Чем отличается драйвер от блока питания

Обновлено: 06.07.2024

В этом тексте мы поговорим о различиях двух самых популярных источников питания для современных светильников. Он будет полезен не только электрикам-любителям, но и простым покупателям. Да, грамотный консультант в магазине всегда подскажет вам, что лучше приобрести, но иногда все же лучше знать азы. Хотя бы для того, чтобы в магазине вас правильно поняли. Итак, что общего у этих двух устройств и в чем их отличия?

Общая характеристика источников питания

Питание светодиодной ленты

Начнем с того, что в случае со светотехникой оба устройства используются в качестве источников энергии. Каждое из них находится в цепи между бытовой электросетью в 220 В и электрическим прибором (в нашем случае осветительным). Далеко не все светильники можно подключить напрямую к бытовой электросети. Для светодиодных лент такое решение неприменимо в принципе. Так называемые ленты в 220 В не нуждаются в блоке питания или драйвере, но имеют в комплекте свое собственное особое устройство — диодный мост, о котором мы поговорим в одном из следующих материалов. Чтобы жизнь вашего источника света была долгой и яркой, ток для него должен иметь строго определенные параметры. Именно для его преобразования и применяют блоки питания и драйверы. Каждое из этих устройств имеет одинаковые параметры тока на входе, но различные на выходе.

Что такое стабилизация по току и напряжению

Как стабилизировать ток

Основное различие между блоком питания и драйвером — это один из параметров электрического тока (напряжение или сила тока), который остается неизменным, в то время как другой параметр может изменяться в зависимости от подключенной нагрузки. Соответственно выделяют два вида такой стабилизации. Стабилизация по силе тока/по току — при подключении различных по мощности устройств, сила тока на выходе такого источника питания будет оставаться одной и той же, а напряжение меняться. Стабилизация по напряжению — в этом случае при подключении устройств разной мощности к источнику питания, напряжение на его выходе будет оставаться неизменным, а сила тока будет иметь плавающие значения. У различных приборов могут быть свои требования к параметрам тока, поэтому и источники питания различаются по принципу работы.

Блок питания

Также этот прибор называют источником напряжения или источником питания со стабилизацией по напряжению. Основная его функция — понижать напряжение с «розеточных» 220 В до тех значений, что нужны вашему устройству. Большинство светодиодных лент требуют 12 В или 24 В. В последнее время стали появляться изделия, потребляющие 36 В, но пока они не столь распространены.

Помимо понижения напряжения блок питания способен «выпрямлять» переменный ток, переводя его в постоянный. Это как раз необходимо для питания светодиодных лент, ведь у них есть постоянная полярность: «плюс» и «минус». В российской сети переменного тока полярность меняется 50 раз в секунду, а в некоторых других странах — 60 раз. Для светодиодов ни то, ни другое неприемлемо. Поэтому между сетью и светодиодами, а также приборами на их основе всегда должно располагаться устройство, переводящее переменный ток (AC) в постоянный (DC).

Обратите внимание, что на корпусе блока присутствует не только маркировка выходного напряжения и полярности, но и максимальной выходной мощности. При выборе блока питания рекомендуется брать его «с запасом» — примерно на 30 % больше, чем необходимо вашему освещению.

Драйвер

Этот источник питания также переводит переменный ток в постоянный, но выдает не постоянное напряжение, а постоянную силу тока. Поэтому его еще называют источником тока. Напряжение на выходе может варьироваться в определенном диапазоне значений, указанном на корпусе драйвера и/или в технической документации. Постоянная сила тока необходима для питания светодиодных матриц и отдельных — особенно мощных — светодиодов.

Почему? Ответ кроется в самом устройстве LED-чипа. Если сопротивление металлов с повышением их температуры растет, то у нагревающихся полупроводников, к коим относятся и LED-кристаллы, оно, наоборот, падает. Если рост силы тока в этом случае не ограничить, то светодиод быстро выйдет из строя. Для такого ограничения и необходим драйвер.

Почему светодиодные ленты не требуют драйвера?


Тот, кто внимательно читал статью может задаться этим вопросом. Чтобы понять, внимательно изучим светодиодную ленту. Кроме светодиодов и линий отреза на ленте есть маленькие черные элементы. Они называются резисторами и отвечают за понижение силы тока до необходимой мощности.

Отдельные же светодиодные модули и платы светильников не имеют таких резисторов. Поэтому подключать их к блокам питания не следует. Для них необходимы драйверы. Подробнее о резисторах и о том, почему их не ставят в светильники мы расскажем в одной из следующих статей.

Драйвер или блок питания для светодиодов?

Сегодня в продаже можно увидеть множество различных типов источников питания для светодиодов. Данная статья призвана облегчить выбор нужного вам источника.

Прежде всего, рассмотрим различие стандартного блока питания и драйвера для светодиодов. Для начала нужно определиться - что такое блок питания ? В общем случае это - источник питания любого типа, представляющий собой отдельный функциональный блок. Обычно он имеет определенные входные и выходные параметры, причем неважно - для питания каких именно устройств предназначен. Драйвер для питания светодиодов обеспечивает стабильный ток на выходе. Другими словами - это тоже блок питания. Драйвер - это лишь маркетинговое обозначение - дабы избежать путаницы. До появления светодиодов источники тока - а им и является драйвер, не имели широкого распространения. Но вот появился сверхъяркий светодиод - и разработка источников тока пошла семимильными шагами. А чтобы не путаться - их называют драйверами. Итак, давайте договоримся о некоторых терминах. Блок питания - это источник напряжения (constant voltage), Драйвер - источник тока (constant current). Нагрузка - то, что мы подключаем к блоку питания или драйверу.

Блок питания

Большинство электроприборов и компонентов электроники требуют для своей работы источник напряжения. Им является обычная электрическая сеть, которая присутствует в любой квартире в виде розетки. Всем известно словосочетание "220 вольт". Как видите - ни слова о токе. Это означает, что если прибор рассчитан на работу от сети 220 В, то вам неважно - сколько тока он потребляет. Лишь бы было 220 - а ток он возьмет сам - столько, сколько ему нужно. К примеру, обычный электрический чайник мощностью 2 кВт (2 000 Вт), включенный в сеть 220 в, потребляет следующий ток: 2 000/220 =9 ампер. Довольно много, учитывая, что большинство обычных электрических удлинителей рассчитано на 10 ампер. В этом причина частого срабатывания защиты (автомата) при включении чайников в розетку через удлинитель, в который и так вставлено много приборов - компьютер, например. И хорошо, если защита сработает, в противном случае удлинитель может просто расплавиться. И так - любой прибор, рассчитанный на включение в розетку - зная, какова его мощность, можно вычислить потребляемый ток.

Но большинство бытовых устройств, таких как телевизор, DVD-проигрыватель, компьютер, нуждаются в понижении сетевого напряжения с 220 В до нужного им уровня - например, 12 вольт. Блок питания - это как раз то устройство, которое занимается таким понижением.

Понизить напряжение сети можно разными способами. Самые распространенные блоки питания - трансформаторный и импульсный.

Блок питания на основе трансформатора

В основе такого блока питания лежит большая, железная, гудящая штуковина.:) Ну, нынешние трансформаторы гудят поменьше. Основное достоинство - простота и относительная безопасность таких блоков. Они содержат минимум деталей, но при этом обладают неплохими характеристиками. Основной минус - КПД и габариты. Чем больше мощность блока питания - тем он тяжелее. Часть энергии расходуется на "гудение" и нагрев :) Кроме того, в самом трансформаторе теряется часть энергии. Другими словами - просто, надежно, но имеет большой вес и много потребляет - КПД на уровне 50-70%. Имеет важный неотъемлемый плюс - гальваническую развязку от сети. Это означает, что если произойдет неисправность или вы случайно залезете рукой во вторичную цепь питания - током вас не стукнет :) Еще один несомненный плюс - блок питания может быть включен в сеть без нагрузки - это ему не повредит.

Но давайте посмотрим, что будет, если перегрузить такой блок питания.
Имеется: трансформаторный блок питания с выходным напряжением 12 вольт и мощностью 10 ватт. Подключим к нему лампочку 12 вольт 5 ватт. Лампочка будет светиться на все свои 5 ватт и потреблять тока 5 / 12 = 0,42 А.

схема подключения

Подключим вторую лампочку последовательно к первой, вот так:

схема подключения

Обе лампочки будут светиться, но очень тускло. При последовательном соединении ток в цепи останется тем же - 0,42 А, а вот напряжение распределится между двумя лампочками, то есть каждая получит по 6 вольт. Понятно, что светиться они будут еле-еле. Да и потреблять при этом будут каждая примерно по 2,5 Вт.
Теперь изменим условия - подключим лампочки параллельно:

схема подключения

В итоге напряжение на каждой лампе будет одинаковое - 12 вольт, а вот тока они возьмут каждая по 0,42 А. То есть ток в цепи возрастет в два раза. Учитывая, что блок у нас мощностью 10 Вт - мало ему уже не покажется - при параллельном включении мощность нагрузки, то есть лампочек, суммируется. Если мы еще и третью подключим - то блок питания начнет дико греться и в конце концов сгорит, возможно, прихватив с собой вашу квартиру. А все это потому, что он не умеет ограничивать ток. Поэтому очень важно правильно рассчитать нагрузку на блок питания. Конечно, блоки посложнее содержат защиту от перегрузки и автоматически отключаются. Но рассчитывать на это не стоит - защита, бывает, тоже не срабатывает.

Импульсный блок питания

Самый простой и яркий представитель - китайский блок питания для галогеновых ламп 12 В. Содержит небольшое количество деталей, легкий, маленький. Размеры 150 Вт блока - 100х50х50 мм, вес грамм 100. Такой же трансформаторный блок питания весил бы килограмма три, а то и больше. В блоке питания для галогенных ламп тоже есть трансформатор, но он маленький, потому что работает на повышенной частоте. Надо отметить, что КПД такого блока тоже не на высоте - порядка 70-80%, при этом он выдает приличные помехи в электрическую сеть. Есть еще множество блоков, основанных на аналогичном принципе - для ноутбуков, принтеров и т.п. Итак, основное достоинство - небольшие габариты и малый вес. Гальваническая развязка также присутствует. Недостаток - тот же, что и у его трансформаторного собрата. Может сгореть от перегрузки :) Так что если вы решили сделать у себя дома освещение на 12 В галогенных лампах - подсчитайте допустимую нагрузку на каждый трансформатор.

Желательно создавать от 20 до 30% запаса. То есть если у вас трансформатор на 150 Вт - лучше не вешайте на него больше, чем 100 Вт нагрузки. И внимательно следите за равшанами, если они делают у вас ремонт. Расчет мощности им доверять не стоит. Также стоит отметить, что импульсные блоки не любят включения без нагрузки. Именно поэтому не рекомендуется оставлять зарядные устройства для сотовых в розетке по окончании зарядки. Впрочем, это все делают, поэтому большинство нынешних импульсных блоков содержат защиту от включения без нагрузки.

Эти два простых представителя семейства блоков питания выполняют общую задачу - обеспечение нужного уровня напряжения для питания устройств, которые к ним подключены. Как уже было сказано выше - устройства сами решают - сколько тока им нужно.

Драйвер

В общем случае драйвер - это источник тока для светодиодов. Для него обычно не бывает параметра "выходное напряжение". Только выходной ток и мощность. Впрочем, вы уже знаете, как можно определить допустимое выходное напряжение - делим мощность в ваттах на ток в амперах.

На практике это означает следующее. Допустим, параметры драйвера следующие: ток - 300 миллиампер, мощность - 3 ватта. Делим 3 на 0,3 - получаем 10 вольт. Это максимальное выходное напряжение, которое может обеспечить драйвер. Предположим, что у нас есть три светодиода, каждый из них рассчитан на 300 мА, а напряжение на диоде при этом должно быть около 3 вольт. Если мы подключим один диод к нашему драйверу, то напряжение на его выходе будет 3 вольта, а ток 300 мА. Подключим второй диод последовательно (см. пример с лампами выше) с первым - на выходе будет 6 вольт 300 мА, подключим третий - 9 вольт 300 мА. Если же мы подключим светодиоды параллельно - то эти 300 мА распределятся между ними примерно поровну, то есть примерно по 100 мА. Если мы подключим к драйверу на 300 мА трехваттные светодиоды с рабочим током 700 мА - они будут получать только 300 мА.

Надеюсь, принцип понятен. Исправный драйвер ни при каких условиях не выдаст больше тока, чем он рассчитан - как бы вы не подключали диоды. Надо отметить, что есть драйвера, которые рассчитаны на любое количество светодиодов, лишь бы их общая мощность не превышала мощность драйвера, а есть те, которые рассчитаны на определенное количество - 6 диодов, например. Некоторый разброс в меньшую сторону они, впрочем, допускают - можно подключить пять диодов или даже четыре. КПД универсальных драйверов хуже чем у их собратьев, рассчитанных на фиксированное количество диодов в силу некоторых особенностей работы импульсных схем. Также драйвера с фиксированным количеством диодов обычно содержат защиту от нештатных ситуаций. Если драйвер рассчитан на 5 диодов, а вы подключили три - вполне возможно, что защита сработает и диоды либо не включатся, либо будут мигать, сигнализируя об аварийном режиме. Надо отметить, что большинство драйверов плохо переносят подключение к питающему напряжению без нагрузки - этим они сильно отличаются от обычного источника напряжения.

Итак, разницу между блоком питания и драйвером мы определили. Теперь рассмотрим основные типы драйверов для светодиодов, начиная с самых простых.

Резистор

Это простейший драйвер для светодиода. Выглядит как бочонок с двумя выводами. Резистором можно ограничить ток в цепи, подобрав нужное сопротивление.

Недостаток - низкий КПД, отсутствие гальванической развязки. Способов надежно запитать светодиод от сети 220 В через резистор не существует, хотя во многих бытовых выключателях подобная схема используется.

Конденсаторная схема.

Сходна со схемой на резисторе. Недостатки те же. Возможно изготовить конденсаторную схему достаточной надежности, но при этом стоимость и сложность схемы сильно возрастут.

Микросхема LM317

Это следующий представитель семейства простейших драйверов для светодиодов. Подробности - в вышеупомянутой статье о светодиодах в авто. Недостаток - низкий КПД, требуется первичный источник питания. Преимущество - надежность, простота схемы.

Драйвер на микросхеме типа HV9910

Данный тип драйверов получил изрядную популярность благодаря простоте схемы, дешевизне комплектующих и небольших габаритах.

Преимущество - универсальность, доступность. Недостаток - требует квалификации и осторожности при сборке. Отсутствует гальваническая развязка с сетью 220 В. Высокие импульсные помехи в сеть. Низкий коэффициент мощности.

Драйвер с низковольтным входом

В эту категорию входят драйверы, рассчитанные на подключение к первичному источнику напряжения - блоку питания или аккумулятору. Например, это драйверы для светодиодных фонарей или ламп, предназначенных для замены галогенных 12 В. Преимущество - небольшие габариты и вес, высокий КПД, надежность, безопасность при эксплуатации. Недостаток - требуется первичный источник напряжения.

Сетевой драйвер

Полностью готовы к использованию и содержат все необходимые элементы для питания светодиодов. Преимущество - высокий КПД, надежность, наличие гальванической развязки, безопасность при эксплуатации. Недостаток - высокая стоимость, труднодоступны для приобретения. Могут быть как в корпусе, так и без корпуса. Последние обычно применяют в составе ламп или других источников света.

Применение драйверов на практике

Хочу заметить, что многие ошибочно предполагают, что рабочий ток 1 Вт светодиодов - 350 мА. Это не так, 350 мА - это МАКСИМАЛЬНЫЙ рабочий ток. Это означает, что при продолжительной работе необходимо использовать источник питания с током 300-330 мА. Это же верно и для параллельного включения - ток на один светодиод не должен превышать указанной цифры 300-330 мА. Вовсе не значит, что работа на повышенном токе вызовет отказ светодиода. Но при недостаточном теплоотводе каждый лишний миллиампер способен сократить срок службы. К тому же чем выше ток - тем ниже КПД светодиода, а значит, сильнее его нагрев.

Если речь пойдет о подключении светодиодной ленты или модулей, рассчитанных на 12 или 24 вольта, нужно принимать во внимание, что предлагаемые для них источники питания ограничивают напряжение, а не ток, то есть не являются драйверами в принятой терминологии. Это означает, во-первых, что нужно внимательно следить за мощностью нагрузки, подключаемой к определенному блоку питания. Во-вторых, если блок недостаточно стабилен, скачок выходного напряжения может погубить вашу ленту. Слегка облегчает жизнь то, что в лентах и модулях (кластерах) установлены резисторы, позволяющие ограничить ток до определенной степени. Надо сказать, светодиодная лента потребляет относительно большой ток. Например, лента smd 5050, количество светодиодов в которой составляет 60 штук на метр, потребляет около 1,2 А на метр. То есть для запитки 5 метров понадобится блок питания с током не менее 7-8 ампер. При этом 6 ампер потребит сама лента, а один-два ампера нужно оставить про запас, чтобы не перегрузить блок. А 8 ампер - это почти 100 ватт. Такие блоки недешевы.

Драйверы более оптимальны для подключения ленты, но найти такие специфические драйвера проблематично.

Подытоживая, можно сказать, что выбору драйвера для светодиодов нужно уделять не меньше, а то и больше внимания, чем светодиодам. Небрежность при выборе чревата выходом из строя светодиодов, драйвера, чрезмерным потреблением и другими прелестями :)

Драйвер или блок питания: в чем разница?

Драйвер или блок питания: в чем разница?

На сегодняшний день светодиоды – это один из самых популярных источников света. Несмотря на все их преимущества, они тоже не лишены недостатков. Основные из них – чувствительность к стабильности тока и плохая переносимость высоких температур эксплуатации. Эти недостатки требуют определенных решений для их компенсации, и использование драйвера – одно из них. Для того чтобы разобраться в отличиях драйвера от блока питания, приведем немного теории.

Источник тока или источник напряжения?

Блок питания – это общее наименование части устройства, отвечающей за подачу и регуляцию поступающей электроэнергии для питания устройства. Он может располагаться как отдельно снаружи, так и в корпусе самого устройства.

Драйвер – общее наименование специализированного коммутатора, регулятора или источника питания для определенных типов оборудования.

Источники питания глобально делятся на источники напряжения и источники тока. В чем их отличия?

Источник напряжения – это источник питания, для которого изменение входного тока не влияет на напряжение на выходе.

Идеальный источник напряжения отличается отсутствием внутреннего сопротивления, а его выходной ток может принимать бесконечно большое значение. В реальности, естественно, все выглядит несколько иначе.

Любой источник напряжения имеет внутреннее сопротивление того или иного значения. Поэтому при подключении мощной нагрузки с большим током потребления напряжение может отклоняться от номинального (величина отклонения соразмерна мощности нагрузки). Выходной ток в этом случае обуславливается внутренним устройством источника.

Аварийным режим работы для такого источника - режим короткого замыкания. Ток в такой ситуации резко увеличивается, и кроме внутреннего сопротивления источника ничем не ограничен. Это сопротивление обычно невелико, поэтому если источник питания не защищен от КЗ,оно приведет его в негодность.

Источник тока – это такой источник питания, ток которого не меняется при изменении сопротивления подключенной нагрузки.

Основная цель источника тока – поддерживать заданный его уровень. Поэтому аварийный режим для него – режим холостого хода.

В режиме холостого хода к источнику питания не подключено никакой нагрузки. Для источника это означает, что ее сопротивление бексонечно велико. Он будет увеличивать напряжение в цепи до тех пор, пока по ней не потечет номинальный для источника питания ток. Хороший пример такой ситуации – свеча зажигания в автомобиле.

Когда цепь питания разомкнута, напряжение на электродах будет расти до тех пор, пока не достигнет величины напряжения пробоя, после чего в месте пробоя протечет ток, и накопленная в катушке энергия рассеется.

Автомобильная свеча

При этом состояние КЗ для источника тока аварийным или опасным не является. В таком режиме сопротивление нагрузки бесконечно мало, и соответственно напряжение на выходе источника также будет исчезающе маленьким, как и выделяемая мощность.

Вернемся к практике

Относительно современной номенклатуры и названий, блоком питания принято называть источник напряжения.
К ним можно отнести:

  • Зарядные устройства планшетов, смартфонов и т.п.;
  • Зарядные устройства для ноутбуков;
  • Блоки питания для светодиодных лент.

Электропитание светодиодов

Во вступительной части статьи нами было сказано, что требования светодиода к питанию довольно специфичны и строги. Обусловлено это тем, что светодиод питается током. Это, в свою очередь, связано с вольтамперной характеристикой полупроводниковых диодов.

На картинке приведены ВАХ диодов различных цветов:

ВАХ

Похожая на параболу форма ветвей является следствием характеристик полупроводников и наличествующих в них примесей, и, кроме того, особенностей pn-перехода. Пока приложенное к диоду напряжение ниже порогового, ток практически не растет. По достижении порогового значения напряжения значение тока начинает резко увеличиваться.

В случае, если ток через резистор увеличивается линейно в зависимости от сопротивления и приложенного напряжения, увеличение тока в диоде этому закону подчиняться уже не будет. В такой ситуации увеличение напряжения на 5% может дать увеличение тока в 500%. Помимо прочего, если в металлах сопротивление при нагреве увеличивается, то у полупроводников оно падает, а ток начинает расти. Причины такого поведения кроются в физических основах электроники, а конкретно типах носителей зарядов, ширине запрещенной зоны и прочем. Подробнее эти вещи будут затронуты нами в будущих статьях.

В технических характеристиках диодов пороговое напряжение обычно обозначают как падение напряжения в прямом смещении. Для светодиодов с белым светом свечения оно чаще всего составляет приблизительно 3 вольта.

Казалось бы, эту проблему можно решить на стадии проектирования светильника – установив правильные токоограничивающие резисторы и выставив стабильное напряжение на выходе блока питания. Именно так и проектируются светодиодные ленты, однако разница в том, что питают их от стабилизированных источников питания, и мощность применяемых в лентах светодиодов сравнительно мала и составляет десятые и сотые доли ватт. Конечно, и для этого правила существуют исключения, но подробнее виды светодиодов мы рассмотрим позднее.

Мощные же светодиоды, для которых и рекомендовано осуществлять питание через драйвер, нагреваются во время работы довольно значительно. Светодиод мощностью в 1Вт может нагреться до 50 градусов менее чем за 15 секунд при отсутствии радиатора.

Радиатор диода

Если такой мощный светодиод работает от драйвера со стабильным выходным током, то при нагреве ток на нем возрастать не будет, а для компенсации изменения сопротивления напряжение на его выходах несколько снизится. В случае работы от источника напряжения (блока питания), то после нагрева ток увеличится, что приведет к еще большему нагреву.

Подключение светодиодов

Известно, что к части драйверов можно подключать более одного светодиода. Светодиоды к драйверу подключаются последовательно, т.к. ток через все элементы при таком подключении одинаков. Подключать светодиоды параллельно нельзя, т.к. падения значений напряжения на светодиодах могут несколько различаться, и в результате один из светодиодов будет перегружен, а второй работать в режиме ниже номинального.

Подключать большее количество светодиодов, чем указано в спецификации, не рекомендуется. Это обусловлено тем, что любой источник питания (и драйвер в том числе) имеет максимально допустимую мощность. Каждый следующий подключенный светодиод будет увеличивать напряжение на выходах драйвера. Учитывая, что общая мощность равна току, помноженному на напряжение, рано или поздно она будет превышена.

Драйвер – это тот же блок питания, предназначенный для обеспечения подключенного к нему элемента заданным током. Строго говоря, сами названия «блок питания» и «драйвер» были разработаны скорее маркетологами, чем инженерами, и потому нет особой разницы в том, что и как называть. Главное – обращать внимание на тип источника питания и выбирать его в соответствии с вашими задачами. В большинстве светильников, находящихся в продаже, драйвер для управления питанием уже включен в комплект поставки, однако при его отсутствии вы будете знать, по каким принципам осуществлять его выбор.

Это импульсный источник постоянного электрического тока для светодиодного светильника. Самыми качественными считаются двухкаскадные драйверы с коэффициентом мощности свыше 0,92 и пульсацией света не более 1%. Но такие схемы дороги, поэтому их используют далеко не для всех светильников.
Драйвер может представлять собой устройство в изолированном корпусе из пластика с отверстиями для монтажа или встраиваемую печатную плату с системой компонентов.

Чем драйвер отличается от блока питания?

светодиодный драйвер

Оба устройства предназначены для питания электронных приборов, которые нельзя подключать непосредственно к сети переменного тока 220 V. Стандартный блок питания создает на выходе только стабилизированное напряжение 12 V, которое не зависит от скачков входного напряжения и перепадов питающего тока. Драйверами называют специфические источники питания, которые стабилизируют на выходе ток и применяются только для светодиодов. Блоки питания также используют для диодной светотехники. Они бывают трансформаторными и импульсными. Первые просты, недороги, но слишком много весят и отличаются небольшим КПД. Вторые в несколько раз меньше и легче, однако не менее чувствительны к перегрузкам и на холостом ходу так же часто выходят из строя.

Каковы преимущества светодиодных драйверов с высоким КПД?

Во-первых, они максимально экономят электроэнергию, расходуя не более 10 % питания при работе. Во-вторых, в 2-3 раза дольше служат, так как низкие потери мощности способствуют снижению температуры при работе прибора. Отсутствие перегрева положительно сказывается на состоянии компонентов прибора.

Как рассчитывать мощность источников питания?

Для блока питания этот показатель не должен превышать общую сумму подключаемых к нему светильников. И к ней необходимо добавить 20-30 % для запаса. Драйвер же должен соответствовать не только мощности подключаемых светодиодов, но и токам, поэтому подбирать его желательно со специалистом. Неправильный выбор стабилизатора тока может привести к тому, что светодиодный светильник сгорит или будет слишком тускло светить.

Что такое драйвер с функцией диммирования?

Это стабилизатор тока, который помогает управлять интенсивностью света, производимого светодиодной лампой. Драйверы с функцией ШИМ-диммирования поддерживают управление яркостью света от 0 до 100 %. Аналоговые приборы меняют ток на светодиоде пропорционально изменениям управляющего напряжения. Они обеспечивают снижение интенсивности освещения минимум до 10 %.

Драйвер – важнейшая деталь устройства светодиодного светильника. От него во многом зависит срок службы и качество освещения, создаваемого полупроводниковыми осветительными приборами. Если производитель не сэкономил на этом устройстве, его продукция стоит дороже. Но служит дольше и работает лучше.

Читайте также: