно быть у обычного плоского диска, а 2n поверхностей, где n — число отдельных дисков в группе.

Над каждой поверхностью располагается головка, предназначенная для чтения-записи данных. При высоких скоростях вращения дисков (90 об/с) в зазоре между головкой и поверхностью образуется аэродинамическая подушка, и головка парит над магнитной поверхностью на высоте, составляющей несколько тысячных долей миллиметра. При изменении силы тока, протекающего через головку, происходит изменение напряженности динамического магнитного поля в зазоре, что вызывает изменения в стационарном магнитном поле ферромагнитных частиц, образующих покрытие диска. Так осуществляется запись данных на магнитный диск.


Рис. 3.4. Типовая материнская плата

Операция считывания происходит в обратном порядке. Намагниченные частицы покрытия, проносящиеся на высокой скорости вблизи головки, наводят в ней ЭДС самоиндукции. Электромагнитные сигналы, возникающие при этом, усиливаются и передаются на обработку.

Управление работой жесткого диска выполняет специальное аппаратно-логическое устройство — контроллер жесткого диска. В прошлом оно представляло собой отдельную дочернюю плату, которую подключали к одному из свободных слотов материнской платы. В настоящее время функции контроллеров дисков выполняют микросхемы, входящие в микропроцессорный комплект (чипсет), хотя некоторые виды высокопроизводительных контроллеров жестких дисков по-прежнему поставляются на отдельной плате.

К основным параметрам жестких дисков относятся емкость и производительность. Емкость дисков зависит от технологии их изготовления. В настоящее время большинство производителей жестких дисков используют изобретенную компанией IBM технологию с использованием гигантского магниторезистивного эффекта (GMR — Giant Magnetic Resistance). Теоретический предел емкости одной пластины, исполненной по этой технологии, составляет порядка 20 Гбайт. В настоящее время достигнут технологический уровень 6,4 Гбайт на пластину, но развитие продолжается.

С другой стороны, производительность жестких дисков меньше зависит от технологии их изготовления. Сегодня все жесткие диски имеют очень высокий показатель скорости внутренней передачи данных (до 30-60 Мбайт/с), и потому их производительность в первую очередь зависит от характеристик интерфейса, с помощью которого они связаны с материнской платой. В зависимости от типа интерфейса разброс значений может быть очень большим: от нескольких Мбайт/с до 13-16 Мбайт/с для интерфейсов типа IDE; до 80 Мбайт/с для интерфейсов типа SCSI и от 50 Мбайт/с и более для наиболее современных интерфейсов типа IЕЕЕ 1394.

Кроме скорости передачи данных с производительностью диска напрямую связан параметр среднего времени доступа. Он определяет интервал времени, необходимый для поиска нужных данных, и зависит от скорости вращения диска. Для дисков, вращающихся с частотой 5400 об/мин, среднее время доступа составляет 9-10 мкс, для дисков с частотой 7200 об/мин — 7-8 мкс. Изделия более высокого уровня обеспечивают среднее время доступа к данным 5-6 мкс.

3.2.3. Дисковод гибких дисков

Информация на жестком диске может храниться годами, однако иногда требуется ее перенос с одного компьютера на другой. Несмотря на свое название, жесткий диск является весьма хрупким прибором, чувствительным к перегрузкам, ударам и толчкам. Теоретически, переносить информацию с одного рабочего места на другое путем переноса жесткого диска возможно, и в некоторых случаях так и поступают, но все-таки этот прием считается нетехнологичным, поскольку требует особой аккуратности и определенной квалификации.

Для оперативного переноса небольших объемов информации используют так называемые гибкие магнитные диски (дискеты), которые вставляют в специальный накопитель — дисковод. Приемное отверстие накопителя находится на лицевой панели системного блока. Правильное направление подачи гибкого диска отмечено стрелкой на его пластиковом кожухе.

Основными параметрами гибких дисков являются: технологический размер (измеряется в дюймах), плотность записи (измеряется в кратных единицах) и полная емкость.

В настоящее время в компьютерах используются гибкие диски размером 3,5 дюйма. Они имеют емкость 1440 Кбайт (1,4 Мбайт) и маркируются буквами HD (high density — высокая плотность).

С нижней стороны гибкий диск имеет центральную втулку, которая захватывается шпинделем дисковода и приводится во вращение. Магнитная поверхность прикрыта сдвигающейся шторкой для защиты от влаги, грязи и пыли. Если на гибком диске записаны ценные данные, его можно защитить от стирания и перезаписи, сдвинув защитную задвижку так, чтобы образовалось открытое отверстие. Для разрешения записи задвижку перемещают в обратную сторону и перекрывают отверстие. В некоторых случаях для безусловной защиты информации на диске задвижку выламывают физически, но и в этом случае разрешить запись на диск можно, если, например, заклеить образовавшееся отверстие тонкой полоской липкой ленты.

Гибкие диски считаются малонадежными носителями информации. Пыль, грязь, влага, температурные перепады и внешние электромагнитные поля очень часто становятся причиной частичной или полной утраты данных, хранившихся на гибком диске. Поэтому использовать гибкие диски в качестве основного средства хранения информации недопустимо. Их используют только для транспортировки информации или в качестве дополнительного (резервного) средства хранения.

3.2.4. Дисковод компакт-дисков CD-ROM

Аббревиатура CD-ROM (Compact Disc Read-Only Memory) переводится на русский язык как постоянное запоминающее устройство на основе компакт-диска. Принцип действия этого устройства состоит в считывании числовых данных с помощью лазерного луча, отражающегося от поверхности диска. Цифровая запись на компакт-диске отличается от записи на магнитных дисках очень высокой плотностью, и стандартный компакт-диск может хранить примерно 650 Мбайт данных.

Большие объемы данных характерны для мультимедийной информации (графика, музыка, видео), поэтому дисководы CD-ROM относят к аппаратным средствам мультимедиа. Программные продукты, распространяемые на лазерных дисках, называют мультимедийными изданиями. Сегодня мультимедийные издания завоевывают все более прочное место среди других традиционных видов изданий. Так, например, существуют книги, альбомы, энциклопедии и даже периодические издания (электронные журналы), выпускаемые на CD-ROM.

Основным недостатком стандартных дисководов CD-ROM является невозможность записи данных, но на рынке периферийных устройств существуют и устройства однократной записи CD-R (Compact Disc Recorder), и устройства многократной записи CD-RW.

Основным параметром дисководов CD-ROM является скорость чтения данных. Она измеряется в кратных долях. За единицу измерения принята скорость чтения в первых серийных образцах, составлявшая 150 Кбайт/с. Таким образом, дисковод с удвоенной скоростью чтения обеспечивает производительность 300 Кбайт/с, с учетверенной скоростью — 600 Кбайт/с и т. д. В настоящее время наибольшее распространение имеют устройства чтения CD-ROM с производительностью 32х-48х. Современные образцы устройств однократной записи имеют производительность 4х-8х, а устройств многократной записи — до 4х.

3.2.5. Видеокарта (видеоадаптер)

Совместно с монитором видеокарта образует видеоподсистему персонального компьютера. Видеокарта не всегда была компонентом ПК. На заре развития персональной вычислительной техники в общей области оперативной памяти существовала небольшая выделенная экранная область памяти, в которую процессор заносил данные об изображении. Специальный контроллер экрана считывал данные об яркости отдельных точек экрана из ячеек памяти этой области и в соответствии с ними управлял разверткой горизонтального луча электронной пушки монитора.

С переходом от черно-белых мониторов к цветным и с увеличением разрешения экрана (количества точек по вертикали и горизонтали) области видеопамяти стало недостаточно для хранения графических данных, а процессор перестал справляться с построением и обновлением изображения. Тогда и произошло выделение всех операций, связанных с управлением экраном, в отдельный блок, получивший название видеоадаптер. Физически видеоадаптер выполнен в виде отдельной дочерней платы, которая вставляется в один из слотов материнской платы и называется видеокартой. Видеоадаптер взял на себя функции видеоконтроллера, видеопроцессора и видеопамяти.

За время существования персональных компьютеров сменилось несколько стандартов видеоадаптеров: MDA (монохромный), CGA (4 цвета); EGA (16 цветов); VGA (256 цветов). В настоящее время применяются видеоадаптеры SVGA, обеспечивающие по выбору воспроизведение до 16,7 миллионов цветов с возможностью произвольного выбора разрешения экрана из стандартного ряда значений (640х480, 800х600, 1024х768, 1152х864; 1280х1024 точек и далее).

Разрешение экрана является одним из важнейших параметров видеоподсистемы. Чем оно выше, тем больше информации можно отобразить на экране, но тем меньше размер каждой отдельной точки и, тем самым, тем меньше видимый размер элементов изображения. Использование завышенного разрешения на мониторе малого размера приводит к тому, что элементы изображения становятся неразборчивыми и работа с документами и программами вызывает утомление органов зрения. Использование заниженного разрешения приводит к тому, что элементы изображения становятся крупными, но на экране их располагается очень мало. Если программа имеет сложную систему управления и большое число экранных элементов, они не полностью помещаются на экране. Это приводит к снижению производительности труда и неэффективной работе.

Таким образом, для каждого размера монитора существует свое оптимальное разрешение экрана, которое должен обеспечивать видеоадаптер (табл. 3.1).

Таблица 3.1. Разрешение экрана монитора

Большинство современных прикладных и развлекательных программ рассчитаны на работу с разрешением экрана 800х600 и более. Именно поэтому сегодня наиболее популярный размер мониторов составляет 15 дюймов.

Цветовое разрешение (глубина цвета) определяет количество различных оттенков, которые может принимать отдельная точка экрана. Максимально возможное цветовое разрешение зависит от свойств видеоадаптера и, в первую очередь, от количества установленной на нем видеопамяти. Кроме того, оно зависит и от установленного разрешения экрана. При высоком разрешении экрана на каждую точку изображения приходится отводить меньше места в видеопамяти, так что информация о цветах вынужденно оказывается более ограниченной.

В зависимости от заданного экранного разрешения и глубины цвета необходимый объем видеопамяти можно определить по следующей формуле:

где Р — необходимый объем памяти видеоадаптера;
m — горизонтальное sразрешение экрана (точек);
n — вертикальное разрешение экрана (точек);
b — разрядность кодирования цвета (бит).

Минимальное требование по глубине цвета на сегодняшний день — 256 цветов, хотя большинство программ требуют не менее 65 тыс. цветов (режим High Color). Наиболее комфортная работа достигается при глубине цвета 16,7 млн цветов (режим True Color).

Работа в полноцветном режиме True Color с высоким экранным разрешением требует значительных размеров видеопамяти. Современные видеоадаптеры способны также выполнять функции обработки изображения, снижая нагрузку на центральный процессор ценой дополнительных затрат видеопамяти. Еще недавно типовыми считались видеоадаптеры с объемом памяти 2-4 Мбайт, но уже сегодня обычным считается объем 16 Мбайт.

Видеоускорение — одно из свойств видеоадаптера, которое заключается в том, что часть операций по построению изображений может происходить без выполнения математических вычислений в основном процессоре компьютера, а чисто аппаратным путем — преобразованием данных в микросхемах видеоускорителя. Видеоускорители могут входить в состав видеоадаптера (в таких случаях говорят о том, что видеокарта обладает функциями аппаратного ускорения), но могут поставляться в виде отдельной платы, устанавливаемой на материнской плате и подключаемой к видеоадаптеру.

Различают два типа видеоускорителей — ускорители плоской (2D) и трехмерной (3D) графики. Первые наиболее эффективны для работы с прикладными программами (обычно офисного применения) и оптимизированы для операционной системы Windows, а вторые ориентированы на работу мультимедийных развлекательных программ, в первую очередь компьютерных игр и профессиональных программ обработки трехмерной графики. Обычно в этих случаях используют разные математические принципы автоматизации графических операций, но существуют ускорители, обладающие функциями и двумерного, и трехмерного ускорения.

3.2.6. Звуковая карта

Основным параметром звуковой карты является разрядность, определяющая количество битов, используемых при преобразовании сигналов из аналоговой в цифровую форму и наоборот. Чем выше разрядность, тем меньше погрешность, связанная с оцифровкой, тем выше качество звучания. Минимальным требованием сегодняшнего дня являются 16 разрядов, а наибольшее распространение имеют 32-разрядные и 64-разрядные устройства.

В области воспроизведения звука наиболее сложно обстоит дело со стандартизацией. Отсутствие единых централизованных стандартов привело к тому, что ряд фирм, занимающихся выпуском звукового оборудования, де-факто ввели в широкое использование свои внутрифирменные стандарты. Так, например, во многих случаях стандартными считают устройства, совместимые с устройством Sound Blaster, торговая марка на которое принадлежит компании Creative Labs.

Материнская плата – основная плата компьютера, обычно самая большая по размеру. На ней размещаются:

процессор — основная микросхема, выполняющая большинство математических и логических операций;

микропроцессорный комплект (чипсет) — набор микросхем, управляющих работой внутренних устройств компьютера и определяющих основные функциональные возможности материнской платы;

шины — наборы проводников, по которым происходит обмен сигналами между внутренними устройствами компьютера;

оперативная память (оперативное запоминающее устройство, ОЗУ) — набор микросхем, предназначенных для временного хранения данных, когда компьютер включен;

ПЗУ (постоянное запоминающее устройство) — микросхема, предназначенная для длительного хранения данных, в том числе и когда компьютер выключен;

разъемы (слоты) для подключения дополнительных устройств – дочерних плат.

Существуют материнские платы самых разных форматов (AT, ATX, LPX,NLX, Mini-, Micro-ATX, Micro-NLX, Flex-ATX). Основные характеристики материнских плат:

• тип используемого процессора (зависит от разъема для установки процессора);

• число и тип разъемов для установки дочерних плат;

• возможность обновления BIOS.

Чипсет – это набор микросхем, необходимых для взаимодействия процессора со всем остальным электронным хозяйством. Первые чипсеты обычно состояли из четырех микросхем. Сегодня в основном чипсеты состоят из двух микросхем, одна из которых называется южным мостом, а другая – северным. Если взглянуть на материнскую плату, то без труда можно найти эту пару – это самые крупные микросхемы после процессора. По их маркировке можно определить производителя и марку чипсета.

От модели чипсета зависят все основные характеристики платы: поддерживаемые процессоры и виды микросхем памяти, тип системной шипы, порты для подключения внешних устройств. Современные чипсеты имеют множество встроенных контроллеров (дисков, портов ввода-вывода, шин USB и IEEE 1394).

Знать производителя и марку чипсета не менее важно, чем производителя и марку процессора, поскольку функциональные возможности компьютера определяет чипсет, а от процессора лишь зависит скорость, с которой эти функции выполняются. Чипсет материнской платы должен быть согласован с процессором. Это значит, что не всякому процессору подойдет любая материнская плата и наоборот.

От чипсета прежде всего зависят частоты, на которых она может работать. От него зависит и возможный объем оперативной памяти, и количество дополнительных устройств, которые можно подключить к материнской плате.

Как видите, в материнских платах очень многое зависит чипсета. Он выполняет множество функций, причем с каждым годом их становится все больше. Несколько лет назад в компьютерах можно было найти дочернюю плату дискового контроллера – к ней подключались все дисководы. Сегодня такой платы уже нет. Функции этого контроллера отошли к «северному мосту» чипсета, и все дисководы подключаются к материнской плате напрямую. То же самое произошло со специальной платой, к которой подключали принтер. Сегодня все порты для подключения внешних устройств входят в состав материнской платы.

Чипсеты развиваются, и интеграция продолжается. Сегодня все чаще встречаются материнские платы, чипсеты которых способны выполнять функции видеокарты и/или звуковой карты. Принимая решение о покупке компьютера с интегрированными звуком и видео, оцените свои планы и перспективы. Если вы стремитесь получить функциональную систему за минимальную цену, это решение для вас. Если же вы хотите сохранить перспективы дальнейшего развития, затратив дополнительно 30-50 условных единиц, от приобретения интегрированных систем лучше воздержаться. Дополнительные затраты окупятся через пару лет, когда встанет вопрос о модернизации компьютера.

Процессор.Процессор — основная микросхема компьютера, в которой и производятся все вычисления. Процессор состоит из десятков миллионов транзисторов, с помощью которых собраны отдельные логические схемы. Основные внутренние схемы процессора – арифметико-логическое устройство, внутренняя память (так называемые регистры), кэш-память (сверхоперативная память) и схемы управления всеми операциями и внешними шинами.




В настоящее время для ПК существует множество видов процессоров. Наиболее распространенными являются Intel-совместимые процессоры, которые используются в IBM-совместимых ПК. Самыми производительными из них являются процессоры Intel Pentium IV и AMD Athlon.

Самыми высокопроизводительными процессорами (из массово производимых) являются процессоры Alpha фирмы Digital. На сегодняшний момент они остаются более производительными, чем Intel-совместимые. Процессоры Alpha используются во многих мини-ЭВМ и суперкомпьютерах.

Часто различают процессоры CISC (Common Instruction Set Computer - процессоры с полным набором команд) и RISC (Reduced Instruction Set Computer -процессоры с сокращенным набором команд).

В CISC-процессорах для выполнения каждой команды используется своя микропрограмма, состоящая из набора микрокоманд. Каждая микрокоманда реализована на аппаратном уровне и выполняет какое-либо элементарное действие, необходимое для реализации различных команд. Конкретная команда процессора кодируется набором микрокоманд, образующих микропрограмму. Таким образом, программы формируются из команд процессора, а сами команды, в свою очередь, являются микропрограммами,

В RISC-процессорах каждая команда процессора реализована в виде отдельной схемы. Поэтому здесь каждая отдельная команда выполняется быстрее, но самих команд меньше, и для реализации некоторых действий, которые в CISC-процессорах выполняются одной командой, требуется несколько команд.

Традиционно в мэйнфреймах используются CISC-процессоры, а в мини-ЭВМ - RISC-процессоры. Процессоры Intel и совместимые с ними являются CISC-процессорами.

С середины 90-х годов грань между CISC и RISC-процессорами стирается, и на сегодняшний момент в процессорах Pentium IV используется много конструктивных решений, ранее характерных только для RISC-процессоров. В карманных компьютерах используются главным образом RISC-процессоры, поскольку они компактнее, значительно меньше нагреваются при работе и потому не требуют отдельной системы охлаждения

Разъемы для установки процессора (одного или нескольких) различны для процессоров Pentium III, Celeron (Socket-370), Pentium IV (Socket-423, Socket-478), AMD (Socket-462).

Основными параметрами процессоров являются: разрядность, рабочая тактовая частота, коэффициент внутреннего умножения тактовой частоты и размер кэш-памяти.

Разрядность процессора показывает, сколько бит данных он может принять и обработать в своих регистрах за один раз (за один такт). Чем больше разрядов имеют все схемы процессора, тем больше информации он обработает за единицу времени, то есть от разрядности процессора напрямую зависит производительность компьютера. Первые процессоры х86 были 16-разрядными. Начиная с процессора 80386 они имеют 32-разрядную, но для совместимости с программами, разработанными для младших моделей, микропроцессоры содержали набор 16-разрядных команд. До сих пор процессоры Intel обеспечивают поддержку выполнения старых 16-разрядных программ. Для работы с такими программами микропроцессор переключается в специальный режим, в котором он работает значительно медленнее. Процессоры Pentium уже поддерживали 64-разрядный обмен данными. Нынешние процессоры фирмы Intel уже частично 64-разрядные, т.е. имеют команды, рассчитанные на работу с 64-разрядными данными. В настоящее время активно выпускаются полностью 64-разрядные процессоры Intel (Itanium, Itanium-2). Однако они дорогие и пока используются только в высокопроизводительных серверах. Для использования их возможностей в обычных ПК пока нет соответствующих программ. Однако уже существует 64-разрядная версия Windows.

Кроме разрядности важную роль играет так называемая тактовая частота, на которую процессор рассчитан. Тактовая частота измеряется в мегагерцах. Один мегагерц – это миллион тактов в секунду. За один такт процессор выполняет какой-то фрагмент вычислительной операции, поэтому чем выше тактовая частота, тем быстрее процессор обрабатывает поступающие данные. В начале 2000 года тактовые частоты достигли 1 ГГц (1000 МГц). Сравните эту цифру со всего лишь 4.7 МГц у первых процессоров для IBM PC.

Тактовые сигналы процессор получает от материнской платы, которая, в отличие от процессора, представляет собой не кристалл кремния, а большой набор проводников и микросхем. По чисто физическим причинам материнская плата не может работать со столь высокими частотами, как процессор. Сегодня ее предел составляет 100-133 МГц. Для получения более высоких частот в процессоре происходит внутреннее умножение частоты на коэффициент 3; 3,5; 4; 4,5; 5 и более, в результате чего и получается внутренняя частота. Многие процессоры имеют управляемый коэффициент умножения – его можно выбрать и установить при настройке компьютера с помощью перемычек материнской платы или программно. Но некоторые процессоры, например, такие как Intel Celeron, имеют «жесткие» коэффициенты умножения, управлять которыми нельзя.

Обмен данными внутри процессора происходит в несколько раз быстрее, чем обмен с другими устройствами, например с оперативной памятью. Для того чтобы уменьшить количество обращений к оперативной памяти, внутри процессора создают буферную область — так называемую кэш-память. Это как бы «сверхоперативная память». Когда процессору нужны данные, он сначала обращается в кэш-память, и только если там нужных данных нет, происходит его обращение в оперативную память. Принимая блок данных из оперативной памяти, процессор заносит его одновременно и в кэш-память. «Удачные» обращения в кэш-память называют попаданиями в кэш. Процент попаданий тем выше, чем больше размер кэш-памяти, поэтому высокопроизводительные процессоры комплектуют повышенным объемом кэш-памяти.

Использование кэш-памяти позволило значительно поднять производительность компьютеров. Когда для 486-х процессоров впервые была применена технология кэширования, кэш-память располагалась на материнской плате как можно ближе к процессору. Сегодня кэш-память устанавливается «пирамидой». Самая быстрая по скорости, но самая малая по объему кэш-память первого уровня входит в состав кристалла процессора. Ее производят теми же технологиями, что и регистры процессора, в результате она оказывается безумно дорогой, но очень быстрой и, главное, надежной. Ее размер измеряется всего лишь десятками Кбайт, но она играет очень важную роль в быстродействии. Кэш-память второго уровня может располагаться на том же кристалле процессора (в этом случае она работает с частотой ядра процессора), но может располагаться и в отдельной микросхеме рядом с процессором (в этом случае она работает с половинной частотой ядра). Обычно объем кэш-памяти второго уровня измеряется сотнями Кбайт (128/256/512 Кбайт и т.д.). Самая большая, но и самая медленная кэш-память третьего уровня. Она к процессору не относится, поскольку устанавливается на материнской плате и работает с ее частотой. Ее размеры могут достигать 1-2 Мбайт. Размер кэш-памяти первого и второго уровня очень сильно влияет на стоимость процессора. Процессоры одной модели и с одной рабочей частотой могут различаться объемом кэш-памяти.

Различия между процессорами Pentium II-II1-IV и Celeron состоят главным образом в том, что у первых размеры кэш-памяти существенно больше. У процессоров серии Хеоn, предназначенных для серверов, кэш-память еще больше. С каждым новым поколением процессоров кэш-память увеличивается.

В работе с информацией, важно иметь быстрый и удобный способ хранить и записывать данные.

Для этого, в состав компьютере входят несколько устройств, называемых памятью.


 | Память компьютера – это устройства, предназначенные для хранения программ и данных.

В зависимости от того, каким видом деятельности занимается человек, мозг задействует разные виды памяти.


Подобно человеческой, память компьютера делиться на разные виды. Основные виды памяти компьютера:

» оперативная память – используется для хранения исполняемых программ и данных, до завершения работы компьютера;

» долговременная память – хранит большой объём информации длительное время.

У каждого вида информации есть свои преимущества и недостатки.


Устройства памяти

ОЗУ (RAM) – оперативное запоминающее устройство;


Жёсткий диск (HDD) – накопитель на жёстких магнитных дисках;


Твердотельный накопитель (SSD) – немеханический накопитель на основе микросхем;


Оптические носители (CD, DVD, BD) – пластиковый диск, запись и считывания с которого производится лазером;


USB-флеш накопитель – устройство хранения, работающее с интерфейсом USB (Universal Serial Bus – универсальная последовательная шина);


Карта памяти (CF, SD, microSD) – компактный флеш-накопитель.


В состав компьютера входит ещё одно устройство хранения, которое нельзя отнести ни к оперативной, ни к долговременной памяти.

ПЗУ (ROM) – постоянное запоминающее устройство. Данная микросхема хранит инструкции по запуску компьютера.


Устройства вывода информации

 | Устройства вывода информации – это устройства для преобразования информации из форм, понятных компьютеру, в форму понятную человеку.

» Монитор [9, 10]



» Принтер [11]



» Графопостроитель (плоттер) [12]

» Колонки и наушники [13]


Передача информации


 | Передача информации – это процесс распространения информации в пространстве.

Органы чувств человека выступают в роли биологических информационных каналов.

Технические информационные каналы – это устройства, служащие для обмена информацией.


Литература:
1. Информатика: учебник для 7 класса / Л.Л. Босова, А.Ю. Босова. - М.: БИНОМ.Лаборатория знаний, 2014. - 224 с.
2. Информатика. 7 класса / К.Ю. Поляков, Е.А. Еремин. - М.: БИНОМ.Лаборатория знаний, 2017. - 228 с.

К уроку:


ПРЕЗЕНТАЦИЯ

Читайте также: