200 240 vac блок питания сколько ватт

Обновлено: 07.07.2024

Почему мне нравится ковырять блоки питания особо расписывать смысла нет, а вот почему именно 12 Вольт, напишу.
Так уж сложилось, но блоки питания с выходным напряжением в 12 Вольт являются одними из самых популярных наряду с 5 Вольт и 19 Вольт.
5 Вольт используется для питания небольших устройств, но больше популярности добавило то, что такое же напряжение дает порт USB, потому и начали "плодиться" такие БП.
19 Вольт используются в ноутбуках, а также такие БП используются энтузиастами радиолюбителями для разного рода паяльных станций и усилителей, в основном из-за приемлемой мощности и компактности.
Ну а 12 Вольт просто для начала является безопасным напряжением и при этом позволяет передавать довольно большую мощность. Конечно на мой взгляд зачастую его можно (а иногда и нужно) на 24 Вольта, но это напряжение больше используется в промышленных устройствах.
В быту же от 12 Вольт можно питать получившие распространение светодиодные ленты для декоративной подсветки и освещения, от 12 Вольт питаются также системы видеонаблюдения, иногда небольшие компьютеры, а также разные граверы, 3D принтеры и т.п.

Вообще у меня в планах сделать несколько обзоров подобных БП, но с разной мощностью и сегодня ко мне на стол попал блок питания на 240 Ватт с пассивной системой охлаждения.
На данный момент распространенные безвентиляторные БП имеют мощность до 240-300 Ватт, причем вторые встречаются куда реже и я бы скорее сказал, что 240 Ватт это уже почти максимум.


На этом я закончу краткое вступление и перейду к предмету обзора.
БП в привычном металлическом корпусе, думаю многие видели подобные решения в продаже.
Упакован был в обычную белую коробку, на фото она не попала, да и не особо там есть на что смотреть.


Клеммник имеет защитную крышку, причем открывается она на 90 градусов, что является хоть и небольшим, но плюсом, так как есть варианты, где крышка не открывается полностью.


Справа от клеммника приютился подстроечный резистор и светодиод индикации включения блока питания.
Заявленные параметры - 12 Вольт 20 Ампер, реальный производитель неизвестен, маркировка стандартна для многих недорогих БП - S-240-12
Сбоку находится переключатель входного напряжения 110/200 Вольт, лучше перед первым включением проверить что он находится в правильном положении.
Дата выпуска конец 2016 года, так что БП можно сказать, свежий.


Для начала измеряем что на выходе у БП настроено.
Выставлено 12.3 Вольта, диапазон регулировки 10-14.5 Вольта. после проверки выставил что-то близкое к 12 Вольт.


Внешне осматривать больше нечего, потому снимаем верхнюю крышку и посмотрим что внутри.


А внутри блок питания ничем не отличается от других, подобных недорогих блоков.
Мне он сходу напомнил блок питания на 48 Вольт 240 Ватт, я бы даже сказал что они один в один.
Даже наверное не так, фактически это тот же БП, просто на другое напряжение, потому я в самом начале и написал, что реальный производитель неизвестен.


Китайские производители продолжают штамповать свои блоки питания на классической элементной базе. Я не скажу что это плохо, но более именитые производители уже гораздо реже делают БП на базе TL494.
По своему это имеет свои плюсы, ремонт такого БП довольно прост, комплектующие есть везде, да и документации по ним очень много.


Как и в варианте 48 Вольт, здесь также использован усиленный вариант радиатора, выходная диодная сборка прижата к ребристому радиатору, который уже отводит часть тепла на корпус. Если в 48 Вольт версии это было не особо и нужно, то при токах в 20 Ампер такое решение не лишнее.


1. Выходной дроссель при вполне нормальных габаритах намотан всего в два провода, причем сечение провода сопоставимо с тем, что использовалось в БП 48 Вольт.
2. Выходные конденсаторы имеют заявленную емкость в 2200мкФ, производитель также неизвестен, впрочем я и не ожидал здесь увидеть конденсаторы от Nichicon или хотя бы Samwha.
3,4. А вот момент с прижимом силовых элементов я проверил отдельно, так как в прошлый раз у меня были большие нарекания по поводу крепежа диодной сборки. В данном случае все в принципе нормально. Можно немного попридираться к прижиму транзисторов (слева), но практика показала, что все в порядке.


Вынимаем плату из корпуса и посмотрим на качество пайки и поищем "косяки" производителя.


Высоковольтные транзисторы применены с запасом, можно не беспокоиться. К тому же корпус TO247, в котором они выполнены, улучшает отвод тепла на радиатор.
Выходная диодная сборка MBR30200 представляет собой два высоковольтных диода Шоттки. Я немного скептически отношусь к применению высоковольтных диодов Шоттки, так как у них уже нет преимущества перед обычными в плане падения напряжения, но остается преимущество в большей скорости переключения, т.е. динамические потери меньше.


Пайка на вид вполне нормальная, в этой части БП все нормально, даже чисто.


Силовые дорожки дополнительно покрыты припоем для увеличения сечения, здесь также нареканий особо нет, хотя в некоторым местах на мой взгляд припоя маловато.

Но один неприятный момент я все таки нашел. Один из силовых контактов не очень хорошо пропаян. Можно конечно сказать, что там по три контакта на полюс, но ведь может так попасть, что он как раз окажется нагруженным. Собственно потому я всегда советую при покупке блоков питания проверять как они собраны. Хотя нет, корректнее сказать - при покупке недорогих блоков питания всегда проверять качество сборки.


На плате присутствует не совсем понятная мне маркировка, очень похоже, что плата рассчитана под БП мощностью до 365 Ватт, но это уже скорее с активным охлаждением (на плате есть место под разъем вентилятора, но сам разъем и необходимые компоненты отсутствуют).


Так как схема блока питания практически идентична модели на 48 Вольт, то я просто внес соответствующие коррективы, а не рисовал ее с нуля. Не гарантирую 100% совпадение, но 99% думаю есть :)


Вот теперь можно проводить тесты.
В качестве тестового стенда использовались
1. Электронная нагрузка
2. Мультиметр
3. Осциллограф
4. Тепловизор
5. Термометр
6. Ручка и бумажка. На бумагу ссылки нет.


1. Режим холостого хода.
2. Нагрузка 5 Ампер, пульсации около 50мВ


1. Нагрузка 10 Ампер, напряжение лишь немного просело, пульсации остались на прежнем уровне
2. Нагрузка 15 Ампер, практически без изменений


Со времени проведения большого теста аккумуляторов я доработал нагрузку чтобы поднять максимальный ток до 30 Ампер. Но что-то пошло не совсем так, как было задумано и максимальный ток ограничен на уровне 16383мА (14 бит), потому для продолжения теста мне пришлось прибегнуть в обычным советским резисторам с сопротивлением 10Ом. при напряжении в 12 Вольт они обеспечивают ток нагрузки около 3.6 Ампера.


1. 20 Ампер, напряжение просело всего на 70мВ, уровень пульсация практически не отличается от предыдущих тестов и составляет 60мВ
2. В качестве дополнительного теста на нагрев я решил поднять выходное напряжение до 12.55 Вольта и погонять БП еще минут 15. Выходная мощность БП при этом была около 250 Ватт.
Как видно по фото, это практически никак не сказалось на результате.

В прошлом обзоре я был так удивлен качеством работы блока питания, что даже проводил тесты с полуторакратной перегрузкой. С БП мощностью 240 Ватт я снял 360 и только тогда начал откровенно волноваться по поводу перегрева.
Но в данном случае все немного печальнее. Для начала фото с тепловизора, снятое в самом конце теста при мощности 250 Ватт.
Самый горячий элемент - выходной дроссель, впрочем такая же картина была и при тесте БП 48 Вольт. Но как я тогда писал, на самом деле материал из которого изготовлен этот дроссель, не боится таких температур, ограничением является стойкость изоляции провода, которым он намотан.


Для компании сфотографировал нагрузочные резисторы, на которых рассеивалось всего около 50 Ватт. Электронная нагрузка при этом брала на себя около 200 Ватт, у нее температура радиаторов была 61 градус.

Как и раньше, я свел все данные в одну табличку.
Тестирование проходило при комнатной температуре, БП лежал горизонтально на столе, что несколько ухудшало тепловой режим, в вертикальном положении он охлаждался бы лучше.
Каждый этап длился 20 минут, затем шел замер температуры и повышение тока на одну ступень.
Последний этап был проведен как дополнительный и занял 15 минут, итого в сумме 20+20+20+20+15= 1ч 35мин.


Результаты заметно выше чем у БП на 48 Вольт, но я бы сказал что вполне терпимые. Самый нежный элемент - силовой трансформатор, не перегревается.


Говорили, что КПД подобных БП около 60-70%, честно, мне не верилось. Но до этого я судил по количеству выделяемого тепла, потому как не заметить "лишние" 100 Ватт тепла тяжело, вот и решил провести этот тест, думаю что не зря.

Конечно в комментариях могут начать писать - а как же MeanWell, почему не MeanWell? Да, я очень хорошо отношусь к блокам питания этой фирмы, и очень часто их использую, потому решил ради интереса сравнить обозреваемый БП и БП фирмы MeanWell. Но стоит отметить, что сравнивал я с БП серии RS, а точнее - RS-150-12, т.е. 12 Вольт 150 Ватт. На данный момент стоимость этого БП составляет около 36 долларов - ссылка.
Блоки питания этой серии отличные, надежность действительно на высоком уровне, БП который вы видите, отработал в составе системы видеонаблюдения около 3 лет при нагрузке близкой к 90% и был заменен планово на новый.

Производитель же заявляет что -

Особенности:
Долговечные 105°C электролитические конденсаторы
Комплекс защит от короткого замыкания, перегрузки, перенапряжения
Электромагнитная совместимость: EN50082-2/EN61000-6-2 для тяжелой промышленности
Высокая рабочая температура до 70°C
Вибрации 5G
Малые размеры, высокая удельная мощность
Высокие КПД, долговечность и надежность
Все модули проходят 100% прогон

Но это относится именно к RS серии, обычные же БП MenWell серий S-ххх-хх немного проще, правда и стоят меньше.

Сегодня не буду выделять плюсы и минусы, а просто опишу мое впечатление о блоке питания.
На мой взгляд это типичный "среднестатистический" китайский блок питания. Нагрев в пределах допуска, среднее качество сборки, но при этом низкий уровень пульсаций и отсутствие "дрейфа" выходного напряжения от прогрева (это довольно важно). Производитель не особо волнуется насчет комплектующих, об этом говорят непонятные конденсаторы на входе, если судить по маркировке, то емкость достаточна, если измерить, то занижена. Я в подобной ситуации просто добавил один конденсатор 100мкФх400В выпаянный из платы монитора.
Самые критичные элементы, которые в данном БП будут влиять на срок службы - выходные конденсаторы.
В остальном вполне нормальный блок питания, все тесты прошел без проблем, но получить такие результаты как с его 48 Вольт вариантом, я увы не смог. На мой взгляд средний блок питания за вполне приемлемые деньги.


Индивидуальная упаковка

Внешне выглядит неплохо, конструкция привычная — алюминиевая рама, одновременно выполняющая роль радиатора и стальная перфорированная защитная крышка.


Ещё до включения, оба блока были разобраны для проверки их технического состояния.



Обнаруженные косяки и недостатки
1. Предохранитель поставлен в нулевом проводе (должен стоять в фазном). Не шибко критично, но всё же…
2. Ради экономии, не поставлен дроссель подавления синфазных помех LF1, поэтому само собой помехи лезут в сеть. На фото продавца он присутствует.

3. В одном блоке накопительный конденсатор сильно помят и чем-то обляпан


Кроме того, занижена его ёмкость (33мкФ). Для полнодиапазонного БП 100-240V без PFC, минимальная ёмкость этого конденсатора в микрофарадах близка к мощности БП в ваттах. Т.е. для БП на 60Вт получается 68мкФ. Для БП, работающего только при номинальном напряжении 220-240В, допустимо уменьшать накопительную ёмкость вдвое ибо накопленного заряда вполне хватает и пульсации напряжения и тока не превышают критического значения.
Для более подробного расчёта можно воспользоваться например этой статьёй
Ниже я дополнительно проверю работу данного узла.
4. Отсутствует выходной фильтрующий дроссель, что сильно повышает пульсации выходного напряжения под нагрузкой.
5. Отсутствует теплопроводная паста между силовыми элементами и корпусом.

6. Габарит силового трансформатора явно не тянет на 60Вт в обратноходовом режиме работы.
7. Некоторые элементы установлены криво — косо.

8. Отсутствует защитная крышка на клеммный блок.


Что радует — пайка вполне нормальная, SMD элементы приклеены, между платой и корпусом не забыли подложить изоляционную плёнку.

Мятый конденсатор я естественно заменил, но поставить конденсатор большей ёмкости не удалось, т.к. он оказался высотой 25мм и упёрся в крышку. Поставил те-же 33мкФ
Тармопасту под силовые элементы естественно намазал.

Реальная схема по старой доброй традиции.


Для сравнения блоков, в одном из них дополнительно:
— Добавил недостающие помехоподавляющие дроссели
— Заменил C6 на приличный импульсный конденсатор 1500мкФ/16В, C7 оставил как есть, нагрузка на него небольшая.
После доработки

Проверку проводил со снятой крышкой для контроля температуры элементов. С крышкой температура элементов естественно будет ещё выше.
— Итак, предельный кратковременный ток, на котором срабатывает защита 5,5А
— При токе нагрузки 5А (60Вт) через 5 минут БП начал довольно сильно вонять перегретым лаком и пластиком и ещё минуты через 3 начинает периодически срабатывать защита от токовой перегрузки (не термозащита). Трансформатор успел разогреться до температуры 145°С и я остановил проверку ибо его обмотка просто сгорит.
Конденсатор C6 успел нагреться до 108°С, что также недопустимо.
Радиатор разогрелся до 75°С
— Снизил ток нагрузки до 4А (48Вт) и запустил проверку.на пару часов. TR1 нагрелся до 105°С C1 — 74°С корпус 67°С. Уже лучше, но для длительного использования такой режим работы всё равно не подходит.
— Ещё снизил ток нагрузки до 3А (36Вт) и температура всех компонентов пришла в норму.
Но есть одно но — если БП использовать как есть без доработок и в собранном виде, максимальный длительный ток нагрузки придётся ещё понижать до 2,5А (30Вт), температура корпуса при этом не превышает 50°С.
Вот это и есть его реальная мощностью, когда он может длительно и надёжно работать. Китаец аж вдвое завысил реальную мощность данного блока питания.


Осциллограммы пульсаций выходного напряжения исходного и переделанного блоков.
Нагрузка 3А, частота преобразования около 65кГц

Как нетрудно заметить, разница кардинальная, амплитуда пульсаций со 125мВ снижается до менее 10мВ.


Дополнительно, проверил пульсации напряжения сетевой частоты на накопительном конденсаторе при различном сетевом напряжении и нагрузке 3А
Слева направо 230В — 180В — 100В

Хорошо видно, как возрастают пульсации на нём при снижении входного напряжения и при сетевом напряжении 100В, пульсации превышают все мыслимые пределы. Т.о. данный БП не способен работать в сетях 110-120В без снижения мощности нагрузки, или надо повышать ёмкость конденсатора.

Диапазон регулировки выходного напряжения 11,15-12,95V
Размеры: 86x59x34 мм
Вес 122гр
Потребляемая мощность на холостом ходу всего 0,2Вт
На холостом ходу и при нагрузке менее 0,4А блок питания тихонько жужжит. Это побочный эффект экономии энергопотребления при малой нагрузке — вместо непрерывной работы ШИМ работает пачками, которые и слышны.
КПД блока при нагрузке 2,5А (30Вт) составил неожиданно высокие 92%. При повышении нагрузки, а также при снижении питающего напряжения, КПД начинает снижаться.

После тестирования, аналогичным образом переделал и второй БП.
Дополнительно, для защиты от перегрузки и перегрева, понизил ток срабатывания защиты с 5,5А до 3,8А удалив резистор R13
В итоге, со всеми доделками схема стала выглядеть так

Для примера покажу как в таком конструктиве выглядит бюджетный фирменный БП нормального качества.


p.s. отсутствующие на плате выходные конденсаторы там просто не нужны ибо номинальный выходной ток всего 3,3А
Ещё более приличный БП



И ещё


Вывод: данный блок питания приобретать смысла не имеет.
Друзья китайцы, распаяйте фильтры, намажьте термопасту и продавайте его как честный БП 12V 2,5А пускай даже за 4$, и я смогу рекомендовать его к покупке.

p.s. открыл спор на возврат по 1$ с каждого.
Не шибко верю, что спор выиграю.
Буду держать в курсе :)
p.p.s. запрошенные деньги вернули через пару часов :)

Хватит переплачивать за ватты: какая мощность блока питания реально нужна обычному ПК

В вопросе выбора блока питания, пользователи делятся на тех, кто покупает на сдачу, и тех, кто покупает киловатты в стиле «дайте таблеток от жадности да побольше». Оба варианта так себе, но не стоит впадать в панику — нужно научиться считать ватты, и тогда все пойдет как по маслу. Как не посадить компьютер на жесткую диету или не перекормить — разбираемся в нашем материале.

Что делает блок питания

Компьютерный БП преобразует сетевое напряжение. Из 220 вольт на входе получаем три линии на выходе: 3.3 В, 5 В и 12 В. Например, такие узлы, как процессор и видеокарта используют для работы линию 12 вольт. Дисководы, жесткие диски и SSD с разъемом SATA подключаются по линии 12 В и 5 В. Напряжение 3.3 В остается под нужды материнской платы, чипсета, иногда для питания накопителей стандарта M2, а также для подачи дежурного напряжения на устройства PCIe.


Максимальная мощность блока питания указана суммарно для всех трех линий. Хотя основной считается 12 В, далеко не все блоки питания обеспечивают по ней максимальную мощность. Например, из 500 ватт, линии 3.3 В и 5 В получат 140 ватт, тогда как для 12 В линии останется лишь 340 ватт. При этом остаток мощности для каждой из линий не зависит от нагрузки на соседнюю — все поделено еще на уровне конструкции.


Фундамент настольного компьютера — процессор и видеокарта. Это компоненты с наибольшим энергопотреблением и суммарно забирают у БП более сотни ватт даже в относительно бюджетных системах. Если потребление видеокарты и процессора превышает 340 ватт, как в нашем примере, компьютер будет перезагружаться или выключаться в нагрузке, не взирая на то, что на 500 ватт. Об этом сходу на коробке не пишут.

Первая ошибка — выбирать только по количеству ватт. Нужно учитывать мощность основных и второстепенных линий и подбирать блок питания по этим цифрам, а не по общей мощности. Поэтому больше ватт — не значит, что это вам подходит.

Почему больше — не лучше

При работе блока питания часть энергии преобразуется в тепло. И чем меньше эта часть, тем выше КПД. Наилучшее КПД блока достигается лишь при определенных, но не максимальных значениях мощности, например при нагрузке в 50 %. Устанавливая слишком мощный БП в слабую систему, которая не может нагрузить его даже наполовину, пользователь переплачивает не только за лишние ватты, но и за низкую эффективность. Значения мощности там, конечно, не очень большие, но суммарно, например в игровом клубе с десятками компов, переплата за электроэнергию уже начнет ощущаться.


Чтобы правильно подобрать блок питания в сборку, необходимо рассчитывать не только среднее потребление будущей системы, но и то, насколько эффективно будет работать блок питания в таких условиях. Сделать это можно вручную или с помощью специальных программ.

Не считайте «на глаз»

Опытные пользователи, которые могут с закрытыми глазами собрать компьютер, считают потребление системы на глаз. Они прикидывают максимальные значения основных комплектующих и добавляют к полученной цифре еще 20-30% на питание накопителей, системы охлаждения, периферии и для запаса прочности.

Если сборкой системы занимается неопытный юзер, то такой метод не поможет, а скорее даже навредит. Новички часто пропускают нюансы и понимают, что сделали ошибку в расчетах, только после того, как компьютер уже собран. Например, не учитывают то, что из 500 ватт для мощных потребителей может быть доступно всего 300-350 ватт. В итоге — нестабильная работа системы, отключение при нагрузке или вовсе такое:


Поэтому не занимайтесь самодеятельностью, лучше использовать проверенные методы. Тогда и кошелек будет целее, и компьютер скажет спасибо.

Вторая ошибка — выбрать мощность БП на авось или как посоветовал Василий на форуме.

Считайте на калькуляторе

Удобный способ подсчитать мощность сборки — использовать специальный калькулятор. Это такой сервис, где собрана информация об энергопотреблении всех доступных для покупки комплектующих. Процессоры и видеокарты, а также вентиляторы, звуковые карты, USB-устройства, накопители и модули памяти — калькулятор знает не только о прожорливости различных железок, но также подкидывает мощность про запас и даже рекомендует подходящие модели БП.

Раз, два — можно идти в магазин за БП.

Существует несколько калькуляторов мощности. Рассмотрим работу калькуляторов на примере и узнаем, обманет ли автоматика опытного пользователя.

Считаем

Первый сервис — калькулятор от be quiet. Он позволяет выбрать только основные комплектующие, накопители и систему охлаждения, а остальное считает автоматически. Пробуем:


Возьмем сборку среднего уровня — восьмиядерный Core i7, RTX 2070 Super, а также два накопителя SATA и комплект оперативной памяти из двух планок DDR4 по 8 Гб. В счет охлаждения добавим три корпусных вентилятора и систему жидкостного охлаждения.

В крайнем случае можем позволить себе разгон:


Нажимаем кнопку «Рассчитать» и смотрим на результат:


По мнению калькулятора, сборка на заводских настройках будет потреблять не более 488 ватт. При этом система предлагает установить блок питания мощностью 650 ватт с сертификацией Gold:


Если спуститься на шаг ниже по ценовой категории и выбрать модель доступнее:


Если верить расчетам калькулятора, для нашей сборки подойдут блоки питания от 550 ватт, при этом «доступный» сегмент поднимает ставки до 600 ватт и выше. Это и есть зависимость мощности от КПД блока и его сертификации: «золотые» модели выдают на 12 В больше мощности, чем «бронзовые» или обычные.

При этом если указать калькулятору, что пользователь планирует разгонять систему, то итоговое потребление подскочит примерно на 10-25%, что тоже вполне соответствует действительности:


Список рекомендуемых блоков в этом случае не изменился, но 550 ватт теперь будет достаточно лишь в том случае, если блок питания имеет сертификацию Gold и выше.

Для сравнения посчитаем ту же сборку на другом калькуляторе — с подробным указанием всех характеристик:


Кроме основных настроек, в этом калькуляторе можно регулировать частоту процессора и видеокарты, а также количество и размер вентиляторов, тип системы охлаждения и даже выбирать USB-устройства, PCIe-адаптеры и другую периферию:


Точная настройка калькулятора установила итоговое потребление системы на отметке 483 ватта — на 5 ватт меньше, чем насчитал первый калькулятор.

К разгону он относится серьезнее — для процессора с частотой 5 ГГц и вольтажом 1.2В, а также видеокарты с частотой ядра 2000 МГц и частотой памяти 1900 МГц автоматика насчитала почти 570 ватт. При этом потребление изменилось лишь для 12В линии:


Врет или не врет

Работу автоматики легко проверить вручную. Для этого нужно выделить комплектующие, которые работают от 12 В: процессор, видеокарта и пара жестких дисков. Теперь считаем:

На заводских настройках восьмиядерный Intel Core i7 9700K потребляет не более 120 Вт даже в пиковых нагрузках. Видеокарта RTX 2070 Super может отбирать у БП от 215 Вт и выше — в зависимости от модели. А стандартные жесткие диски с частотой вращения шпинделя 7200 об/мин потребляют около 10 Вт.

Таким образом, основное потребление системы составит 120+215+2(10) = 355 Вт. Калькуляторы посчитали на 40-50 Вт больше — это запас на вентиляторы и мелочевку, которая может подключаться к 12 В линии. Оставшийся запас прочности БП остается на питание устройств по 5 В и 3.3 В линиям — частично жесткие диски, твердотельные накопители, ОЗУ, устройства PCIe.

Для питания средней игровой системы, причем в хорошем разгоне, понадобится блок с максимальной мощностью не более 650 ватт. Более того, если рассмотреть сборку на топовых комплектующих, то система все равно впишется в рамки, которые ставит нам калькулятор:


Intel Core i9 10900K и Nvidia RTX 3080 — даже в этом случае пользователю достаточно выбрать качественный БП из сегмента 650-700 ватт. Но 2000 ватт, 1500 ватт, и даже 1000 ватт будут для любой современной системы не лишними, а просто чересчур. Если же разогнать десятиядерник до 5.1 ГГц с вольтажом 1.35В, то понадобится БП на 750-800 ватт:


Вывод №1 — не стоит переплачивать за лишние ватты в блоке питания. Даже при большом желании домашний компьютер с одним процессором и одной видеокартой не сможет выбрать весь потенциал киловатника. Другое дело, если потратить оставшуюся сумму на улучшение остальных комплектующих или же на модель блока питания качеством выше.

Иногда меньше — лучше

Все еще не понятно? Тогда подкинем пару наглядных примеров. Вот таблица с показателями КПД для стандартной сертификации 80+:


Возьмем золотую середину — это блоки питания с бронзовым сертификатом. КПД такого блока варьируется от 81% до 85% в зависимости от уровня нагрузки. Теперь представим, что перед нами находится игровая система с максимальным энергопотреблением 600 ватт. В сборке установлен блок питания с заявленной максимальной мощностью 750 ватт. Считаем:

600 ватт это 80% от 750 ватт. Значит, КПД этого блока питания в данной системе будет равно примерно 82%. Делим 600 на 0.82 и получаем 732 ватта — то, что блок питания будет потреблять из розетки для выдачи стабильных 600 ватт.

Проверим эту теорию на более дорогом блоке питания с сертификацией Platinum:

Его КПД при 80% нагрузке составляет примерно 92%. 600 разделить на 0.92 равно 652 — на 80 ватт меньше, чем у бронзового блока.

А теперь подсчитаем выгоду:

В час это 80 ватт, значит, в сутки уже 1920 ватт, а в месяц это превращается в 60 кВт — в год 720 кВт. Умножаем получившуюся цифру на тариф электроэнергии и смотрим на сумму.

Вывод №2 — тратим деньги не на излишнюю мощность, а на систему с высокой эффективностью или высоким КПД. Бонусом получаем тихую систему охлаждения и различные примочки из премиального сегмента: например, подключение БП к материнской плате для мониторинга энергопотребления, контроля вольтажей и управления системой охлаждения.

Что в итоге?

Лучше взять более качественный блок питания с меньшей мощностью и сертификатом от "бронзы" и выше, чем дешевый БП с более высокой мощностью.

Если есть свободные средства и хочется добавить их к своей сборке, нужно делать это с умом. Например, приобрести блок питания из золотых или платиновых моделей. Хорошие блоки питания живут долго, и при сборке новой системы можно переставить БП из старого компа. Это правильная экономия.

Как мы убедились на примерах с калькуляторами и двумя разными по мощности системами, даже довольно производительным комплектующим в разгоне понадобится для работы не более 750-800 ватт. Поэтому блоки питания с максимальной мощностью от 1 кВт лучше оставить владельцам экстремальных сборок с двумя топовыми видеокартами и самым прожорливым процессором.

Блок питания MN-200W12V FSB200-12 (12V, 200W, 16.7A, IP67)

ДОБАВИТЬ В КОРЗИНУ

Блок питания SP-D 12V 200W 16.7A IP67

ДОБАВИТЬ В КОРЗИНУ

Блок питания RV-200-12 (12V, 200W, 16,67A, IP67)

ДОБАВИТЬ В КОРЗИНУ

Блок питания Clps200-H1V12 (12V, 200W, 16.7A, IP67)

ДОБАВИТЬ В КОРЗИНУ

Блок питания ARPV-12200-A1 (12V, 16.6A, 200W)

ДОБАВИТЬ В КОРЗИНУ

Блок питания ARPV-12200-B1 (12V, 16,7A, 200W)

ДОБАВИТЬ В КОРЗИНУ

Блок питания RVS-200-12 (12V, 200W, 16.67A, IP67)

Герметичный блок питания для светодиодных лент и линеек: входное напряжение: 100-250. Выходное напряжение 12V; мощность 200Вт, ток 16.67А. Размеры 202x70x31мм.

Блок питания ST12200 (12V, 16.7A, 200W)

Блок питания ZVS-200-12 (12V, 200W, 16.67A, IP67)

Блок питания RX-12200-Slim (12V, 200W, 16.6A)

Низкопрофильный блок питания: входное напряжение: 170-264V. Выходное напряжение 12V, для светодиодных лент и линеек; мощность 200Вт, размеры 240x78.8x28мм, герметичный.

Блок питания Psdl IP67 200W алюмин.

Мощность: 200Вт Ток: 16,7А Выходное напряжение: 12В Рабочее напряжение: 176-264В AC50/60Гц Размеры: 236*123*60мм Масса: 2600гр

Блок питания VAS-12200D023 DC12V 200W IP66 (250*127*60 мм)

Блоки питания используются для подключения светодиодной техники, работающей от постоянного напряжения DC12/24V. Использование стабилизированных блоков питания позволяет обеспечить оптимальный режим Подробнее.. работы светодиодов, увеличить срок их службы. Во всех блоках питания предусмотрена защита от короткого замыкания и перегрузки. <br/><br/>

Блок питания PV-12200C (12V, 16.7A, 200W)

Блок питания PV-SS12200 (12V, 16.7A, 200W)

Блок питания GT12200A (12V, 16.7A, 200W)

Читайте также: