Что такое частота развертки в процессоре

Обновлено: 03.07.2024

То, о чём я сейчас собираюсь Вам рассказать, Вы не найдёте нигде, эта информация абсолютно секретна и не похожа на ту, которой полно в интернете, верить ей или нет - решайте сами. Готовы?, тогда начнём

Стогерцовый телевизор, это же круто. Ну да, звучит. надпись 100Hz красуется на переднем плане, чтобы её было хорошо видно. Вы уже читали о современных телевизорах с кинескопом внутри? Этот материал является продолжением статьи о рассвете и закате кинескопных телевизоров

Итак, что же такое 50 и 100Гц, давайте рассмотрим этот вопрос, тем более, что данная тема актуальна не только для старых телевизоров, но и для современных LCD, LED и плазмы Давайте пока пропустим такие понятия как ПАЛ, СЕКАМ и NTSC, о них пойдёт речь в отдельной статье, а здесь - поговорим о частоте развёртки

Для того, чтобы мы могли видеть движущиеся объекты на экране как в жизни, нашим глазам (учитывая их инерционность - способность временно запоминать картинку) необходимо предоставить как минимум 24 кадра в секунду. Тоесть, если картинка перед нашими глазами будет меняться 24 раза за секунду, мы увидим не последовательность картинок, а одну, плавно изменяющуюся. Это принцип заложен в любой обычный "плёночный" фильм, который мы смотрели в кинотеатре (об эффекте "25-го кадра" здесь говорить не будем)

Первые фильмы снимались на плёнку с частотой 16 кадров в секунду (вспомните Чарли Чаплина и его комедии ), однако, движения актёров были лишены плавности, они были прерывисты, особенно при динамичном сюжете (когда движений много и они - быстрые). Поэтому, в последствии, было решено увеличить количество кадров до 24/сек. Именно с такой частотой снимались фильмы на плёнку до недавнего времени (отметьте это, скоро поймёте зачем )

Ещё нюанс, плёнка в камере (записывающей или передающей) поступала не плавно, а "рывками" (кадрами): к объективу камеры поступал один кадр, задерживался некоторое время (происходил процесс "фотографирования") и быстро менялся следующим, который опять задерживался на некоторое время (гораздо большее, чем время смены кадров). Теперь, когда мы вспомнили базовые понятия, можно переходить к развёртке телевизоров

Каким образом формируется изображение в телевизоре? Начнём с чересстрочной развёртки. При частоте развёртки 50Гц, мы получаем 50 "картинок" в секунду. Сначала телевизор получает информацию о нечётных строках и лучи кинескопа ( красный , синий и зелёный ) прописывают их на экране, начиная сверху (1, 3, 5. 625) и до самого низа, потом лучи возвращаются вверх и начинают рисовать чётные строки (2, 4, 6. 624). Выглядит это примерно так:

Частота развёртки экрана: 50 Гц

Люминофор, используемый в кинескопах, обладает некоторой инерционностью (послесвечением), он не может мгновенно засветится и уж тем более, мгновенно погаснуть, однако, ко времени "рисования" второго кадра, то, что было нарисовано вначале, первым кадром, - уже стало менее ярким (хотя, по секрету, информация в этом рисунке, мягко скажем, преувеличена, не на столько гасится яркость )

Это значит, что один кадр (картинка) формируется на экране телевизора из двух "полукадров". Наши 50Гц - это 50 кадров (картинок) в секунду, причём кадры (точнее - полукадры) 1 и 2 , 3 и 4 , 5 и 6 могут быть одинаковыми (если смотрим фильм, слизанный с плёнки) или разными, зависит от способа записи изображения. Важно запомнить то, что в каждом из 50-и полукадров есть информация только о половине нужных строк (их там 312, а не 625)

Если бы картинка формировалась не двумя "полукадрами", а одним целым кадром (строки прописывались бы последовательно: 1, 2, 3, 4. ), тогда, к моменту, когда лучи начнут рисовать самые нижние строки, то, что было "нарисовано" в первых строках - уже потемнело бы достаточно сильно (яркость вверху экрана будет меньше, чем внизу)

Конечно, строки не могут наложиться идеально, поэтому изображение несколько отличается от оригинала, но. не на столько, как Вам все рассказывают, демонстрируя подобные картинки:

Черезстрочная развёртка

Гораздо чаще такое явление как "чересстрочность" картинки на экране кинескопа было связано с плохим сигналом (запись паршивая на видеокассете) или проблемами в блоке цветности телевизора. Когда я, давным-давно, установил в свой "Славутич Ц-281" 1991 года выпуска, новый усовершенствованный модуль цветности (модель уже не помню, а открывать рабочий (!) телевизор - лениво ) с дополнительной системой чёткости, я поразился новому качеству красок , а ведь это был всё тот же старый ТВ с частотой развёртки 50Гц. Посмотрите сами, Вы видите эту "жуткую чересстрочку", которой Вас все пугали в других статьях? Правильно, не видите и я не вижу (скрин экрана с моего обычного телевизора)

Люминофор на кинескопе

В то же время (1995 - 2005) массово ставились в ТВ декодеры PAL (для первых каналов кабельного или видиков) и можно было хорошо увидеть разницу: качественный декодер или нет. Если он был "не очень", то изображение было реально полосатым, несмотря на все попытки произвести настройку декодера

Так же следует отметить небольшое мерцание картинки, особенно на неподвижных сюжетах (оно Вам хорошо знакомо по старым кинескопным мониторам), частоты смены кадров (а точнее - полукадров) явно не хватало, поэтому появление телевизоров с частотой развёртки 100Гц было воспринято "на ура". Если поставить рядом два телевизора (обычный и 100-герцовый), разница в чёткости (на неподвижной картинке) была существенной и этот рисунок не врёт, однако, только ли в этом дело?

Черезстрочная и прогрессивная развёртка

Но, давайте оставим мониторы, там свои нюансы и вернёмся к телевизорам. При прогрессивной развёртке луч прописывает изображение последовательно в каждой строке: 1, 2, 3, 4. 625 (для обычных ТВ), поэтому изображение формируется сразу, целиком, а не через строку. При этом, частота смены кадров: 100 раз в секунду (в двое больше, чем у 50Гц ТВ). Вот как красиво это (по идее) должно было быть:

Отличие черезстрочной от прогрессивная развёртки

А вот дальше начинается самое интересное Сразу хочу предупредить, если кто-то может нормально смотреть диск, на котором записано десять фильмов и не видит смысла ждать лицензию, а довольствуется экранкой - дальше не читайте

Итак, вот сидим мы дома, смортим телевизор и тут реклама: "хватит смотреть старый телевизор, покупайте новый с развёрткой 100 Гц и вы увидете новое качество. ", во время такой рекламы обычно демонстрировались вот такие кадры, чтоб мы лучше увидели разницу:

Это был отличный рекламный ход и многие, во время этой рекламы, реально забывали, что обе эти картинки (некрасивую, специально размытую и красивую чёткую) они видели на одном и том же своём "старом телевизоре" А всё дело в качестве записи сигнала. Я уверен, что Вы замечаете, насколько реклама всегда красочнее и сочнее, чем фильмы, передачи и дешёвые сериалы, так как за рекламу деньги плачены и не малые, там на качестве никто не экономит, а "мыльные оперы" снимались на дешёвую киноплёнку

Сейчас во всех магазинах телевизоры подключены к ресиверу или ДВД, причём, не простому, а HD качества, но так было не всегда, раньше они все были настроены и подключены к обычной эфирной антенне или кабельному тв. Отказ от показа Вам продавцами картинки от простого аналогового сигнала был вынужденным, так как телевизоры разучились его нормально воспринимать

Одно из самых больших разочарований, постигавшее владельцев новых 100Hz телевизоров, наступало тогда, когда они подключали его у себя дома к своему источнику сигнала (простая антенна или кабельное). Люди звонили и просили мастера прийти и настроить их телевизор, чтобы он показывал так, как в магазине. Что же было не так?

А диктор?, нет, ну фон студии новостей, стол диктора, декорация - они реально отлично смотрятся, чётко и красиво, но вот её лицо, показанное крупным планом. Откуда эти муары и всплывающие пятна на лице. хочется отойти подальше, смотреть телевизор на привычном расстоянии для глаз становится проблематично

Нарушение цветопередачи

Футбол? Да, всё как "обещали" в рекламе, мяч чёткий и красивый, причём траектория его полёта (видимо в подарок) тоже видна полностью, с момента удара - до падения Эти фото относительно "добрые", в реальности, при просмотре с обычной антенны, мяч был "размазан" ещё больше:

Смазанные объекты

Если же канал "рябил" - это был просто тихий ужас, так как телевизор добросовестно прописывал каждый пиксел этой "ряби", стараясь выделить её как можно чётче, однако рябь, называемая "белым шумом" не стоит на месте, она постоянно перемещается, причём гораздо быстрее, чем основной сигнал, телевизор просто не успевал за ней и итоговая картинка получалась "весёлой"

Однако, когда речь шла о неподвижном или плавно перемещающемся объекте, при условии идеального сигнала, прогрессивная развёртка бесспорно выигрывала, а первые телевизоры с 100Hz - это была вещь хотя цифровые тормоза, полностью отсутствующие в простых телевизорах, и там были слегка видны

Если Вам интересно, откуда взялись такие "тормоза" на изображении в "цифровых" 100Гц телевизорах и почему, вместо улучшенного качества, всё получалось наоборот, читайте вторую часть статьи: цифровые тормоза или проклятие цифровой обработки аналогового сигнала

Простые же телевизоры с развёрткой 50 Гц, продававшиеся тогда в магазинах, показывали ещё хуже: звук мог шуметь и пропадать даже при отличном сигнале, краски стали ядовитыми и неестественными, а качество коррекции, фокусировки и сведения лучей в кинескопе - вообще ни в одни ворота не лезло.

Если Вам довелось быть обладателем (или видели у друзей) какого-нибудь старого Грюндика, Филипса или Сони, при условии, что он и сигнал были хорошими, то наверняка заметили, что изображение - как живое, краски - просто изумительные, а звук мог оставаться чистейшим даже при плохом сигнале с антенны

Схемотехника хорошего радиоканала

Причина была проста: качественная система фильтрации и обработки изображения со звуком внутри телевизора. А вот в тех современных телевизорах, которые стояли на полках рядом с новыми "стогерцовыми" - этого уже не было. Всё больше и больше фильтров и элементов обслуживания стали пихать в одну микросхему, конечно, плата с деталями стала аккуратнее и меньше, но качество обработки аналогового сигнала ушло навсегда

На что влияет частота обновления экрана телевизора

Если бы вы собрались покупать телевизор лет 15 назад, любой консультант быстро убедил вас, что нужно обязательно брать «стогерцовый» и никак не меньше. С исчезновением кинескопных телевизоров этот параметр как-то подзабылся, но в последнее время он снова на слуху. Попробуем разобраться, что это за параметр и сколько герц должно быть в телевизоре.

Что это за параметр?

Экран телевизора (как и большинства других электронных устройств) не способен физически смещать изображение на экране. Чтобы создать иллюзию движения, на экране отображаются сменяющие друг друга статичные кадры. Как часто эти кадры меняются — определяет частота обновления экрана.


Однако нельзя путать частоту обновления экрана и частоту смены кадров видео, которое на этом экране демонстрируется. Первый параметр — характеристика телевизора и зависит от его устройства, второй параметр — характеристика видеоконтента и зависит от того, на каком оборудовании оно было снято, как смонтировано и в каком формате записано.


Какие бывают частоты обновления и смены кадров

Когда речь заходит о частоте смены кадров, многие вспоминают о 24 кадрах в секунду и о «магическом» 25-м кадре. На самом деле, 25-ый кадр — это миф, а стандарт недавнего прошлого в 24 кадра был выбран скорее из экономических соображений. Почему «прошлого»? Потому что преобладающий сегодня цифровой видеоконтент имеет другие стандарты —25, 30, 48, 50 и 60 кадров в секунду. Самыми распространенными пока остаются 25 и 30 кадров/сек. Довольно активно развивается формат 60 кадров в секунду, но объем такого видео пока невелик.

Опять же, многие фильмы в формате 60 кадров в секунду получены компьютерной интерполяцией промежуточных кадров из обычного формата. Они изначально снимались на 30 кадрах в секунду и «недостающие» кадры получить уже просто невозможно. Понятно, что смысла в таком улучшении немного. А уж про видео в формате 120 кадров в секунду и говорить не приходится. Пока в этом формате снимают только немногие энтузиасты.

Еще можно вспомнить про стандарты передачи видеоданных HDMI и DVI и про их ограничения. Максимальная частота смены кадров, которую могут «пропустить» оба эти стандарта — 120 Гц, т.е., телевизоры пока в принципе не могут воспроизводить видео с более высокой частотой смены кадров.

Когда нужна высокая частота обновления

Раз большинство видео снято со скоростью 30 кадров в секунду, то 50/60 Гц более чем достаточно? Почему же часто звучит, что 60 Гц — прошлый век и качественного изображения на нем не добиться, и что сегодня даже 120 Гц мало? Следует отделить мифы от реальности.


Во-первых, как это ни странно звучит, но 15-20 лет назад разница между 50 и 100 герцами была куда более заметной: 100-герцовый телевизор действительно давал более качественную картинку, чем обычный 50-герцовый. Из-за прорисовки экрана одиночным электронным лучом (усугубленной чересстрочной разверткой), 50-герцовые кинескопы заметно мерцали, утомляя зрение и даже приводя к заболеваниям глаз при длительном воздействии. Вот только современные ЖК-экраны этой особенности лишены, и никакая частота обновления экрана больше не провоцирует мерцание.

Во-вторых, смысл в частоте более высокой, чем частота смены кадров, все же есть. Современные телевизоры не просто «бездумно» выводят кадры на экран, они способны производить некоторую их обработку, например, «дорисовывая» промежуточные кадры. Качественного улучшения при этом ждать не приходится, но обработанное таким образом видео может выглядеть плавнее и даже четче исходного. Хотя тут многое зависит от производительности электроники телевизора и используемых алгоритмов.

Недорогие телевизоры получают промежуточные кадры копированием предыдущих, модели подороже используют простенькую интерполяцию, а продвинутые модели уже могут использовать алгоритмы подавления шума и снижения размытия.


Такая технология называется MEMC («Motion Estimation and Motion Compensation» — «Оценка и компенсация движения»). Но следует понимать, что промежуточный кадр, полученный даже самым продвинутым телевизором, всегда будет уступать по качеству кадру реальному. Пока еще на качество видео в первую очередь влияет качество оборудования съемки, которое снимает с частотой 30, реже 60 кадров в секунду. И часто встречающееся утверждение, что «телевизор с частотой 60 Гц всегда будет показывать размытую картинку, не то, что 120 Гц», мягко говоря, не соответствует действительности.

В-третьих, высокая частота обновления пригодится при использовании телевизора в качестве игрового монитора. Киберспортсменам это может дать реальное преимущество, что описано в этой статье.

Частоты выше 120 Гц

Еще совсем недавно полки ломились от телевизоров с частотой обновления 240, 400, 600 и даже больше — вплоть до тысяч герц. В последнее время они как-то пропали, но в интернете еще встречаются рекомендации выбирать телевизор с частотой не менее 200 Гц. Что это было?

Частоты выше 120 Гц — на 95% маркетинговая уловка и только на 5% за этим скрывается что-то эффективное. Как правило, производители под такими числами имели в виду не реальную частоту обновления, а некий «индекс», полученный умножением реальной частоты на какой-нибудь коэффициент. Таким коэффициентом, например, может быть количество дублирующихся кадров или частота мерцания подсветки.


При использовании технологии BFI («Black Frame Insertion» — «вставка черного кадра») между двумя идентичными кадрами вставляется полностью черный — предполагается, что это может снизить эффект размытия на динамичных сценах. Использование такой технологии тут же «увеличивало» частоту обновления в 2-3 раза.

Также применялся бюджетный вариант BFI под названием BLS (BackLight Scanning — «сканирующая подсветка»), при использовании которой вместо вставки черного кадра на несколько миллисекунд выключалась полоса светодиодов подсветки экрана. Особого эффекта все эти технологии не давали, поэтому со временем «килогерцовые» телевизоры с полок пропали (некоторые технологии по-прежнему применяются, но уже без особой помпы). Тем не менее, статьи с безграмотными рекомендациями в Сети остались.

Однако телевизоры с «честной» частотой 200 Гц все же существуют. Но и они не воспроизводят реальное видео с частотой кадров выше 120 Гц, получая промежуточные кадры при помощи технологий на базе MEMC. Обработка кадров на такой скорости (особенно 4К и 8К) требует большой производительности видеопроцессора, поэтому стоят такие телевизоры намного дороже обычных.

Есть ли в этом смысл — вопрос спорный. Продвинутые алгоритмы современных телевизоров могут распознать, например, летящий мяч и сделать его идеально круглым на промежуточных кадрах, заметно увеличить плавность его полета и четкость картинки. Но всё предусмотреть невозможно, алгоритм может ошибаться, добавляя на кадры различные артефакты и фактически ухудшая картинку.

Выводы

Не стоит придавать этому параметру особого значения, лучше сконцентрируйтесь на действительно важных характеристиках — диагонали, разрешении, контрастности и т. д. Они куда сильнее влияют на качество изображения, чем частота обновления экрана. Смотреть на частоту в ущерб других параметров стоит разве что в том случае, если вы твердо нацелились на то, чтобы использовать телевизор в качестве игрового монитора.

Процессор — это мозг вашего компьютера, и его производительность имеет решающее значение для скорости загрузки программ и стабильности их работы. Однако существует несколько способов измерения производительности процессора. Тактовая частота или просто «частота» — один из самых важных показателей.

Если вы хотите узнать тактовую частоту своего компьютера, откройте меню «Пуск» (или нажмите клавишу Windows*) и введите текст «О системе». Модель и тактовая частота вашего процессора будут показаны в графе «Процессор».

Что такое тактовая частота?

Обычно чем больше тактовая частота, тем быстрее работает процессор. Однако существует и много других факторов.

Ваш процессор каждую секунду обрабатывает множество команд различных программ (в форме низкоуровневых расчетов, таких как арифметические операции). Тактовая частота определяет количество циклов, выполняемых процессором за секунду и измеряется в гигагерцах (ГГц).

С технической точки зрения цикл представляет собой импульс, синхронизируемый внутренним осциллятором, но для наших целей это базовая единица, помогающая понять концепцию тактовой частоты процессора. В течение каждого цикла в процессоре открываются и закрываются миллиарды транзисторов.

Частота определяет количество операций, выполняемых за заданное время, как указывалось выше.

Процессор с тактовой частотой 3,2 ГГц выполняет 3,2 млрд. циклов в секунду. (В старых процессорах тактовая частота измерялась в мегагерцах или миллионах циклов в секунду).

Иногда в одном тактовой цикле выполняется несколько команд, а в других случаях одна команда обрабатывается за несколько тактовых циклов. Поскольку разные архитектуры процессоров обрабатывают команды по разному, лучше всего сравнивать тактовую частоту процессоров одной марки и одного поколения.

Например, новый процессор может легко обойти по производительности процессор пятилетней давности с более высокой тактовой частотой, поскольку новая архитектура обрабатывает команды более эффективно. Процессор Intel® серии X может обойти по производительности процессор серии K с более высокой тактовой частотой за счет того, что он распределяет задачи между большим количеством ядер и имеет больший размер встроенной кэш-памяти. Но в пределах одного поколения процессор с более высокой тактовой частотой обычно превосходит по производительности процессор с более низкой тактовой частотой при работе в нескольких приложениях. Именно поэтому важно сравнивать процессоры одной марки и одного поколения.

Выбор монитора может казаться довольно простой и в то же время слишком сложной задачей. Технологии, которые используются в современных дисплеях, можно объяснить в одной небольшой статье, что мы и сделаем сегодня. Никаких чисто маркетинговых словечек! Только четкие описания конкретных терминов, которые действительно важны.

Найти модель, которая идеально подойдет для использования во всех ситуация, невозможно — пока такие мониторы просто не выпускают. Вместо этого дисплей нужно выбирать с учетом того, для чего он нужен — для игр, графического дизайна, монтажа видео высокой четкости и так далее. Всегда придется идти на компромисс и выбирать две из трех основных черт — скорости работы, правильности отображения цветов и высокого разрешения.

При этом мы не будем вдаваться в слишком технические подробности, которые обычному покупателю на самом деле не нужны. Мы расскажем об основных параметрах любого монитора: разрешении, соотношении сторон, частоте развертки, типе панели и прочих.

Мониторы: разрешение, частота развертки, типы панелей и прочее

Разрешение

Казалось бы, это самый простой вопрос. Просто нужно покупать монитор с самым высоким разрешением, которое вам по карману, правда? Что ж, на самом деле это не лучшая тактика. Высокие разрешения предлагают более четкое и детальное изображение, но масштабирование картинки и интерфейса в Windows, к примеру, до сих пор работает не слишком хорошо, а видеокарта для монитора высокой четкости нужна будет куда более дорогая.

Итак, с чего начать? Начнем с того, что покупать модель с разрешением ниже Full HD (1080p / 1920x1080 точек) в 2018 году просто бессмысленно. Это базовое разрешение, от которого нужно отталкиваться — на него ориентируются и большинство разработчиков игр, и большинство авторов приложений, и большинство создателей видеоконтента. Если размер монитора составляет 24 дюйма в диагонали или меньше, Full HD — отличный компромисс.

С другой стороны, большие экраны (с размером больше 24 дюймов) с разрешением 1080p выглядят далеко не так привлекательно — к ухудшению качества изображения приводит сниженная плотность пикселей. Так что крупные модели лучше выбирать с разрешением 1440p (2560x1440 точек) или даже 4К (3840х2160 точек).

Если ваш монитор будет использоваться в основном для обычной офисной работы или работы в профессиональных дизайнерских приложениях, у высокого разрешения есть еще одно важное преимущество — на одном экране просто будет помещаться больше нужной информации. Так, у монитора с разрешением 1440p на 77% больше пикселей, чем у монитора с разрешением 1080p. Да и игры, честно говоря, уже давно неплохо работают в 1440p, если использовать более-менее мощную видеокарту вроде GeForce GTX 1070 или RX Vega 56.

Если играете на своем компьютере вы чаще всего, то монитор с разрешением 4К выбирать пока вряд ли стоит — разве что в том случае, если вы готовы потратить тысячу-другую долларов на одну из новых видеокарт Nvidia GeForce RTX (да и в этом случае стоит задуматься о покупке 4К-телевизора, на котором преимущества высокого разрешения будут заметно более очевидными). Остальные GPU пока не способны достаточно быстро обрабатывать 4К-картинку, так что 4К-мониторы будем считать исключительно уделом профессионалов в областях обработки видео и работы с графикой.

Мониторы: разрешение, частота развертки, типы панелей и прочее

Ультраширокие мониторы

Еще пара вариантов решения проблемы с недостатком информации на экране — выбор ультраширокого монитора с соотношением сторон, отличным от стандартного 16:9 или покупка сразу нескольких мониторов.

Последний вариант обычно выигрывает в цене. Программисты, создатели контента и другие профессионалы легко совершенствуют свой рабочий процесс, просто добавляя к уже существующему еще один, а большая часть современных видеокарт легко справляется с одновременной работой нескольких экранов.

Геймерам, однако, вариант с несколькими мониторами вряд ли подойдет. Проблема заключается в том, что даже ультрасовременные мониторы имеют заметные рамки вокруг панелей, так что погружению в игру будут мешать уродливые полоски.

В общем, если вы считаете себя энтузиастом-фанатом видеоигр, то ваш выбор — ультраширокий монитор вроде Samsung C49HG90 (или поскромнее). К сожалению, такие мониторы отличаются не только богатой картинкой, но и завышенной ценой. За комфорт придется заплатить сверху! Зато в разрешении вроде 2560х1080 или 3440х1440 пикселей еще и фильмы смотреть удобно — в основном их снимают с соотношением сторон картинки 21:9.

Отметим, что и профессионалы используют ультраширокие мониторы достаточно часто — если на это есть бюджет, который уйдет не только на покупку самого монитора (3440х1440 — все еще high-end), но и на покупку видеокарты, которая справится с таким количеством пикселей.

Еще одно важное замечание: далеко не все современные игры поддерживают ультраширокие мониторы в полном объеме. К примеру, популярный онлайн-шутер Overwatch просто ограничивает угол обзора тех, кто использует такой монитор. Причина проста — разработчики не видят смысла в том, чтобы учитывать пожелания мизерной части своей аудитории (если верить Steam Hardware Survey, ультраширокими дисплеями пользуются меньше 2% геймеров).

Мониторы: разрешение, частота развертки, типы панелей и прочее

Технологии изготовления панелей

Пожалуй, мы достигли самой важной части этой статьи. Разрешение — штука, несомненно, важная, но технология изготовления панели вашего монитора определяет куда больше его параметров.

Жидкокристаллические дисплеи делятся на несколько типов: TN, IPS (а также PLS, AHVA, eIPS и другие), VA и OLED. Расскажем обо всех!

Технология TN (Twisted Nematic) — самая распространенная и дешевая. 27-дюймовую TN-модель с разрешением 1920х1080 пикселей можно купить всего за $150-$160. Естественно, придется мириться с серьезными недостатками — неаккуратными цветами и отвратительными углами обзора.

Все LCD-дисплеи работают, пропуская свет от светодиода сквозь пару поляризованных панелей, фильтр цветов и жидкие кристаллы. Чем больше напряжение тока, тем больше света эти кристаллы блокируют. Технология TN имеет значительные ограничения — вместо 8 бит на каждый канал цвета они используют всего 6 бит. Для компенсации этого недостатка применяют технологию FRC (Frame Rate Control) — трюк, который позволяет быстро переключать две цвета и «как бы отображать» третий. К сожалению, до полноценного 24-битного цвета результат не дотягивает. Все это сочетается с инверсией и «вымыванием» из-за угла обзора, так что TN-мониторы не подойдут тем, кого волнуют правильные цвета картинки.

Зато у TN есть огромное преимущество, которое касается игр — это их скорость. Переключение пикселей с одного цвета на другой может занимать всего 1-2 мс, что позволяет создавать TN-мониторы с частотой развертки 144 и даже 240 Гц. Это идеально для скоростных игр вроде шутеров от первого лица.

Технология IPS (In-Plane Switching) — выбор профессионалов. IPS призвана устранить недостатки TN и использует другое расположение кристаллов, которое обеспечивает улучшенное отображение цветов и меньшее искажение света. Кроме того, каждый канал в IPS-моделях использует 8 бит информации, что делает возможным отображение 24-битного цвета. Разница видна невооруженным глазом.

IPS-дисплеи отличаются яркой и богатой картинкой, которая практически не изменяется при отклонении головы в ту или другую сторону. Кроме того, если вы нажмете на IPS-панель пальцем, на ней не появится заметных искажений, что делает IPS подходящей для использования в сенсорных моделях.

К сожалению, и у IPS есть свои недостатки. Во-первых, из-за более сложной структуры такие экраны стоят заметно дороже TN-аналогов. К счастью, в последние годы их цены начали понемногу снижаться. Во-вторых, сложная структура влияет еще и на скорость работы — переключение пикселей в IPS-панелях происходит медленнее, от 5 до 8 мс. Это заметно в быстрых играх, да и частота развертки IPS-моделей редко превышает 60 Гц. 144-герцовые IPS-мониторы при этом стоят целое состояние.

Варианты IPS-панелей (PLS, AHVA, eHVA и другие) производятся, к примеру, Samsung и AU Optronics. Их отличия очень невелики и зависят от небольших изменений в структуре дисплея, все еще произведенного по технологии 1996 года. Samsung-модели с PLS, к примеру, отличаются слегка сниженной ценой, более высокой яркостью и улучшенными углами обзора, но в то же время плохо «разгоняются», а в некоторых случаях даже используют 6-битный цвет.

Используют 6-битный цвет и бюджетные eIPS-мониторы LG. Другие вариации отличить друг от друга еще сложнее — речь скорее идет о патентах, чем самих технологиях.

На практике у VA-панелей есть свои уникальные особенности, которые нужно иметь в виду. Их контрастность достигает 5000:1, а некоторые модели достигают частоты развертки в 120 Гц. К сожалению, углы обзора VA-моделей лишь немного лучше, чем у TN, что делает их не слишком желаемыми для профессионалов в сфере обработки фото и видео. С другой стороны, переключение между темными цветами происходит не так быстро, как переключение между светлыми и темными, что в играх может привести к размыванию изображения. Да и стоят VA-мониторы относительно дорого.

В любом случае, найти жидкокристаллический дисплей с наилучшим контрастом можно только среди VA-моделей (если точнее, MVA).

Наконец, OLED-мониторы считаются мониторами будущего. Эта технология развивается благодаря телевизорам премиум-сегмента и мобильным телефонам. К сожалению, в продаже такие мониторы пока найти сложно — к примеру, в прошлом году Dell анонсировала 30-дюймовую модель UP3017Q стоимостью в $3500, но затем ее выпуск просто отменили. Также в прошлом году свою 22-дюймовую OLED-модель с разрешением 4К PQ22UC показала Asus, но и она пока до прилавков не добралась. Впрочем, всегда можно использовать небольшой OLED-телевизор, правда?

Главное преимущество OLED-технологии заключается в том, что каждый пиксель изображения может контролироваться отдельно. Это означает великолепную контрастность, яркие и точные цвета, а также очень высокую скорость. К сожалению, на рынке ПК-мониторов доступные массовые OLED-мониторы вряд ли появятся раньше 2020 года. Зато именно они уже используются в VR-шлемах!

Мониторы: разрешение, частота развертки, типы панелей и прочее

Частота развертки и задержка ввода

Базовая скорость смены изображения на современных мониторах — 60 Гц. Это означает, что все содержимое экрана перерисовывается 60 раз в секунду. Для большинства офисных работников и тех, кто работает с контентом, этого достаточно, но повышенная частота развертки делает гораздо приятнее не только игры, но даже простое перемещение окон в Windows.

Впрочем, покупка монитора с частотой развертки 120 или 144 Гц — это еще не все, что нужно для полного устранения размывания границ объектов и прочих проблем. В последние годы производители занимаются разработкой дополнительных «фишек», которые работают вместе с высокой частотой развертки.

Одна из таких «фишек» — стробированная подсветка картинки. Такая подсветка на мгновение ока отключается, что в теории делает изображение неотличимым от изображения на старом ЭЛТ-мониторе (у них до сих пор есть свои очень важные преимущества). К сожалению, постоянное отключение подсветки означает еще и общее снижение яркости картинки, а некоторые пользователи с чувствительными глазами устают за такими мониторами гораздо сильнее и даже могут жаловаться на головные боли.

Еще одна проблема, которую пытаются решить компании, занятые мониторами и видеокартами — разрывы изображения. Разрывы появляются тогда, когда видеокарта посылает монитору готовый кадр, а тот еще не закончил обновление предыдущего. Из-за этого части картинки не всегда соответствуют друг другу и разделяются видимыми линиями. Решить это можно, если включить программную синхронизацию (V-Sync), но у нее есть свои недостатки — четкие требования к ровной частоте кадров и более низкая скорость отклика ввода.

Мониторы: разрешение, частота развертки, типы панелей и прочее

Nvidia создала проприетарную технологию под названием G-Sync, которая поддерживается всеми современными GPU ее производства, но требует установки в монитор отдельного модуля (на этапе производства), что значительно его удорожает. AMD ответила похожей, но при этом открытой технологией FreeSync, которая не требует ничего, кроме поддержки опционального стандарта Adaptive-Sync, который является частью стандарта DisplayPort 1.2a. Мониторы с FreeSync встречаются чаще, но их качество различается сильнее. Кроме того, не так давно AMD разработала FreeSync 2, которая требует поддержки технологий HDR и LFC, а также требует скорость отклика не выше определенного порога. Мониторы с FreeSync 2 уже начали появляться в продаже, но пока редки и дороги.

Последняя характеристика любого монитора, о которой нужно поговорить — скорость отклика ввода. Из-за того, что изображение подвергается сложной обработке, передвижение мыши или нажатие на кнопку клавиатуры не означает мгновенное передвижение курсора или появление буквы в строке документа. Скорость отклика ввода редко указывают в списке параметров — ее приходится измерять в лабораториях самим энтузиастам.

Самое простое правило, которому стоит следовать, заключается в следующем: чем больше у монитора всевозможных функций, тем хуже у него будет скорость отклика ввода. Геймеры, которые любят онлайн-шутеры, предпочитают модели с минималистичными меню, практически отсутствующим пост-процессингом картинки и одним-двумя портами для подключения к ПК. Все это означает, что видеосигнал с GPU тратит значительно меньше времени на то, чтобы добраться до пикселей дисплея.

С другой стороны, многие современные мониторы улучшают этот показатель благодаря использованию скоростных модулей масштабирования. Особенно отзывчивы модели с поддержкой FreeSync 2 и Nvidia BFGD (Big Format Gaming Displays). Последние, правда, в продажу пока не поступили.

В любом случае, если скорость отклика ввода для вас важна, перед покупкой конкретного монитора почти всегда можно найти в сети его подробный обзор с тестами именно этого показателя.

Читайте также: