Блок питания на lm393 с регулировкой напряжения и тока

Обновлено: 06.07.2024

Друзья, сегодня хочу рассказать вам о своей новой самоделке, это блок питания с регулировкой напряжения и тока о котором мечтают все без исключения начинающие и опытные радиолюбители. Устройство можно использовать, как в качестве лабораторного блока для питания различных самоделок, так и в качестве зарядного устройства для зарядки автомобильных аккумуляторов. Блок питания имеет стабилизированный регулятор напряжения и систему ограничения силы тока, защиту от переполюсовки клейм аккумулятора со световой индикацией, а также автоматический регулятор скорости вентилятора, изменяющий обороты в зависимости от нагрева радиатора. На этом рисунке изображена схема блока питания с регулировкой напряжения и тока рассчитанная на ток до 10А. К этой схеме можно подключать любой трансформатор или импульсный источник питания от 12 до 30В. Для тех кто любит по мощнее, в этой статье вы также найдете схему рассчитанную на ток до 25А. Не буду торопить события. Внимательно читайте статью до конца.

Регулируемый стабилизатор напряжения LM317 позволяет плавно регулировать напряжение в диапазоне от 1.2 до 30В. Регулировка напряжения выполняется переменным резистором Р1. Транзистор Т1 MJE13009 выполняет роль ключа пропускающего через себя большой ток.

Система ограничения силы тока выполнена на полевом транзисторе Т2 IRFP260, позволяет ограничивать ток от 0 до 10А, управление током осуществляется переменным резистором Р2, что позволяет использовать данный блок питания в качестве зарядного устройства для зарядки автомобильных аккумуляторов. Мощный резистор R6 с сопротивлением 0.1 Ом 20 Вт выполняет роль шунта. Купить его не проблема в Китае на Али Экспресс. Если не хочется долго ждать можно соединить несколько резисторов параллельно тогда получится один мощный резистор. Обратите внимание на то, что при параллельном соединении резисторов применяется специальная формула.

Параллельное соединение резисторов формула

Общее сопротивление резисторов делится на количество резисторов. Как определить общее сопротивление, одинаковых резисторов? Надо просто взять сопротивление одного резистора и разделить на количество резисторов. Например, у меня есть 4 резистора, сопротивление каждого резистора 1 Ом и рассеиваемая мощность 10 Вт, следовательно общее сопротивление всех резисторов 1 Ом, если их соединить параллельно, то получится общее сопротивление четырех резисторов 0.25 Ом 40 Вт. Мощность всех резисторов суммируется. Таким образом можно сделать резистор любой мощности. На фотографиях и в видеоролике в моем блоке питания вы увидите сборку из 4 резисторов по 1 Ом 10 Вт с общим сопротивлением 0.25 Ом и мощностью 40 Вт. Сделал я так потому, что в тот момент у меня не было под рукой, да и в магазине тоже мощного резистора на 0.1 Ом 20 Вт. Но вот чудо, оказалось, что регулировка тока в данной схеме отлично работает даже с сопротивлением в 0.25 Ом. Мне стало интересно и я решил провести серию экспериментов с резисторами пришедшими через пару недель из Китая, с сопротивлением в 0.1 Ом, 0.25 Ом, 0.5 Ом, и пришел к выводу, что с любым из этих сопротивлений регулировка тока работает отлично. То есть, в данную схему можно поставить резисторы с любым сопротивлением в диапазоне от 0.1 Ом до 0.5 Ом, что делает эту схему доступной для сборки начинающим радиолюбителям. Ведь не всегда можно найти в магазине резисторы с нужным сопротивлением и мощностью. Ещё я пробовал заменить резистор куском нихромовой спирали от электроплитки, все тоже самое на работу регулировки тока это никак не повлияло, единственный минус в том, что спираль сильно нагревалась и её пришлось залить в бетон.

В схеме имеется встроенная защита от переполюсовки. При правильном подключении блока питания к аккумулятору загорается зеленый светодиод Led1. В случае не правильного подключения загорается красный светодиод Led2, сигнализирующий о ошибке подключения. Система корректно работает только при выключенном питании блока питания. То есть сначала подключаем аккумулятор, когда загорится зеленый светодиод включаем блок питания в сеть.

Автоматический регулятор оборотов вентилятора предназначен для уменьшения уровня шума возникающего в процессе работы блока питания. Стабилизатор напряжения L7812CV поддерживает постоянное напряжение 12В поступающее на делитель состоящий из терморезистора R8 установленного на радиаторе и подстроечного резистора Р3. Напряжение с делителя поступает на базу транзистора Т3. В процессе работы блока питания от большой нагрузки радиатор нагревается, сопротивление терморезистора R8 установленного в радиаторе становится меньше сопротивления подстроечного резистора Р3, напряжение на базе транзистора увеличивается и транзистор приоткрывается, тем самым увеличивая скорость вращения вентилятора. Настройка чувствительности регулятора осуществляется подстроечным резистором Р3.

В данной схеме регулируемого блока питания имеется возможность подключения разных моделей вольтметров и амперметров, стрелочных и электронных. С аналоговой классикой обозначенной на схеме буквами V вольтметр и A амперметр все понятно подключаем согласно схеме. Амперметр лучше покупать со встроенным шунтом, так гораздо компактней и дешевле. Класс точности вольтметра и амперметра с Али Экспресс должен быть 2.5 эти приборы работают нормально. А вот с китайскими электронными придется повозиться. На данный момент существует две модели китайских универсальных измерительных приборов (КУИП). Первая модель с синим проводом со встроенным шунтом более точная менее глючная, в последнее время её трудно найти на Али Экспресс. Вторая модель с желтым проводом и встроенным шунтом не точная и очень глючная с прыгающими показаниями амперметра от 0 до 0.25А на холостом ходу без нагрузки. Не понятно зачем её вообще продают? Если вы будете ставить электронный КУИП, тогда надо разорвать участок электрической цепи отмеченный на схеме красным крестиком. По другому в данной схеме электронный КУИП работать правильно не будет .

А эта схема для тех, кто любит мощные блоки питания. Как и обещал до 25А.

В схему добавлен дополнительный мощный транзистор Т2 TIP35C способный выдерживать ток до 25А и резистор R3 200 Ом. Диодный мост заменен на более мощный. Транзистор IRFP250 выдерживает 30А, а транзистор IRFP260 49А.

На этом рисунке изображена печатная плата блока питания с регулировкой напряжения и тока на 10А.

На этом рисунке изображена печатная плата блока питания с регулировкой напряжения и тока на 25А.

Стабилизатор напряжения LM317, транзисторы TIP35C, IRFP250, 260 устанавливаем на радиатор через изолирующие термопрокладки и термошайбы. Транзистор MJE13009 устанавливаем на радиатор без изоляции, иначе от сильного нагрева и плохого отвода тепла через термопрокладку будет перегреваться и выходить из строя. Стабилизатор напряжения L7812CV и транзистор BD139 устанавливаем на разные радиаторы. Терморезистор вставляем в просверленное в радиаторе отверстие и закрепляем с помощью Поксипола или Эпоксидной смолы. В процессе установки терморезистора проверяйте мультиметром отсутствие электрического контакта, между терморезистором и радиатором. Переменные резисторы, а также светодиоды при необходимости можно соединить проводами и вынести за пределы платы.

Готовый блок питания начинает работать сразу после подачи питания на плату. Единственное что надо настроить, так это скорость вращения вентилятора. Для этого надо при холодном радиаторе с помощью подстроечного резистора Р3 выставить напряжение на вентиляторе примерно 1 вольт. Вентилятор начнет вращаться при температуре радиатора примерно 45 градусов, обороты будут подниматься прямо пропорционально температуре радиатора. При охлаждении радиатора обороты вентилятора будут снижаться. Так работает автоматический регулятор оборотов вентилятора.

Блок питания с регулировкой напряжения и тока

Как же пользоваться блоком питания?
Очень просто. Включаем питание и выставляем регулируемым резистором Р1 нужное вам напряжение. Ручку регулируемого резистора Р2 ставим в крайнее правое положение соответствующее максимальной силе тока. Подключаем нагрузку к блоку питания, при необходимости добавляем напряжение. Если надо резистором Р2 можно ограничить ток.

Блок питания с регулировкой напряжения и тока подключение нагрузки

Как заряжать аккумулятор?
Легко! При подключении аккумулятора блок питания должен быть выключен из сети. Ставим ручки резисторов Р1 и Р2 в крайнее левое положение, минимальное напряжение и минимальный ток. Подключаем аккумулятор к блоку питания. Должен загореться зеленый светодиод, это означает что аккумулятор подключен правильно. В случае ошибки подключения загорится красный светодиод. После того, как вы убедились в правильности подключения аккумулятора, включите блок питания в сеть. Переменным резистором Р1 установите напряжение 14.5В. Далее резистором Р2 установите силу тока равную 10% от емкости аккумулятора, то есть для 60А/ч батареи начальный ток должен быть не более 6А.

Блок питания с регулировкой напряжения и тока начало зарядки аккумулятора

После установки силы тока произойдет падение напряжения примерно до 13В. По мере заряда аккумулятора напряжение будет постепенно подниматься до 14.5В, а сила тока будет снижаться до 0.1А это будет означать, что батарея полностью заряжена.

Блок питания с регулировкой напряжения и тока конец зарядки аккумулятора

Что будет с блоком питания в случае короткого замыкания?
Ничего страшного не произойдет. В случае короткого замыкания сработает защита ограничения тока. Согласно закону Ома: чем больше сопротивление цепи, тем меньше сила тока будет в нем. Следовательно при коротком замыкании будет максимально возможный ток. Напряжение упадет, а сила тока будет той, которую вы ограничили резистором Р2.

Радиодетали для сборки блока питания с регулировкой напряжения и тока на 10А

  • Диодный мост KBPC2510, KBPC3510, KBPC5010
  • Конденсатор С1 4700mf 50V
  • Регулируемый стабилизатор напряжения LM317
  • Транзисторы Т1 MJE13009, T2 IRFP250, IRFP260, T3 КТ815, BD139
  • Переменные резисторы Р1 5К, Р2 1К, Р3 10К
  • Стабилитрон 12V 5W 1N5349BRLG
  • Резисторы R1, R2 200R 0.25W, R3 1K 5W, R4 100R 0.25W, R5 47R 0.25W, R6 0.1R 20W, R7 3K 0.25W
  • Терморезистор R8 B57164-K 103-J сопротивление 10К
  • Светодиоды 5мм красный и зеленый, напряжение питания 3В
  • Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 2шт
  • Вентилятор 70х70 мм

Радиодетали для сборки блока питания с регулировкой напряжения и тока на 25А

  • Диодный мост KBPC2510, KBPC3510, KBPC5010
  • Конденсатор С1 4700mf 50V
  • Регулируемый стабилизатор напряжения LM317
  • Транзисторы Т1 MJE13009, T2 TIP35C, T3 IRFP250, IRFP260, T4 КТ815, BD139
  • Переменные резисторы Р1 5К, Р2 1К, Р3 10К
  • Стабилитрон 12V 5W 1N5349BRLG
  • Резисторы R1, R2, R3 200R 0.25W, R4 1K 5W, R5 100R 0.25W, R6 47R 0.25W, R7 0.1R 20W, R8 3K 0.25W
  • Терморезистор R9 B57164-K 103-J сопротивление 10К
  • Светодиоды 5мм красный и зеленый, напряжение питания 3В
  • Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 2шт
  • Вентилятор 70х70 мм

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать блок питания с регулировкой напряжения и тока

Хотелось бы представить вниманию читателя замечательную схему лабораторного блока питания (ЛБП) с регулировкой стабилизированного напряжения 0..50В и регулировкой тока до 1,5А.

Разработка простого и доступного блока питания (ПиДБП 0…50В) велась на форуме сайта «Паяльник» по инициативе пользователя с именем Olegrmz. На момент написания этой статьи, на форуме ветка насчитывала около 500 страниц обсуждения данной схемы и примерно 18 её вариантов. Все варианты рабочие со своими особенностями. Наиболее стабильная и популярная версия простого и доступного блока питания – это версия v16y2. Именно ее я хочу представить вниманию читателя.

Простой и доступный блок питания

Преимуществом схемного решения ПиДБП в отличие от общепринятых схем на операционных усилителях (ОУ) является то, что выходное напряжение может достигать 50В, а не ограничиваться напряжением питания ОУ (32В), как в подавляющем большинстве схем ЛБП.

Стабильность устройства и его повторяемость просто замечательные. Поэтому, я рекомендую читателю собрать этот простой и доступный лабораторный блок питания для своей домашней мастерской.

Схема простого и доступного БП 0…50В (версия v16y2)

Схема ПиДБП простого и доступного блока питания

Схема состоит из следующих узлов: выпрямитель с фильтром, стабилизатор напряжения +12В, стабилизация напряжения, стабилизация тока, индикация, регулирующий узел и защита от перегрева.

Выпрямитель состоит из понижающего трансформатора TV1, диодного моста VDS1 и фильтра C1.

Стабилизатор напряжения +12В выполнен на основе микросхемы VD1 и на транзисторе VT1. Стабилизированным напряжением +12В питается операционный усилитель DA1. Также это значение используется, как источник опорного напряжения в узлах регулировки.

Регулирующий узел состоит из двух транзисторов VT2 и VT4, включенных по схеме составного транзистора для увеличения коэффициента усиления. VT4 является самым нагруженным элементом. На нем рассеивается большое количество тепла, пропорциональное разности между входным и выходным напряжением при протекании через него тока нагрузки. Транзисторами VT2 и VT4 управляет VT3.

Как видно по схеме, транзистор VT2 прямой проводимости (PNP). Ниже представлена схема включения транзистора с обратной проводимостью NPN. Именно под такую структуру (NPN) транзистора VT2 разведена печатная плата (ссылка под статьей).

ПиДБП включение транзистора NPN

Узел стабилизации напряжения выполнен на ОУ DA1.1, который сравнивает часть напряжения с выхода лабораторного блока питания (инверсный вход) с частью опорного значения (прямой вход), а сигнал рассогласования поступает на базу транзистора VT3.

Узел стабилизации тока выполнен на ОУ DA1.2, который сравнивает падение напряжения на шунте R27 (падение на нем пропорционально току нагрузки ЛБП) с частью опорного значения. Сигнал рассогласования поступает на транзистор VT3. Узлы стабилизации тока и напряжении работают параллельно и это плюс в скорости работы системы автоматического регулирования.

Узел индикации выполнен на ОУ DA1.4, работающим как компаратор, который управляет свечением светодиодов HL1 и HL2 в зависимости от режима стабилизации (тока или напряжения). Этот узел не обязателен, но мне очень удобно видеть порог включения режима стабилизации тока при проверке некоторых устройств.

При замкнутом ключе S1 блок питания перестает работать в режиме стабилизации тока, а включается триггерная защита (DA1.2 взаимодействует с DA1.4), которая при превышении установленного порога снижает до нуля выходной ток ЛБП до тех пор, пока не будет разорван ключ S1.

Узел тепловой защиты также не обязателен и монтаж его элементов выполняется по желанию. Выполнен он на операционном усилителе DA1.3. Этот операционный усилитель сравнивает часть опорного значения со значением делителя R31R32. При росте температуры сопротивление R31 уменьшается и на инверсном входе DA1.3 потенциал увеличивается и когда он будет больше чем потенциал на прямом входе (установленное значение с помощью R34) то на выходе DA1.3 появится земля (GND). При этом светодиод HL3 засветится, транзистор VT3, а вслед за ним VT4 и VT2 закроются. На выходе блока питания будет нуль. Это полезная функция, если габариты теплоотвода транзистора VT2 не позволяют долговременно рассеивать необходимую мощность. Также, это полезно, если радиатор силового транзистора установлен внутри корпуса, без принудительного охлаждения.

Подстроечный резистор R22 позволяет выставить максимальное напряжение на выходе блока питания под возможности трансформатора. Его необходимо подстраивать на номинальном токе.

Переменным резистором R26 регулируется ток, а резистором R20 регулируется напряжение.

Диод VD2 защищает элементы схемы от встречного напряжения. Это необходимо, когда к блоку питания подключается аккумулятор или устройство с заряженными емкостями.

Диод VD5 защищает от перепутывания полярности при подключении нагрузки, например того же аккумулятора или заряженной емкости.

Компоненты схемы

Все номиналы указаны на схеме, и если их все соблюсти при сборке, то он запустится без проблем. Также на схеме в скобках указаны номиналы для входного напряжения 50В.

Микросхема DA1 является счетверенным операционным усилителем LM324. Все четыре канала независимы друг от друга. Особенностью этого ОУ является наличие на его входах PNP транзисторов. Поэтому, при замене LM324 необходимо подбирать аналог с наличием биполярных PNP транзисторов на входе, а также, чтобы аналог мог обеспечить близкое к нулю выходное напряжение смещения нуля. Микросхему LM324 можно заменить двумя микросхемами LM358 (потребуется новая разводка печатной платы).

Диодный мост можно собрать из выпрямительных диодов 1N5408 или применить готовый мост типа KBU610 или KBU810. Фильтрующая емкость C1 (10 000мкФ) при заряде будет обеспечивать довольно большой ток через мост, это нужно учитывать.

Для удобства регулирования выходных параметров блока питания необходимо применять переменные резисторы R20 и R26 с линейной зависимостью. Если применить потенциометры с логарифмической зависимостью, то при повороте их ручек на один и тот же угол сопротивление будет изменяться неравномерно. Это особенно заметно, если на корпусе нарисована равномерная (линейная) шкала с цифровыми значениями.

Подстроечные резисторы R22 и R34 лучше применить многооборотные типа 3296W, они позволяют плавно и удобно выполнять настройку устройства.

В качестве R31 я использовал термистор сопротивлением 10кОм с отрицательным температурным коэффициентом.

Транзистор VT2 для печатной платы, приложенной к статье должен быть NPN проводимости. Его номинальный ток коллектора и Uкэ выбирается с запасом. Кроме того, должен быть запас рассеиваемой мощности. Так, при Uвх=50В, Uвых=3В и Iнагр=1,5А рассеиваемая мощность на транзисторе будет равна P=(50В-3В)×1,5А=71Вт. Что очень даже немало. Для такого случая транзистор должен быть рассчитан на рассеиваемую мощность не менее 100-120Вт и иметь хорошее охлаждение (читать ниже).

Я в качестве VT2 установил 2N3055, можно поставить TIP35C или 2SC5200.

Охлаждение

Охлаждать необходимо корпус VT2. Теплоотвод нужно устанавливать снаружи корпуса блока питания для эффективной естественной конвекции, либо необходимо применять активное (принудительное) охлаждение. Площадь радиатора при пассивном охлаждении рекомендую выбирать расчета 10-20см 2 на 1Вт рассеиваемой мощности транзистора, которая равняется P=(Uвх-Uвых)×Iнагр. Если планируется долговременная работа с нагрузкой то берем 20см 2 на 1Вт, а если ЛБП будет использоваться только для проверок или запуска устройств, то можно обойтись и 10см 2 на 1Вт.

Охлаждение 2n3055

Радиатор для ПиДБП

Трансформатор

Вторичная обмотка трансформатора должна быть рассчитана на ток, не меньше максимального тока нагрузки (1,5), а лучше, чтобы он имел запас. Напряжение вторичной обмотки выбирается под нужные параметры ЛБП. Я рекомендую для Uвых=30В применить трансформатор на

24В, так как после выпрямления на емкости С1 на холостом ходу напряжение будет в 1,41 раз больше (34В), а после стабилизатора снизится на несколько вольт. Применение трансформатора с обмоткой

24В избавит от пересчета некоторые элементы схемы. Для Uвых=50В я рекомендую применить трансформатор с вторичной обмоткой 36В.

Также для уменьшения рассеиваемой мощности на регулирующем транзисторе рекомендуется применять трансформатор с двумя-тремя вторичными обмотками и добавить тумблер или коммутатор обмоток. Можно применить трансформатор 12В+12В, и сделать переключатель для переключения режимов регулировки напряжения от 0 до 15В и от 15В до 30В.

Стабилизатор ЛБП можно питать от импульсного источника питания, тогда входную емкость C1 необходимо уменьшить до нескольких сотен микрофарад.

Печатная плата

Печатная плата имеет размеры 72×75мм. Она взята из ветки форума по разработке ПиДБП. Разведена плата без выпрямителя и фильтрующих конденсаторов, то есть, только сам стабилизатор.

Печатная плата простого блока питания

Печатная плата ПиДБП

Номера выводов каналов микросхемы DA1 на схеме и печатной плате разнятся, точнее каналы подключены по принципу разводки печатной платы (как проще, так и подключены). Вообще без разницы, какой канал из четырех будет DA1.1, а какой будет DA1.2 и так далее, главное соблюдать схему подключения.

Для удобства, монтаж необходимо начинать с перемычек и резисторов.

Монтаж компонентов блока питания

Далее монтируются все остальные компоненты, от меньших к большим.

Простой лабораторный БП

Запуск и испытания

При сборке я обнаружил, что на плате почему-то нет выходных емкостей C5 и C7. При испытании ПиДБП пришлось их установить навесом, чтобы быть уверенным, что данные емкости никак не замедляют и не выводят из стабильной работы систему автоматического регулирования. Меня интересовал момент скорости изменения напряжения на выходе ЛБП при регулировке и скорость работы защиты от КЗ, успеет ли она отработать короткое замыкание. При испытаниях защита работала отлично, а также отлично изменялось при регулировке значение Uвых.

Первый запуск блока питания я выполнял от китайского ЛБП (30В), ограничив его выходной ток в районе 50мА, чтобы в случае неправильной работы испытуемого устройства не сжечь его.

После запуска ПиДБП я убедился, что регулировка Uвых производится во всем диапазоне от 0 до 23В. Далее с помощью R22 я поднял Umax с 23В до 28В. Позже под нагрузкой 1А я еще раз выполнил корректировку максимального значения Uвых.

После чего, я приступил к проверке нагрузочной способности. Сначала нагрузил ПиДБП резистором 51Ом, опустив его в ванночку с водой. С помощью вращения потенциометра R26 я убедился в правильном функционировании узла стабилизации тока, значение Iнагр изменяется плавно от 0 до 0,5А.

Далее я выставил на выходе испытуемого устройства 2В и нагрузил резистором 4Ома, который я установил на радиатор. Ручку R26 выкрутил на максимум. Плавно вращая ручку R20 я увеличивал Uвых и наблюдал за нагревом элементов и смотрел по амперметру показания. При достижении значения 1,4А рост тока остановился. То есть максимальный ток нагрузки составил 1,4А.

Испытание простого и доступного блока питания ПиДБП

Можно сделать наоборот, R20 выкрутить на максимум, а R26 в минимум, нагрузить низкоомным резистором (например 4Ома). Плавно вращая R26 проверить ограничение на отметке 1,4А.

Далее при подключенной нагрузке я замкнул выход, ничего плохого не произошло, стабилизация тока работала отлично. После этого я отключил нагрузку и замыкал выход на разных значениях Uвых, стабилизация тока включалась при 1,4А отлично, защищая от пробоя регулирующий транзистор. Последним этапом проверки ПиДБП на КЗ с условием короткого замыкания на выходе, устроенное перед запуском. В этом случае защита функционировала также без нареканий. При замкнутом ключе S1, при достижении установленного порога Iнагр, срабатывал триггер и на выходе блока питания ток не протекал до тех пор, пока ключ S1 не был разомкнут.

Чуть позже я устроил еще немаловажную проверку, подключив на выход аккумулятор 12В 5А при малом Uвых, то есть, организовав для испытуемого устройства встречное напряжение. Диод VD2 со своей задачей справился отлично. Кратковременно подключив аккумулятор обратной полярностью, невзирая на искры, диод VD5 выдержал, хоть и кратковременно. Подразумевается, что между аккумулятором и блоком питания должен устанавливаться предохранитель.

Защита от перегрева настраивается на нужную температуру. Можно нагреть воду в стакане до необходимой температуры, опустить туда корпус термистора и вращением движка R34 добиться начала свечения HL3.

При запитывании ПиДБП от китайского лабораторного блока питания, на выходе при нагрузке 1А с помощью осциллографа С1-94 я пытался посмотреть пульсации, но они настолько малы и с учетом старенького аналогового осциллографа С1-94 я увидел только наводки на щупе.

Выход на осциллографе С1-94 при питании от ИИП

При проверке от трансформатора 24В 1,5А с емкостью 2×4700мкФ пульсации были также незначительны (вертикальная развертка 10мВ на деление).

Карттинка на осциллографе при питании от трансформатора

Умощнение схемы

Я считаю это немаловажная тема, так как многим радиолюбителям нужен лабораторный блок питания с нагрузочной способностью до 3А и более.

Умощнение схемы ПиДБП заключается в параллельном соединении дополнительных силовых транзисторов VT2. Количество транзисторов определяется исходя из мощности. Так для блока питания 30В 3А необходимо устанавливать два транзистора 2N3055.

Так как транзисторы имеют разброс параметров, то в разрыв эмиттеров необходимо устанавливать мощные (2Вт) выравнивающие резисторы 0,1Ом. Без выравнивающих резисторов силовые транзисторы могут выйти из строя в виду неравномерно распределенного тока нагрузки между ними.

Вторым этапом умощнения является изменение номинала шунта R27, иначе выходной ток будет ограничен значением 1,4А.

Номинал R27 выбирается исходя из следующего правила: при максимальной нагрузке падение напряжения на R27 должно быть 500мВ.

Для тока 3А сопротивление шунта 0,166Ом (из стандартного ряда 0,15Ом). Для 5А выбираем 0,1Ом.

Емкость C1 выбирается исходя из минимальных требований 2000мкФ на 1А, иначе будут значительные пульсации.

Лабораторный блок питания своими руками

Собирая лабораторный блок питания своими руками, многие сталкиваются с проблемой выбора схемы. Импульсные блоки питания при наладке самодельных передатчиков или приемников могут давать нежелательные помехи в эфир, а линейные блоки питания зачастую не в силах развивать большую мощность. Почти универсальным блоком может стать простой линейный блок питания 1,3 – 30В и током 0 – 5А, который будет работать в режиме стабилизации тока и напряжения. При желании им можно будет, как зарядить аккумулятор, так и запитать чувствительную схему.

В сети гуляет интересная схема, которая обсуждалась на множестве форумов, отзывы по ней были ну совсем неоднозначные. Ниже приводим оригинал этой схемы, и вкратце расскажем, откуда она взята. На основе ее мы сделаем лабораторный блок питания своими руками.

Это почти классика. Блок питания реализован на стабилизаторе напряжения LM317, который может регулировать напряжение в пределах 1,3 – 37В. Работая в паре с мощным транзистором КТ818, схема способна протянуть через себя уже значительный ток. Ограничитель и стабилизатор тока, так называемая защита лабораторного блока питания, организована на LM301.

Если обратиться к первоисточникам, можно увидеть, что основа схемы описывалась в разных книгах, например Г. Шрайбер «300 схем источников питания» стр. 39.

простой лабораторный блок питания

А также упоминалась в книге П. Хоровиц «Искусство схемотехники» том 1, стр. 358.

простой лабораторный блок питания

Новичкам, собирающий первый блок питания, рекомендуем ознакомиться с вышеупомянутой литературой, там есть, что для себя почерпнуть.

Как видим, основа особо не поменялась, схема обросла парой фильтрующих конденсаторов, диодными мостами и весьма странным способом включения измерительной головки. Также применяется транзистор КТ818, который значительно уступает по мощности MJ4502 или MJ2955.

Лабораторный блок питания своими руками 1,3-30В 0-5А

Немножко подумав, мы сделали свою интерпретацию данного блока питания. Повысили емкость входных конденсаторов, убрали элементы измерительной головки и добавили парочку защитных диодов. Применения в этой схеме КТ818 было абсолютно неоправданно, он безбожно грелся и безвозвратно издох, пока его не заменили парой недорогих транзисторов TIP36C, которые включили параллельно.

Настройку блока питания необходимо проводить в несколько этапов:

Первое включение производится без LM301 и транзисторов. Регулятором Р3 проверяем, как регулируется напряжение. За регулировку напряжения отвечают LM317, Р3, R4 и R6, С9.

Если регулировка напряжения производиться нормально, тогда к схеме подключаем транзисторы. Пару транзисторов покупать лучше с одной партии, с максимально близким hFE. Для нормальной работы параллельно включенных транзисторов, в цепи эмиттера должны находиться балансировочные резисторы R7 и R8. Номинал R7 и R8 необходимо подбирать, сопротивление должно быть максимально низким, но достаточным, что бы ток проходящий через Т1 был равен току проходящим через Т2. На данном этапе к выходу БП можно подключать нагрузку, но ни в коем случае не стоит устраивать КЗ – транзисторы моментально выйдут из строя, забрав с собой и LM317.

Следующим этапом станет установка LM301. Важно убедиться, что на 4-й ножке операционного усилителя присутствует -6 В. Если там +6 В, то необходимо внимательно осмотреть, как у Вас включен диодный мост BR2 и правильно ли подключен конденсатор С2. Питание LM301 (7я ножка) МОЖНО брать с выхода БП.

Вся дальнейшая настройка сводиться к подгону Р1 под максимальный рабочий ток блока питания. Как видим, настроить лабораторный блок питания своими руками будет совсем не трудно, главное не допустить ошибки при монтаже.

Используемые нами основные компоненты:

Лабораторный блок питания 30в 5а, результат

Плата управления собранная на макетке.

Лабораторный блок питания своими руками

Плата основного диодного моста.

Лабораторный блок питания своими руками

Транзисторы установлены на радиатор от Cooler Master CMDK8, этот боксовый куллер способен рассеивать мощность до 95 Вт.

Лабораторный блок питания своими руками

Внутри блока расположен 80мм дополнительный вентилятор, охлаждающий диодный мост и трансформатор, а также обдувающий радиатор транзисторов с тыльной стороны.

Лабораторный блок питания своими руками

Лабораторный блок питания своими руками

Все это добро засунуто в добротный радиолюбительский корпус, оставшийся со времен СССР. Вот таким вышел у нас лабораторный блок питания своими руками.

Лабораторный блок питания своими руками

Лабораторный блок питания своими руками

Подключение цифрового вольтамперметра избавило нас от измерительных стрелочных приборов.

Лабораторный блок питания своими руками

Демонстрация работы:

В работе с максимальным током в 5 А транзисторы остаются теплыми благодаря хорошей системе охлаждения, температура основного диодного моста также в норме, т.к. там используются мощные диоды Шоттки и вентилятор, который охлаждает этот мост и трансформатор. При полной нагрузке все таки происходит небольшой нагрев трансформатора. Вес блока составил порядка 4 кг.

Работы наших читателей

Ниже будем добавлять работы наших читателей, присылайте в комментах фото своих лабораторных блоков питания собранные по этой схеме, будем добавлять в статью, так станет интересней.

    Лабораторный блок питания своими руками прислал Алексей. Это его первая электронная подделка, пока не оформлен в корпус. Трансформатор: ТПП-312. Транзисторы: пара TIP36C. На выходе: ток до 7А.

Лабораторный блок питания своими руками

Лабораторный блок питания своими руками

Корпус подошел от распределительной коробки, размер лабораторного БП 24х19х9,5 см, вес 4,5 кг. По затратам на все ушло около 900 рублей.

Лабораторный блок питания выдает напряжение 1.3… 25 вольт, максимальное честное напряжение 19,5 при нагрузке 5 ампер, это почти, то напряжение, которое выдает трансформатор до диодного моста и конденсаторов.

Микросхема lm393 представляет собой сдвоенный дифференциальный компаратор компании Texas Instruments выполненный в едином пластиковом корпусе. В нем содержатся два независимых между собой операционных усилителя, которые применяются для сравнения поступающих на их входы аналоговых сигналов. Положительным результатом такой работы становится появление напряжения на их выходах (логическая единица), отрицательным – его отсутствие (ноль).

В данной статье рассмотрена микросхема lm393 и приведено её техническое описание, схема включения. На примере простой схемы ночного светильника показано как она работает. Компаратор выпускается в корпусе для поверхностного монтажа на плату в SOIC (SO-8), который промаркирован символами «lm 393». В прайс-листах на устройство в конце обозначения указаны буквы «D» или «DR».

распиновка lm393

Основные характеристики

Согласно описания на lm393 из datasheet, она способна функционировать как от одного, так и от двухполярного источника питания. Включение и работа компаратора начинается с подачи на его контакты Gnd и VCC постоянного напряжения. Сравниваемые сигналы подают на операционные усилители, каждый из которых имеет три контакта: по два входа (+IN, -IN) и по одному выходу (Output).

Максимальные параметры

Рассмотрим основные максимальные значения параметров lm393:

  • напряжение: интервал питающих (VI) от 0,3 до 36 В (на любой вход); дифференциальное входное (VID) ±36 В; на выходе (VO) до 36 В;
  • выходной ток (IO) до 20 мА;
  • температура при хранении (TSTG) от -65 o C до +150 o C;
  • время задержки до 300 нс.

Здесь приведены максимальные параметры, но это не значит, что они допустимы в штатном режиме эксплуатации. Кратковременные всплески скорее всего не смогут повредить микросхему, однако длительное превышение любого из указанных значений безусловно негативно скажется на работе устройства.

Микросхема lm393 не допускает короткое замыкания выходов на VCC, так как это может вызвать её перегрев и в конечном итоге – разрушение.

Аналоги

Стоит учитывать, что иногда рассматриваемый компаратор меняют на lm2903 или lm293. Они незначительно уступают ему по напряжению и большему току потребления. По остальным характеристикам практически идентичны, поэтому максимальные и электрические характеристики указываются в одном и том же даташит.

Российскими аналогами считаются к1401Са3 и 1040са1. Но в продаже их сейчас уже не найти. Постепенно с российского рынка их вытеснили более современные зарубежные устройства.

Схема включения

Ниже приведена простая схема одного из способов включения lm393. Она даёт необходимое представление и понимание того, как работает данное устройство. Собрать её можно самостоятельно используя небольшое количество дополнительных электронных компонентов:

  • фоторезистор;
  • резисторы на 33 кОм и 330 Ом;
  • потенциометр от 1 до 20 кОм;
  • светодиод;
  • батарейка типа АА – 3 шт.

Схема ночника с датчик освещенности

Компаратор lm393 в представленной схеме полезен тем, что сверяет уровень поступающих сигналов с эталонным (пороговым) значением для принятия решения о подаче питания на светодиод. Используя дополнительный фоторезистор, можно сделать миниатюрный электронный ночник. В темноте он будет светится, а с появлением света гаснуть.

Потенциометр в схеме используется в качестве калибратора. С его помощью настраивается сопротивление включения (когда ночью) и выключения (при свете) светодиода. После такой настройки компаратор сможет сравнивать опорное питание с напряжением от делителя, которое он получает по линии подключённой между резистором 33 кОм и фоторезистором.

Когда на фоторезистор попадёт свет, его сопротивление падает ниже 30 кОм. Таким образом, большая часть напруги попадает на обычный резистор 33 кОм. В результате на входе микросхемы, через резистивный делитель, напряжение будет меньше опорного. На выходе выводится высокий уровень и светодиод гаснет.

В темноте фоторезистор будет иметь очень большое сопротивление, поэтому большая часть напруги передастся уже ему. Напряжение получаемое от резистивного делателя будет выше опорного. В результате на выходе микросхемы выводится низкий уровень и светодиод светится.

Пример работы в схеме

По схеме представленной выше делают датчик освещённости lm393, работающий с arduino. В продаже существуют уже готовые одноименные электронные модули в названии которых присутствует имя микросхемы. Пример реализации такого решения (без контроллера) представлен в видеоролике.

Производители

Читайте также: