Сообщение на тему память компьютера

Обновлено: 06.07.2024

Внутренняя память – один из важнейших элементов компьютера, позволяющий ему корректно работать. В ней содержится информация, к которой обращается компьютер в процессе работы.

Внутренняя память компьютера состоит из нескольких частей

  1. Оперативная память
  2. Кэш-память
  3. Специальная память

Оперативная память напрямую связана с процессором, в ней сохраняются программы и данные, необходимые для реализации этих программ. Процессор компьютера может работать только с данными, которые содержатся в оперативной памяти.

Она состоит из группы кристаллических ячеек, в которых хранится информация. Минимальный объем информации – бит. Это объем информации в один двоичный знак (0 или 1). И соответственно в каждой ячейке оперативной памяти сохраняется один бит информации. Свойство памяти, помогающее распределять информацию по ячейкам, разделять ее на мелкие составные части называют дискретностью. 8 бит составляют один байт. А каждый байт информации имеет в памяти компьютера свой адрес. Процессор отыскивает нужные ему данные во внутренней памяти именно по адресу. Еще более крупная единица хранения информации – машинное слово. Оно состоит из нескольких байтов, которые процессор обрабатывает в ходе одной операции. Объем оперативной памяти в современных компьютерах постоянно растет и достигает уже нескольких Гигабайт.

С точки зрения действия различают два вида оперативной памяти: статическую и динамическую. Статическая память проще в использовании, но дороже, и она в состоянии хранить меньший объем информации. Триггер динамической памяти более быстрый, но значительно сложнее и дороже. В современных компьютерах применяются оба вида памяти.

И статическая и динамическая память сохраняет информацию, которая кодируется с помощью электрического сигнала. Поэтому при выключении электричества происходит потеря информации. Таким образом понятно, что оперативная память нужна для временного хранения данных.

Оперативная память - это набор микросхем, которые располагаются на плате компьютера. Части (или модули) оперативной памяти могут отличаться количеством контактов (SIMM или DIMM), быстродействием, объемом размещенной на них информации.

Другой важной характеристикой памяти является быстродействие, которое определяется максимальным числом операций, которые может выполнять устройство за единицу времени. Чтобы компьютер работал эффективно и быстро, необходимо, чтобы быстродействие компьютера соответствовало этой характеристики памяти.

Кэш-память обеспечивает согласованную работу различных устройств компьютера, компенсируя разницу в быстродействии процессора и оперативной памяти. Этим видом памяти управляет контроллер, который прогнозирует команды используемые в данный момент процессором и своевременно подкачивает их из всего объема оперативной памяти.

В специальную память компьютера входят следующие виды памяти:

  1. Постоянная память
  2. Перепрограммируемая память
  3. Видеопамять
  4. Память CMOS RAM

На них записана информация, которую не может изменить пользователь компьютера: данные о конфигурации устройств, о составе оборудования и режимах его работы.

Знания о видах внутренней памяти помогают пользователю грамотно и безопасно эксплуатировать компьютер, максимально используя его возможности.

Внутренняя память компьютера

Внутренняя память компьютера

Для правильного развития организма человека, ему необходимы полезные вещества и витамины. Именно витамины стали главным элементом в образовании многих ферментов. Витамины играют важную роль в обмене веществ. Некоторые группы полезных

Вомбаты принадлежат семейству сумчатых и млекопитающих, состоящих в отряде двурезцовых. Они обитают в Австралии, их домом выступают вырытые норы, а питаются вомбаты растениями, которые удаётся обнаружить при ночных вылазках из норы.

Япония – невероятно интересная и загадочная страна. Культура Японии очень самобытна и многообразна, которая сохраняется веками, и передается из поколения в поколение. Культура представляет собой массу разнообразных традиций и обычаем.

Минимальной единицей информации является бит или кратные ему единицы: килобит (1 кб = 1024 бита), мегабит (1Мб = 1024кбит), гигабит (1Гб = 1024Мбит). Но чаще пользуются единицей байт (1 байт = 8 бит), или же кратными ему единицами: килобайт (1 КБ = 1024 байта), мегабайт (1МБ = 1024кБ), гигабайт (1ГБ = 1024МБ). Для измерения больших объемов памяти используются терабайты и петабайты.

Компьютерную память можно классифицировать по типу доступа:

  • последовательный доступ (магнитные ленты)
  • произвольный доступ (оперативная память)
  • прямой доступ (жесткие магнитные диски);
  • ассоциативный;

по типу электропитания:

  • буферная;
  • временная;
  • кэш-память;
  • корректирующая;
  • управляющая;
  • коллективная.

по типу носителя и способу записи информации:

  • акустическая;
  • голографическая;
  • емкостная;
  • криогенная;
  • лазерная;
  • магнитная;
  • магнитооптическая;
  • молекулярная;
  • полупроводниковая;
  • ферритовая;
  • фазоинверсная;
  • электростатическая.

Оперативная память компьютера

Оперативная память современного компьютера разделена на несколько типов. Хотя в основе всех типов памяти лежит обычная ячейка памяти, представляющий собой комбинацию из транзистора и конденсатора, благодаря различным внешним интерфейсам и устройствам взаимодействия с компьютером модули памяти они все же отличаются друг от друга.

Это наиболее дешевый способ производства ячеек памяти. Состояние конденсатора определяет, содержит ячейка «0» или «1», но само наличие конденсатора является причиной некоторых ограничений динамической памяти.

Таким образом, каждый раз при считывании информации должна проводиться и его запись. В результате увеличивается время циклического доступа, и повышается латентность.

Массовое распространение получили следующие виды оперативной памяти DDR (уже не пользуется большим спросом), DDR2, DDR3, DDR4.

Внешний вид модулей памяти DDR, DDR2, DDR3

Внешний вид модулей памяти DDR, DDR2, DDR3

В каждом модуле оперативной памяти содержится также специальная микросхема SPD. В этой микросхеме хранятся данные о модуле памяти: дата изготовления модуля, основные характеристики модуля и тому подобное.

Кэш память

Персональные компьютеры также имеют скрытую память. Фактически, из-за разницы в скорости процессоров и схем основной памяти, большинство персональных компьютеров имеют два разных типа кэша, известных как «Уровень 1» (уровень 1 или L1) и «Уровень 2». Уровень 2 или L2 кэш).

L1 кэш-память

Кэш L1 содержит адреса памяти, которые соответствуют данным и машинным командам. Он часто делится на два раздела для этих двух типов адресов. Машинные команды, выполняемые внутри процессора, особенно полезно кэшировать, когда процессор имеет конвейерную архитектуру, которая обрабатывает несколько команд одновременно.

Кэш-память второго уровня

Кэш уровня 2 больше по размеру, чем L1, но не так быстр, и находится на материнской плате компьютера. Как мы уже говорили, его схемы в основном состоят из статической памяти. Кэш-память уровня 2 обычно имеет размер до 1 Мб, но его максимальный размер также зависит от материнской платы.

Память DDR

Память DDR2

Память этого стандарта использовалась в платформе Socket 775. По сути DDR2 память не имеет кардинальных отличий от DDR. Однако в то время как DDR осуществляет две передачи данных по шине за такт, DDR2 выполняет четыре таких передачи. При этом, построена DDR2 из таких же ячеек памяти, как и DDR, а для удвоения пропускной способности используется техника мультиплексирования.

Память DDR3

Передача данных по-прежнему осуществляется по обоим полупериодах синхросигнала на удвоенной «эффективной» частоте относительно собственной частоты шины памяти. Только рейтинги производительности выросли в 2 раза, по сравнению с DDR2. Типичными скоростными категориями памяти нового стандарта DDR3 являются разновидности от DDR3-800 до DDR3-1600 и выше. Очередное увеличение теоретической пропускной способности компонентов памяти в 2 раза вновь связано со снижением их внутренней частоты функционирования во столько же раз. Поэтому отныне, для достижения темпа передачи данных со скоростью 1 бит / такт по каждой линии внешней шины данных с «эффективной» частотой в 1600 МГц используемые 200-МГц микросхемы должны передавать по 8 бит данных за каждый свой такт. То есть,

Однако у данного типа памяти есть свои недостатки:

  • наряду с ростом пропускной способности выросла также и латентность памяти;
  • высокая цена модулей памяти.

Память DDR 4

На сегодня это основной тип памяти, который приобрел массовое применение. Первые тестовые образцы DDR4 были представлены в середине 2012 года фирмами Hynix, Micron и Samsung.

Благодаря 30 нм техпроцессу память DDR4 от Samsung имела объем 8 и 16ГБ и тактовую частоту 2133 МГц. 16 ГБ планки имеют два ряда чипов памяти, в отличие от привычного одного ряда. К тому же, они располагаются на печатной плате ближе друг к другу, что позволяет вместить ее два дополнительных чипа памяти с каждой стороны. Samsung обещает, что с переходом на передовой 20 нм техпроцесс, появится возможность создания модулей памяти объемом 32 ГБ. Модули памяти DDR4 от Samsung, работают с напряжением 1,2 В, в отличие от DDR3 планок, которые работают на 1,35 В. Это небольшая разница, позволяет экономить энергию на 40%.

Рекомендации по выбору модулей памяти:

При производстве модулей памяти, как правило, одна фирма выпускает микросхемы (чипы), а другая делает сами модули (монтаж и пайка). Производителей чипов в мире насчитывается не более 10. Крупные производители чипов: Samsung, Mиcron, LG, Hynиx, Toshиba, Nec, Texas Instruments проводят тщательное тестирование готовой продукции, но полный цикл тестирования проходят далеко не все чипы. Исходя из этого, продукцию этих компаний можно условно разделить на три категории: класса А, В и С.

Третья (чипы класса C), которые вообще не тестировались производителем на скорость и надежность. Понятно, что на рынке такая продукция имеет наименьшую стоимость, поскольку вся ответственность за тестирование ложится на производителей модулей. Именно такие микросхемы используют производители дешевой памяти класса noname, а стабильность работы этих изделий вызывает большие сомнения. Надежность готового модуля памяти определяется совокупностью многих факторов. В частности, это количество слоев печатной платы (PCB), качество электронных компонентов, грамотное разведение цепей, а также технология производственного процесса. Мелкие производители модулей для снижения цены готовых изделий экономят на мелких компонентах, зачастую просто не впаянных на модуль.

Память для хранения информации: жесткий диск, твердотельные накопители

За счет вращения создается своеобразный подпор воздуха, благодаря которому считывающие головки не касаются поверхности пластин, хотя и находятся очень близко к ним (всего несколько микрометров). Это гарантирует надежность записи / считывания данных. При остановке пластин, головки перемещаются за пределы их поверхности, поэтому механический контакт между головками и пластинами практически исключен. Такая конструкция обеспечивает долговечность запоминающих устройств этого типа.

Основные характеристики жестких дисков:

Параметры жестких дисков

Классический жесткий диск имеет форм-фактор 3,5 дюйма. В ноутбуках, нетбуках и других портативных устройствах чаще всего используются устройства 2,5 или 1,8 дюйма, хотя встречаются и другие варианты.

Объем буфера специальной внутренней быстрой памяти диска, предназначенная для временного хранения данных с целью сглаживания перебоев при считывании и записи информации на носитель и ее передачи по интерфейсу. В современных запоминающих устройствах буфер может достигать размеров до 64 МБ. Чем этот показатель больше, тем лучше.

В последнее время начался выпуск жестких дисков со встроенной флэш-памятью в качестве кэша, что значительно улучшает скоростные показатели дисков.

Фирмы производители: IBM , Hitachi , Seagate , Samsung , Western Digital .


Запись магнитной информации продольного (а) и перпендикулярного (б) типа

Накопители SSD

Существует всего 2 типа SSD накопителей: SSD диски на основе флэш-памяти (самые популярные и распространенные), и SSD на основе оперативной памяти.

Основополагающим принципом организации работы флеш-памяти является хранение ею 1 бита данных в массиве транзисторов с плавающим затвором (элементарными ячейками), путем изменения и регистрации электрического заряда в изолированной области полупроводниковой структуры. Главной особенностью полевого транзистора, которая позволила ему получить всеобщее признание, как носителя информации, стала способность удерживать электрический разряд на плавающем затворе до 120 месяцев. Сам плавающий затвор изготовлен из поликристаллического кремния и со всех сторон окружен слоем диэлектрика, что исключает возможность контакта его с элементами транзистора. Располагается он между диэлектрической подкладкой и управляющим затвором. Управляющий электрод полевого транзистора и называется затвором.

Запись и стирание информации происходит за счет изменения приложенного заряда между затвором и истоком большим потенциалом, пока напряженность электрического поля в диэлектрике между каналом транзистора и изолированной областью не станет достаточной для возникновения туннельного эффекта. Таким образом электроны переходят через слой диэлектрика на плавающий затвор, обеспечивая его зарядом, а, значит, и наполнение элементарной ячейки битом информации. Также, для усиления эффекта туннелирования электронов при записи, применяется слабое ускорение электронов путем пропускания тока через канал полевого транзистора.

Для удаления информации управляющий затвор обеспечивается отрицательным напряжением высокой мощности с тем, чтобы позволить электронам переходить с плавающего затвора на исток. Подобная организация элементарных ячеек, объединенных в страницы, блоки и массивы и составляет твердотельный накопитель.

Преимущества SSD накопителей:

Недостатки SSD накопителей:

RAID массивы

RAID имеет две цели:

  1. увеличение надежности хранения информации;
  2. увеличение скорости записи / считывания.

Наиболее популярными видами RAID является RAID 0, 1 и 0 + 1.


Схема записи информации в массиве RAID 1 (отражение)

RAID 3 и 4 используют массив дисков с чередованием и выделенным диском четности.


Схема массива RAID 5

RAID 6. Все различия сводятся к тому, что используются две схемы четности. Система устойчива к отказам двух дисков. Основной сложностью является то, что для реализации этого приходится делать больше операций при выполнении записи. Из-за этого скорость записи чрезвычайно низкой.

Комбинация RAID 0 + 1, которая является массивом RAID 1, собранным на базе массивов RAID 0. Как и в массиве RAID 1, доступным будет только половина объема дисков. Но, как и в RAID 0, скорость будет выше, чем с одним диском. Для реализации такого решения необходимо минимум 4 диска.


Схематическое изображение массива RAID 0 + 1 (а) и RAID1 + 0 (б)

RAID 0 + 1 имеет высокую скорость работы и повышенную надежность, поддерживается даже дешевыми RAID контроллерами и является недорогим решением.

Выводы

Именно наша память делает из нас тех, кем мы являемся: мы помним наше прошлое, обучаемся, закрепляем навыки и ставим цели на будущее. В компьютерах память играет ту же самую роль. Неважно какую задачу он выполняет: проигрывание фильма, чтение документа, сложные математические вычисления - все это хранится в памяти в бинарном виде.

Бинарные данные, или по другому биты, представляют собой ячейки памяти, в которых информация может храниться только в двух состояниях: 0 и 1. Файлы и программы, содержащие в себе миллионы бит информации, обрабатываются в центральном процессоре, или ЦПУ, который выполняет роль мозга у компьютера. И поскольку количество знаков для обработки растет в геометрической прогрессии, компьютерные разработчики находятся в постоянной борьбе между размером, ценой и скоростью.

Краткосрочная память

У компьютеров, как и у нас, есть краткосрочная память, предназначенная для выполнения текущих задач, и долгосрочная - для длительного хранения информации. При запуске программы операционная система резервирует место в краткосрочной памяти для выполнения этих задач. Например, при нажатии клавиши в текстовом редакторе мы мгновенно увидим на экране соответствующий символ. Время, которое уходит на выполнение этой процедуры, называется временем отклика памяти. Главная задача кратковременной памяти - быстрая и непрерывная обработка команд, поэтому все свободное место доступно в любом порядке. Отсюда название - память с произвольным доступом, или оперативное запоминающее устройство (ОЗУ).

Наиболее распространенный тип ОЗУ - это ОЗУ динамического типа . Каждая ячейка такого устройства включает в себя маленький транзистор и конденсатор, которые хранят последнее состояние электрического заряда: 1 - заряд есть, 0 - заряд отсутствует. Данный вид памяти называется динамическим потому, что он не долгое время может сохранять заряд и его нужно время от времени заряжать, чтобы обезопаситься себя от потери данных.

Кэш хранилища

Время отклика со скоростью 100 наносекунды для современных компьютеров считается очень длительным. Для сверхбыстрых операций используется скоростное внутреннее кэш-хранилище, производимое из ОЗУ статического типа. Оно обычно состоит из 6 соединенных транзисторов, которым не нужна подзарядка. Статическая память является самой быстрой и, соответственно, самой дорогой. По своим размерам она также уступает динамической: занимает почти в 3 раза больше места. ОЗУ и кэш могут хранить данные, только пока они подключены к источнику питания. Для того, чтобы пользоваться данными после выключения устройства, их нужно перенести в долгосрочную память.

Долгосрочная память

Существует 3 вида долгосрочной памяти.

Магнитный носитель - самый дешевый вид - данные записываются на магнитную пленку вращающегося диска. Есть нюанс: так как диск должен вращаться, то нужно потратить намного больше времени, чтобы извлечь нужные данные. Время отклика таких устройств в 100.000 раз больше, чем у динамической ОЗУ.

Оптические носители , представленные DVD или Blu-ray, также используют вращающиеся диски, но уже с отражающим покрытием. Информация кодируется с помощью специальных светлых и темных красителей, пятна которых позже считываются с помощью лазера. Оптические носители довольно дешевые и их можно извлекать из компьютера. Однако их время отклика еще более длительное, а емкость меньше, чем у магнитных ОЗУ.

Самыми новыми, надежными, быстрыми носителями являются твердотельные накопители , представленные флешками. В их устройстве отсутствуют движущиеся части. Вместо этого они используют транзисторы с динамическим затвором, который сохраняет биты данных в результате захвата или удаления электрических зарядов.

Надежна ли компьютерная память?

Многие из нас считают, что компьютерная память очень надежна. Однако это не так. Она в действительности очень быстро портится. Жесткие диски со временем размагничиваются из-за выделяемой компьютером теплоты, качество красителей в оптических носителях ухудшается, а в твердотельных накопителях происходит утечка электронов. Дополнительная причина - это перезапись данных, которая также уменьшает срок жизни носителей.

В среднем современные носители могут работать около 10 лет. Ученые пытаются найти идеальные материалы, физические свойства которых позволили бы сделать накопители быстрее, меньше и долговечнее. К сожалению, компьютеры, как и люди, пока что не могут жить вечно.

Память компьютера лучше всего представить себе в виде последовательности ячеек. Количество информации в каждой ячейке – один байт.

Любая информация сохраняется в памяти компьютера в виде последовательности байтов. Байты (ячейки) памяти пронумерованы один за другим, причем номер первого от начала памяти байта приравнивается к нулю. Каждая конкретная информация, которая сохраняется в памяти, может занимать один или несколько байтов. Количество байтов, которые занимает та или иная информация в памяти, являются размером этой информации в байтах.

Например, целое плюсовое число от 0 до 2 8 -1=255 занимает 1 байт памяти. Для хранения целого плюсового числа от 2 8= 256 до 2 16 -1=65536 нужно уже два последовательных байта.

Основная задача при работе с памятью состоит в том, чтобы найти место в памяти, где находится необходимая информация.

Для того, чтобы найти человека в большом городе, необходимо знать его точный адрес. Так же, чтобы найти место той или иной информации в памяти, введено понятие адреса в памяти.

Например, если слово "информатика", которое состоит из 11 букв, занимает байты с номерами от 1234 до 1244 (всего 11 байтов), то адрес этого слова равняется 1234.

Чем больше объем памяти, тем больше файлов и программ она может вместить, тем больше задач можно развязать с помощью компьютера.

Чем же определяется объем доступной памяти компьютера или какое наибольшее число можно использовать для указания адреса?

Адрес, как и любая информация в компьютере, подается в двоичном виде. Значит, наибольшее значение адреса определяется количеством битов, которые используются для его двоичной подачи.

Глава 1. ВИДЫ ПАМЯТИ

1.1 Оперативная память

Оперативная память (ОЗУ или англ.RAM от RandomAccessMemory – память с произвольным доступом) – это быстро запоминающее устройство не очень большого объема, которое непосредственно связанное с процессором и предназначенное для записи, считывания и хранения выполняемых программ и данных, которые обрабатываются этими программами.

Оперативная память используется только для временного хранения данных и программ, так как, когда машина выключается то все, что находилось на ОЗУ, пропадает. Доступ к элементам оперативной памяти прямой – это значит, что каждый байт памяти имеет свой индивидуальный адрес.

Объем ОЗУ обычно составляет от 32 до 512 Мбайт. Для не сложных административных задач бывает достаточно и 32 Мбайт ОЗУ, но сложные задачи компьютерного дизайна могут потребовать от 512 Мбайт до 2 Гбайт ОЗУ.

Обычно ОЗУ исполняется из интегральных микросхем памяти SDRAM (синхронное динамическое ОЗУ). Каждый информационный бит в SDRAM запоминается в виде электрического заряда крохотного конденсатора, образованного в структуре полупроводникового кристалла. Из-за утечки токов такие конденсаторы быстро разряжаются и их периодически (примерно каждые 2 миллисекунды) подзаряжают специальные устройства. Этот процесс называется регенерацией памяти (RefreshMemory). Микросхемы SDRAM имеют емкость от 16 до 256 Мбит и более. Они устанавливаются в корпусе и собираются в модули памяти. Большинство современных компьютеров комплектуются модулями типа DIMM (Dual-In-lineMemoryModule - модуль памяти с двухрядным расположением микросхем). В компьютерных системах на самых современных процессорах используются

Высокоскоростные модули Rambus DRAM (RIMM) и DDR DRAM.

Сразу после включения компьютера начинают "тикать" электронные "часы" основной шины. Их импульсы расталкивают заспавшийся процессор, и тот может начинать работу. Но для работы процессора нужны команды.

Точнее говоря, нужны программы, потому что программы — это и есть упорядоченные наборы команд. Таким образом, где-то в компьютере должна быть заранее, заготовлена пусковая программа, а процессор в момент пробуждения должен твердо знать, где она лежит (Рисунок 1).

hello_html_6ad8e552.jpg

Хранить эту программу на каких-либо носителях информации нельзя, потому что в момент включения процессор ничего не знает ни о каких устройствах. Чтобы он о них узнал, ему тоже нужна какая-то программа, и мы возвращаемся к тому, с чего начали. Хранить ее в оперативной памяти тоже нельзя, потому что в ней в обесточенном состоянии ничего не хранится.

Выход здесь существует один-единственный. Такую программу надо создать аппаратными средствами. Для этого на материнской плате имеется специальная микросхема, которая называется постоянным запоминающим устройством — ПЗУ. Еще при производстве в нее "зашили" стандартный комплекс программ, с которых процессор должен начинать работу. Этот комплекс программ называется базовой системой ввода-вывода.

По конструкции микросхема ПЗУ отличается от микросхем оперативной памяти, но логически это те же самые ячейки, в которых записаны какие-то числа, разве что не стираемые при выключении питания. Каждая ячейка имеет свой адрес.

После запуска процессор обращается по фиксированному адресу (всегда одному и тому же), который указывает именно на ПЗУ. Отсюда и поступают первые данные и команды. Так начинается работа процессора, а вместе с ним и компьютера. На экране в этот момент мы видим белые символы на черном фоне.

Одной из первых исполняется подпрограмма, выполняющая самотестирование компьютера. Она так и называется: Тест при включении (по-английски — POST — Power-OnSelfTest). В ходе ее работы проверяется многое, но на экране мы видим только, как мелькают цифры, соответствующие проверенным ячейкам оперативной памяти.

Рисунок 2 - CMOS-память.

Однако долго работать лишь только со стандартными устройствами компьютер не может. Ему пора бы узнать о том, что у него есть на самом деле. Истинная информация об устройствах компьютера записана на жестком диске, но и его еще надо научиться читать. У каждого человека может быть свой жесткий уникальный диск, не похожий на другие. Спрашивается, откуда программы BIOS узнают, как работать именно с вашим жестким диском?

Для этого на материнской плате есть еще одна микросхема — CMOS-память. В ней сохраняются настройки, необходимые для работы программ BIOS. В частности, здесь хранятся текущая дата и время, параметры жестких дисков и некоторых других устройств. Эта память не может быть ни оперативной (иначе она стиралась бы), ни постоянной (иначе в нее нельзя было бы вводить данные с клавиатуры). Она сделана энергонезависимой и постоянно подпитывается от небольшой аккумуляторной батарейки, тоже размещенной на материнской плате. Заряда этой батарейки хватает, чтобы компьютер не потерял настройки, даже если его не включать несколько лет.

Настройки CMOS, в частности, необходимы для задания системной даты и системного времени, при установке или замене жестких дисков, а также при выходе из большинства аварийных ситуаций. Настройкой BIOS можно, например, задать пароль, благодаря которому посторонний человек не сможет запустить компьютер. Впрочем, эта защита эффективна только от очень маленьких детей.

Для изменения настроек, хранящихся в CMOS-памяти, в ПЗУ содержится специальная программа — SETUP. Чтобы ее запустить, надо в самый первый момент после запуска компьютера нажать и удерживать клавишу DELETE. Навигацию в системе меню программы SETUP выполняют с помощью клавиш управления курсором. Нужные пункты меню выбирают клавишей ENTER, а возврат в меню верхнего уровня — клавишей ESC. Для изменения установленных значений служат клавиши PageUp и PageDown.

1.4 Кэш-память

Кэш-память - это высокоскоростная память произвольного доступа, используемая процессором компьютера для временного хранения информации. Она увеличивает производительность, поскольку хранит наиболее часто используемые данные и команды "ближе" к процессору, откуда их можно быстрей получить (Рисунок 3).

hello_html_187a15dc.jpg

Рисунок 3 - Кэш-память

Кэш-память напрямую влияет на скорость вычислений и помогает процессору работать с более равномерной загрузкой. Представьте себе массив информации, используемой в вашем офисе. Небольшие объемы информации, необходимой в первую очередь, скажем список телефонов подразделений, висят на стене над вашим столом. Точно так же вы храните под рукой информацию по текущим проектам. Реже используемые справочники, к примеру, городская телефонная книга, лежат на полке, рядом с рабочим столом. Литература, к которой вы обращаетесь совсем редко, занимает полки книжного шкафа. Компьютеры хранят данные в аналогичной иерархии. Когда приложение начинает работать, данные и команды переносятся с медленного жесткого диска в оперативную память произвольного доступа, откуда процессор может быстро их получить. Оперативная память играет роль КЭШа для жесткого диска. Для достаточно быстрых компьютеров необходимо обеспечить быстрый доступ к оперативной памяти, иначе микропроцессор будет простаивать, и быстродействие компьютера уменьшится. Для этого такие компьютеры могут оснащаться кэш-памятью, т.е. "сверхоперативной" памятью относительно небольшого объема (обычно от 64 до 256 Кбайт), в которой хранятся наиболее часто используемые участки оперативной памяти. Кэш-память располагается "между" микропроцессором и оперативной памятью, и при обращении микропроцессора к памяти сначала производится поиск нужных данных в кэш-памяти. Поскольку время доступа к кэш-памяти в несколько раз меньше, чем к обычной памяти, а в большинстве случаев необходимые микропроцессору данные содержаться в кэш-памяти, среднее время доступа к памяти уменьшается. Для компьютеров на основе intel-80386dx или 80486sx размер кэш-памяти в 64 кбайт является удовлетворительным, 128 кбайт - вполне достаточным. Компьютеры на основе intel-80486dx и dx2 обычно оснащаются кэш-памятью емкостью 256 Кбайт.

Глава 2. Видеопамять

Графическая плата (известна также как графическая карта, видеокарта, видеоадаптер) (англ. videocard) — устройство, преобразующее изображение, находящееся в памяти компьютера, в видеосигнал для монитора.

Обычно видеокарта является платой расширения и вставляется в специальный разъём (ISA, VLB, PCI, AGP, PCI-Express) для видеокарт на материнской плате, но бывает и встроенной.

Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный микропроцессор, который может производить дополнительную обработку, разгружая от этих задач центральный процессор компьютера.

Современная графическая плата состоит из следующих частей:

1. Графический процессор (GPU) — занимается расчетами выводимого изображения, освобождая от этой обязанности центральный процессор, производит расчеты для обработки команд трехмерной графики. Является основой графической платы, именно от него зависят быстродействие и возможности всего устройства. Современные графические процессоры по сложности мало, чем уступают центральному процессору компьютера, и зачастую превосходят их по числу транзисторов. Архитектура современного GPU обычно предполагает наличие нескольких блоков обработки информации, а именно: блок обработки 2D графики, блок обработки 3D графики, в свою очередь, обычно разделяющийся на геометрическое ядро (плюс кэш вершин) и блок растеризации (плюс кэш текстур) и др(Рисунок 4).

hello_html_2bbdd2a7.jpg

Рисунок 4 - Графический процессор (GPU).

2. Видеоконтроллер — отвечает за формирование изображения в видеопамяти, дает команды RAMDAC на формирование сигналов развертки для монитора и осуществляет обработку запросов центрального процессора. Кроме этого, обычно присутствуют контроллер внешней шины данных (например, PCI или AGP), контроллер внутренней шины данных и контроллер видеопамяти. Ширина внутренней шины и шины видеопамяти обычно шире внешней (64, 128 или 256 разрядов против 16 или 32), во многие видеоконтроллеры встраивается еще и RAMDAC. Современные графические адаптеры (ATI, NVIDIA) обычно имеют не менее двух видеоконтроллеров, работающих независимо друг от друга и управляющих одновременно одним или несколькими дисплеями каждый. Видеопамять — играет роль кадрового буфера, в котором хранится в цифровом формате изображение, генерируемое и постоянно изменяемое графическим процессором и выводимое на экран монитора (или нескольких мониторов). В видеопамяти хранятся также промежуточные невидимые на экране элементы изображения и другие данные. Видеопамять бывает нескольких типов, различающихся по скорости доступа и рабочей частоте. Современные видеокарты комплектуются памятью типа DDR, DDR2 или GDDR3. Следует также иметь в виду, что помимо видеопамяти, находящейся на видеокарте, современные графические процессоры обычно используют в своей работе часть общей системной памяти компьютера, прямой доступ к которой организуется драйвером видеоадаптера через шину AGP или PCIE.

3. Цифро-аналоговый преобразователь ЦАП (RAMDAC) — служит для преобразования изображения, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на аналоговый монитор. Возможный диапазон цветности изображения определяется только параметрами RAMDAC. Чаще всего RAMDAC имеет четыре основных блока — три цифроаналоговых преобразователя, по одному на каждый цветовой канал (красный, синий, зеленый, RGB), и SRAM для хранения данных о гаммах коррекции. Большинство ЦАП имеют разрядность 8 бит на канал — получается, по 256 уровней яркости на каждый основной цвет, что в сумме дает 16.7 млн. цветов (и за счет гамма коррекции есть возможность отображать исходные 16.7 млн. цветов в гораздо большее цветовое пространство). Некоторые RAMDAC имеют разрядность по каждому каналу 10bit (1024 уровня яркости), что позволяет сразу отображать более 1 млрд. цветов, но эта возможность практически не используется. Для поддержки второго монитора часто устанавливают второй ЦАП. Стоит отметить, что мониторы и видеопроекторы подключаемые к цифровому DVI выходу видеокарты для преобразования потока цифровых данных используют собственные цифроаналоговые преобразователи и от характеристик ЦАП видеокарты не зависят (Рисунок 5).

hello_html_m2b9006d0.jpg

Рисунок 5 - Цифро-аналоговый преобразователь ЦАП (RAMDAC)

4. Видео-ПЗУ (Video ROM) — постоянное запоминающее устройство, в которое записаны видео-BIOS, экранные шрифты, служебные таблицы ПЗУ не используется видеоконтроллером напрямую — к нему обращается только центральный процессор. Хранящийся в ПЗУ видео-BIOS обеспечивает инициализацию и работу видеокарты до загрузки основной операционной системы, а также содержит системные данные, которые могут читаться и интерпретироваться видеодрайвером в процессе работы (в зависимости от применяемого метода разделения ответственности между драйвером и BIOS). На многих современных картах устанавливаются электрически перепрограммируемые ПЗУ, допускающие перезапись видео-BIOS самим пользователем при помощи специальной программы (Рисунок 6).

hello_html_m69939b8e.jpg

Рисунок 6 - Видео-ПЗУ (Video ROM)

5. IB — предназначена для сохранения температурного режима видеопроцессора и видеопамяти в допустимых значениях.

Правильная и полнофункциональная работа современного графического адаптера обеспечивается с помощью видеодрайвера — специального программного обеспечения, поставляемого производителем видеочипа и загружаемого в процессе запуска операционной системы. Видеодрайвер выполняет функции интерфейса между системой с запущенными в ней приложениями и видеоадаптером. Так же как и видео-BIOS, видеодрайвер организует и программно контролирует работу всех частей видеоадаптера через специальные регистры управления, доступ к которым идет через соответствующую шину.

Оперативная память является одним из основных элементов любой электронно-вычислительной машины, т.к. именно от оперативной памяти зависит скорость работы ПК, а также возможность работы с тем или иным программным обеспечением. Не нужно забывать, что быстродействие оперативной памяти зависит скорее от структуры, а не напрямую от ее частоты

В наше время разработано огромное количество видов оперативной памяти разной скоростной и ценовой категории, поэтому пользователь должен сам решать какую память следует устанавливать на компьютер, в зависимости от того, какие возможности ему нужны. Но следует помнить, что быстроразвивающаяся компьютерная отрасль, в том числе программное обеспечение, предъявляют все большие требования к компьютерам, в том числе и к оперативной памяти.

Сравнивая оперативную память можно выделить основные преимущества и недостатки:

Преимущества: малое число элементов на одну ячейку, откуда высокая плотность упаковки, большой объем памяти на одном кристалле, малое потребление мощности.

Недостатки: необходимость периодического перезаряда элементов памяти, а это: уменьшает быстродействие, усложняет схемы обслуживания памяти, при отсутствии питания стирается вся информация.

Преимущества: высокое быстродействие, отсутствие регенерации;

Недостатки: в связи с дороговизной память типа SRAM используется, в основном только как КЭШ-память L1 и L2, маленькая плотность упаковки.

СПИСОК ЛИТЕРАТУРЫ

1.В .Долженков, Ю .Колесников. Excel 2012. Спб. ВНV,2012.

2. Кузьмин Владислав. MicrosoftOfficeExcel 2003: Учебный курс.-

3. Пасько В . MicrosoftOffice 2013.- К .: ВН V, 19 ХР .

4. Гебхардт Р. Excel 2013:Справочник. - М.: Бином, 19ХР.

5. Уокенбах Д. Excel 2013. Библия пользователя. - К.: Диалектика,2012.

6. Уокенбах Д. MicrosoftExcel. Библия пользователя. - М.: Издательский дом

Электромагнитные реле стояли в самых первых компьютерах, а их жизнь на рынке автоматизированных вычислений была недолгой. Однако видоизмененные катушки используют в технике и по сей день.

В стародревние времена — дело было почти 80 лет назад, на заре становления вычислительной техники — память вычислительных устройств было принято делить на три типа. На первичную, вторичную и внешнюю. Сейчас этой терминологией уже никто не пользуется, хотя сама классификация существует и по сей день. Только первичную память теперь называют оперативной, вторичную — внутренними жесткими дисками, ну а внешняя маскируется под всевозможные оптические диски и флэш-накопители.

Прежде чем начать путешествие в прошлое, давайте разберемся в обозначенной выше классификации и поймем, для чего нужен каждый из типов памяти. Компьютер представляет информацию в виде последовательности бит — двоичных цифр со значениями 1 или 0. Общепринятой универсальной единицей информации считают байт, как правило, состоящий из 8 бит. Все используемые компьютером данные занимают некоторое количество байт. К примеру, типичный музыкальный файл занимает 40 миллионов бит — 5 миллионов байт (или 4,8 мегабайта). Центральный процессор не сможет функционировать без элементарного запоминающего устройства, ведь вся его работа сводится к получению, обработке и записи обратно в память. Именно поэтому легендарный Джон фон Нейман (мы не раз упоминали его имя в цикле статей про мейнфреймы) придумал размещать внутри компьютера независимую структуру, где хранились бы все необходимые данные.

Классификация внутренней памяти разделяет носители еще и по скоростному (и энергетическому) принципу. Быстрая первичная (оперативная) память в наше время используется для хранения критичной информации, к которой ЦП обращается наиболее часто. Это ядро операционной системы, исполняемые файлы запущенных программ, промежуточные результаты вычислений. Время доступа — минимально, всего несколько наносекунд.

Первичная память общается с контроллером, размещенным либо внутри процессора (у последних моделей ЦП), либо в виде отдельной микросхемы на материнской плате (северный мост). Цена на оперативку относительно высока, к тому же она энергозависима: выключили компьютер или случайно выдернули шнур из розетки — и вся информация потерялась. Поэтому все файлы хранятся во вторичной памяти — на пластинах жестких дисков. Информация здесь не стирается после отключения питания, а цена за мегабайт очень низкая. Единственный недостаток винчестеров — низкая скорость реакции, она измеряется уже в миллисекундах.

Кстати, интересный факт. На заре развития компьютеров первичную память не отделяли от вторичной. Главный вычислительный блок был очень медленным, и память не давала эффекта бутылочного горлышка. Оперативные и постоянные данные хранились в одних и тех же компонентах. Позже, когда скорость компьютеров подросла, появились новые типы носителей информации.

Компьютер Bendix G15 с барабанной памятью. Оператор в костюме прилагается.

Одним из основных компонентов первых компьютеров были электромагнитные переключатели, разработанные известным американским ученым Джозефом Хенри еще в 1835 году, когда ни о каких компьютерах никто даже не помышлял. Простой механизм состоял из обмотанного проводом металлического сердечника, подвижной железной арматуры и нескольких контактов. Разработка Хенри легла в основу электрического телеграфа Сэмюеля Морзе и Чарльза Витстоуна.

Первый компьютер, построенный на переключателях, появился в Германии в 1939 году. Инженер Конрад Зюс использовал их при создании системной логики устройства Z2. К сожалению, прожила машина недолго, а ее планы и фотографии были утеряны во время бомбардировок Второй мировой войны. Следующее вычислительное устройство Зюса (под именем Z3) увидело свет в 1941 году. Это был первый компьютер, управляемый программой. Основные функции машины реализовывались при помощи 2000 переключателей. Конрад собирался перевести систему на более современные компоненты, но правительство прикрыло финансирование, посчитав, что идеи Зюса не имеют будущего. Как и ее предшественница, Z3 была уничтожена во время бомбардировок союзников.

Электромагнитные переключатели работали очень медленно, но развитие технологий не стояло на месте. Вторым типом памяти для ранних компьютерных систем стали линии задержки. Информацию несли электрические импульсы, которые преобразовывались в механические волны и на низкой скорости перемещались через ртуть, пьезоэлектронный кристалл или магниторезистивную катушку. Есть волна — 1, нет волны — 0. В единицу времени по проводящему материалу могли путешествовать сотни и тысячи импульсов. По завершении своего пути каждая волна трансформировалась обратно в электрический импульс и отсылалась в начало — вот вам и простейшая операция обновления.

Линии задержки разработал американский инженер Джон Преспер Экерт. Компьютер EDVAC, представленный в 1946 году, содержал два блока памяти по 64 линии задержки на основе ртути (5,5 Кб по современным меркам). На тот момент этого было более чем достаточно для работы. Вторичная память также присутствовала в EDVAC — результаты вычислений записывались на магнитную пленку. Другая система, UNIVAC 1, увидевшая свет в 1951 году, использовала 100 блоков на основе линий задержки, а для сохранения данных у нее была сложная конструкция со множеством физических элементов.

Блок памяти на основе линий задержки больше похож на гиперпространственный двигатель космического корабля. Сложно представить, но подобная махина могла сохранить всего несколько бит данных!

За кадром нашего исследования осталось два довольно значимых изобретения в области носителей данных. Оба сделал талантливый сотрудник Bell Labs Эндрю Бобек. Первая разработка — так называемая твисторная память — могла стать прекрасной альтернативой памяти на основе магнитных сердечников. Она во многом повторяла последнюю, но вместо ферритовых колец для хранения данных использовала магнитную пленку. У технологии были два важных преимущества. Во-первых, твисторная память могла одновременно записывать и считывать информацию с целого ряда твисторов. Плюс к этому, было легко наладить ее автоматическое производство. Руководство Bell Labs надеялось, что это позволит существенно снизить цену твисторной памяти и занять перспективный рынок. Разработку финансировали ВВС США, а память должна была стать важной функциональной ячейкой ракет Nike Sentinel. К сожалению, работа над твисторами затянулась, а на первый план вышла память на основе транзисторов. Захват рынка не состоялся.

«Не повезло в первый раз, так повезет во второй»,— подумали в Bell Labs. В начале 70-х годов Эндрю Бобек представил энергонезависимую пузырьковую память. В ее основе лежала тонкая магнитная пленка, которая удерживала небольшие намагниченные области (пузырьки), хранящие двоичные значения. Спустя какое-то время появилась первая компактная ячейка емкостью 4096 бит — устройство размером один квадратный сантиметр обладало емкостью целой планки с магнитными сердечниками.

Изобретением заинтересовались многие компании, и в середине 70-х разработками в области пузырьковой памяти занялись все крупные игроки рынка. Энергонезависимая структура делала пузырьки идеальной заменой как первичной, так и вторичной памяти. Но и тут планам Bell Labs не удалось сбыться — дешевые винчестеры и транзисторная память перекрыли кислород пузырьковой технологии.

Вакуум — наше все

Вакуумные трубки сохранились в технике и по сей день. Особенной любовью они пользуются среди аудиофилов. Считается, что усилительный тракт на основе вакуумных трубок по качеству звука на голову выше современных аналогов.

К концу 40-х годов системная логика компьютеров переехала на вакуумные трубки (они же электронные трубки или термионные шахты). Вместе с ними новый толчок в развитии получили телевидение, устройства для воспроизведения звука, аналоговые и цифровые компьютеры.

Под загадочным словосочетанием «вакуумная трубка» скрывается довольно простой по строению элемент. Он напоминает обычную лампу накаливания. Нить заключена в безвоздушное пространство, при нагреве она испускает электроны, которые попадают на положительно заряженную металлическую пластину. Внутри лампы под напряжением образуется поток электронов. Вакуумная трубка умеет или пропускать, или блокировать (фазы 1 и 0) проходящий через нее ток, выступая в роли электронного компонента компьютеров. Во время работы вакуумные трубки сильно нагреваются, их надо интенсивно охлаждать. Зато они намного быстрее, чем допотопные переключатели.

Первичная память на основе этой технологии появилась в 1946-1947 годы, когда изобретатели Фредди Вильямс и Том Килберн представили трубку Вильямса — Килберна. Метод сохранения данных был весьма остроумным. На трубке при определенных условиях появлялась световая точка, которая слегка заряжала занимаемую поверхность. Зона вокруг точки приобретала отрицательный заряд (ее называли «энергетическим колодцем»). В «колодец» можно было поместить новую точку или оставить его без внимания — тогда первоначальная точка быстро исчезала. Эти превращения истолковывались контроллером памяти как двоичные фазы 1 и 0. Технология была очень популярна. Память на трубках Вильямса — Килберна устанавливали в компьютеры Ferranti Mark 1, IAS, UNIVAC 1103, IBM 701, IBM 702 и Standards Western Automatic Computer (SWAC).

Параллельно свою трубку, именуемую селектрон, разрабатывали инженеры из компании Radio Corporation of America под управлением ученого Владимира Зворыкина. По задумке авторов селектрон должен был вмещать до 4096 бит информации, что в четыре раза больше, чем у трубки Вильямса — Килберна. Предполагалось, что к концу 1946 года будет произведено около 200 селектронов, но производство оказалось очень дорогим.

Наравне с вакуумными трубками в некоторых компьютерах того времени использовалась барабанная память, изобретенная Густавом Таусчеком в 1939 году. Простая конструкция включала большой металлический цилиндр, покрытый сплавом из ферромагнетика. Считывающие головки, в отличие от современных винчестеров, не перемещались по поверхности цилиндра. Контроллер памяти ждал, пока информация самостоятельно пройдет под головками. Барабанная память использовалась в компьютере Атанасова — Берри и некоторых других системах. К сожалению, ее производительность была очень низкой.

Селектрону не было суждено завоевать рынок вычислительных машин — опрятные на вид электронные компоненты так и остались пылиться на свалке истории. И это несмотря на выдающиеся технические характеристики.

В данный момент рынком первичной памяти правит стандарт DDR. Точнее, второе его поколение. Переход на DDR3 состоится уже совсем скоро — осталось дождаться появления недорогих чипсетов с поддержкой нового стандарта. Повсеместная стандартизация сделала сегмент памяти слишком скучным для описания. Производители перестали изобретать новые, уникальные продукты. Все труды сводятся к увеличению рабочей частоты и установке навороченной системы охлаждения.

Технологический застой и робкие эволюционные шаги будут продолжаться до тех пор, пока производители не доберутся до предела возможностей кремния (именно из него изготавливают интегрированные микросхемы). Ведь частоту работы нельзя повышать бесконечно.

Правда, здесь кроется один подвох. Производительности существующих чипов DDR2 достаточно для большинства компьютерных приложений (сложные научные программы не в счет). Установка модулей DDR3, работающих на частоте 1066 МГц и выше, не ведет к ощутимому приросту скорости.

Звездный путь в будущее

Странная текстура на фотографии — это память на основе магнитных сердечников. Перед вами наглядная структура одного из массивов с проводами и ферритовыми кольцами. Представляете, сколько времени приходилось потратить, чтобы найти среди них нерабочий модуль?

Главным недостатком памяти, да и всех остальных компонентов на основе вакуумных трубок было тепловыделение. Трубки приходилось охлаждать при помощи радиаторов, воздуха и даже воды. К тому же постоянный нагрев существенно уменьшал время работы — трубки самым натуральным образом деградировали. Под конец срока эксплуатации их приходилось постоянно настраивать и в конечном итоге менять. Можете представить, скольких усилий и средств стоило сервисное обслуживание вычислительных систем?!

Потом наступило время массивов с близко расположенными ферритовыми кольцами — изобретение американских физиков Эн Вэнг и Вэй-Донг Ву, доработанное студентами под управлением Джея Форрестера из Массачусетского технологического университета (MIT). Через центры колец под углом 45 градусов проходили соединительные провода (по четыре на каждое кольцо в ранних системах, по два в более совершенных). Под напряжением провода намагничивали ферритовые кольца, каждое из которых могло сохранить один бит данных (намагничено — 1, размагничено — 0).

Джей Форрестер разработал систему, при которой управляющие сигналы для многочисленных сердечников шли всего по нескольким проводам. В 1951 году вышла память на основе магнитных сердечников (прямой аналог современной оперативной памяти). В дальнейшем она заняла достойное место во многих компьютерах, включая первые поколения мейнфреймов компаний DEC и IBM. По сравнению с предшественниками у нового типа памяти практически отсутствовали недостатки. Ее надежности хватало для функционирования в военных и даже космических аппаратах. После крушения шаттла «Челленджер», которое привело к смерти семи членов его экипажа, данные бортового компьютера, записанные в памяти с магнитными сердечниками, остались в полной целости и сохранности.

Технологию постепенно совершенствовали. Ферритовые кольца уменьшались в размерах, скорость работы росла. Первые образцы функционировали на частоте порядка 1 МГц, время доступа составляло 60 000 нс — к середине 70-х годов оно сократилось до 600 нс.

Дорогая, я уменьшил нашу память

Производители памяти в наше время больше заботятся о внешнем виде своих продуктов — все равно стандарты и характеристики заранее определены в комиссиях вроде JEDEC.

Следующий скачок в развитии компьютерной памяти произошел, когда были придуманы интегральные микросхемы и транзисторы. Индустрия пошла по пути миниатюризации компонентов с одновременным повышением их производительности. В начале 1970-х полупроводниковая промышленность освоила выпуск микросхем высокой степени интеграции — на сравнительно малой площади теперь умещались десятки тысяч транзисторов. Появились микросхемы памяти емкостью 1 Кбит (1024 бит), небольшие чипы для калькуляторов и даже первые микропроцессоры. Случилась самая настоящая революция.

Особый вклад в развитие первичной памяти внес доктор Роберт Деннард, сотрудник компании IBM. Он разработал первый чип на транзисторе и небольшом конденсаторе. В 1970 году рынок подстегнула компания Intel (которая появилась всего двумя годами раньше), представив чип памяти i1103 емкостью 1 Кбит. Спустя два года этот продукт стал самым продаваемым полупроводниковым чипом памяти в мире.

Во времена первых Apple Macintosh блок оперативной памяти занимал огромную планку (на фото сверху), тогда как объем не превышал 64 Кб.

Микросхемы высокой степени интеграции быстро вытеснили старые типы памяти. С переходом на следующий уровень развития громоздкие мейнфреймы уступили место настольным компьютерам. Основная память в то время окончательно отделилась от вторичной, оформилась в виде отдельных микрочипов емкостью 64, 128, 256, 512 Кбит и даже 1 Мбит.

Наконец, микросхемы первичной памяти переехали с материнских плат на отдельные планки, это сильно облегчило установку и замену неисправных компонентов. Частоты начали расти, время доступа уменьшаться. Первые синхронные динамические чипы SDRAM появились в 1993 году, их представила компания Samsung. Новые микросхемы работали на частоте 100 МГц, время доступа равнялось 10 нс.

С этого момента началось победоносное шествие SDRAM, а к 2000 году этот тип памяти вытеснил всех конкурентов. Определением стандартов на рынке оперативки занялась комиссия JEDEC (Joint Electron Device Engineering Council). Ее участники сформировали спецификации, единые для всех производителей, утвердили частотные и электрические характеристики.

Дальнейшая эволюция не так интересна. Единственное значимое событие произошло в 2000 году, когда на рынке появилась оперативная память стандарта DDR SDRAM. Она обеспечила удвоенную (по сравнению с обычной SDRAM) пропускную способность и создала задел для будущего роста. Вслед за DDR в 2004 году появился стандарт DDR2, который до сих пор пользуется наибольшей популярностью.

В современном IT-мире фразой Patent Troll (патентный тролль) называют фирмы, которые зарабатывают деньги на судебных исках. Они мотивируют это тем, что другие компании нарушили их авторские права. Целиком и полностью под это определение попадает разработчик памяти Rambus.

С момента основания в 1990 году Rambus занималась лицензированием своих технологий сторонним компаниям. К примеру, ее контроллеры и микросхемы памяти можно найти в приставках Nintendo 64 и PlayStation 2. Звездный час Rambus настал в 1996 году, когда Intel заключила с ней соглашение на использование в своих продуктах памяти RDRAM и разъемов RIMM.

Сначала все шло по плану. Intel получила в свое распоряжение продвинутую технологию, а Rambus довольствовалась партнерством с одним из крупнейших игроков IT-индустрии. К сожалению, высокая цена модулей RDRAM и чипсетов Intel поставили крест на популярности платформы. Ведущие производители материнских плат использовали чипсеты VIA и платы с разъемами под обычную SDRAM.

Rambus поняла, что на этом этапе она проиграла рынок памяти, и начала свои затяжные игры с патентами. Первым делом ей под руку попалась свежая разработка JEDEC — память стандарта DDR SDRAM. Rambus накинулась на нее, обвинив создателей в нарушении авторских прав. В течение некоторого времени компания получала денежные отчисления, однако уже следующее судебное разбирательство с участием Infineon, Micron и Hynix расставило все по своим местам. Суд признал, что технологические наработки в области DDR SDRAM и SDRAM не принадлежат Rambus.

С тех пор общее количество исков со стороны Rambus к ведущим производителям оперативки превысило все мыслимые пределы. И, похоже, такой образ жизни компанию вполне устраивает.

Читайте также: