Что такое микроархитектура процессора

Обновлено: 06.07.2024

С момента изобретения первых электронно-вычислительных машин в первой половине 20 века произошла только одна истинная революция. Случилось это в 50-60-х годах, когда на смену громоздким вакуумным лампам пришли полупроводниковые технологии. Тогда в качестве основного материала для их производства были выбраны кристаллы кремния. На них, с помощью различных технологий, вытравливаются миниатюрные транзисторы и связующие их цепи. С тех пор, на протяжении полувека, меняется в сторону уменьшения только размер транзисторов (техпроцесс), и увеличивается их количество на кристалле.

В условиях использования единой технологии (и отсутствия практически применимых альтернатив, так как до массового внедрения квантовых процессоров еще далеко) единственным способом приспособить вычислительные чипы под те или иные задачи — стало изобретение различных архитектур ЦП.

Что такое архитектура процессора

Архитектура процессора — это совокупность главных принципов его конструирования, общая схема расположения деталей на кремниевом кристалле и схема взаимодействия программного обеспечения с чипом. Если еще более упрощенно, то архитектура — это схема, по которой устроен процессор.

За все время было создано много различных архитектур. Самые популярные из них — CISC, MISC, VLIW и RISC. Различия между ними касаются, главным образом, системы взаимодействия процессора с обрабатываемыми данными. Сейчас активно используются конвейерные архитектуры CISC и RISC.

Как работает архитектура процессора

В конвейерной архитектуре данные обрабатываются последовательно, переходя от одного этапа к следующему. Например, на первом этапе процессор получает инструкцию, на втором — производится чтение данных из памяти, на третьем — осуществляется вычислительная операция, а на четвертой — выдача полученного результата. Когда первый этап конвейера освобождается — он может приступить к выполнению следующей инструкции. Этот процесс можно сравнить с работой автозавода: когда работник прикручивает последнюю ступицу колеса — конвейер двигается дальше. Второй работник прикручивает колеса на ступицы, а первый — опять прикручивает ступицы на следующей машине.

Количество стадий конвейера может быть разным. Если программа получает данные исправно, в них не содержится ошибок, то такой подход повышает производительность. Чем длиннее конвейер — тем больше операций выполняется за такт (1 герц частоты процессора). В аналогии с автозаводом, количество этапов конвейера — это количество работников за лентой, по которой двигаются кузова собираемых машин. Чем больше мегагерц — тем быстрее движется лента, тем быстрее работают сборщики. Однако если первый работник что-то сделает не так — получится брак, машину придется собирать заново.

В процессоре все аналогично: если на раннем этапе конвейера происходит ошибка — конвейер нужно перезапускать. Это замедляет производительность и приводит к пустым тратам энергии. Так как для компактных и мобильных устройств энергоэффективность очень важна — специально для них была создана архитектура RISC. От CISC она отличается упрощенным набором команд, которые принимает процессор, и укороченным конвейером. Такая особенность приводит к снижению производительности на фоне CISC (а компьютерные x86-процессоры Intel и AMD построены на ней), но позволяет минимизировать пустую трату энергии.

Архитектура процессоров ARM

Всевозможные MIPS, PowerPC, SPARC и прочие архитектуры типа RISC оставим IT-специалистам. Когда дело касается смартфонов — стоит детальнее уделить внимание ARM, Это — разновидность RISC архитектуры с коротким конвейером, которая является одной из самых распространенных и удачных. Именно ARM использует большинство производителей (Qualcomm, MediaTek, Apple, Samsung, Huawei-HiSilicon и другие). Только Intel в своих SoC атом используют x86-совместимые CISC ядра.

Особенностью ARM процессоров является использование короткого конвейера. Его длина составляет 3 и более этапов, что немного на фоне десятков стадий у CISC. За счет этого сбои в работе конвейера минимально сказываются на скорости обработки программ, максимально эффективно нагружая каждый такт. Поэтому именно ARM стала самой популярной архитектурой процессоров для смартфонов и планшетов.

Архитектура и микроархитектура процессора

Довольно часто в СМИ и интернете происходит путаница между понятиями архитектуры и микроархитектуры процессора. Чтобы внести ясность, следует установить отношение между данными терминами. Так вот, архитектура — это общий принцип устройства и работы процессора, а микроархитектура — всего лишь один из вариантов ее реализации, имеющий свои особенности, но сохранающий совместимость с базовой архитектурой.

Виды микроархитектур ARM для смартфонов

Большинство чипсетов для смартфонов содержат процессоры, созданные на ARM, а именно — микроархитектурах семейства Cortex и других. Список актуальных версий и их отличия приведены ниже.

Вы наверняка знаете, что мир процессоров разбит на два лагеря. Если вы смотрите это видео со смартфона, то для вас работает процессор на архитектуре ARM, а если с ноутбука, для вас трудится чип на архитектуре x86.

А теперь еще и Apple объявила, что переводит свои Mac на собственные процессоры Apple Silicon на архитектуре ARM. Мы уже рассказывали, почему так происходит. А сегодня давайте подробно разберемся, в чем принципиальные отличия x86 и ARM. И зачем Apple в это все вписалась?

Итак, большинство мобильных устройств, iPhone и Android'ы работают на ARM'е. Qualcomm, HUAWEI Kirin, Samsung Exynos и Apple A13/A14 Bionic — это все ARM-процессоры.

А вот на компьютере не так — там доминирует x86 под крылом Intel и AMD. Именно поэтому на телефоне мы не можем запустить Word с компьютера.

x86 — так называется по последним цифрам семейства классических процессоров Intel 70-80х годов.


Чем же они отличаются?

Есть два ключевых отличия.

Первое — это набор инструкций, то есть язык который понимает процессор

x86 процессоры используют сложный набор инструкций, который называется CISC - Complex Instruction Set Computing.

ARM процессоры наоборот используют упрощенный набор инструкций — RISC - Reduced Instruction Set Computing.

Кстати ARM расшифровывается как Продвинутые RISC машины - Advanced RISC Machines.

Наборы инструкций ещё принято назвать архитектурой или ISA - Instruction Set Architecture.

Второе отличие — это микроархитектура. Что это такое?

От того на каком языке говорят процессоры, зависит и то, как они проектируются. Потому как для выполнения каждой инструкции на процессоре нужно расположить свой логический блок. Соответственно, разные инструкции — разный дизайн процессора. А дизайн — это и есть микроархитектура.

Но как так произошло, что процессоры стали говорить на разных языках?

История CISC



Памятка программиста, 1960-е годы. Цифровой (машинный) код «Минск-22».

Всё началось в 1960-х. Поначалу программисты работали с машинным кодом, то есть реально писали нолики и единички. Это быстро всех достало и появился Assembler. Низкоуровневый язык программирования, который позволял писать простые команды типа сложить, скопировать и прочее. Но программировать на Assembler'е тоже было несладко. Потому как приходилось буквально “за ручку” поэтапно описывать процессору каждое его действие.

Поэтому, если бы вы ужинали с процессором, и попросили передать его вам соль, это выглядело бы так:

  • Эй процессор, посмотри в центр стола.
  • Видишь соль? Возьми её.
  • Теперь посмотри на меня.
  • Отдай мне соль. — Ага, спасибо!
  • А теперь снова возьми у меня соль.
  • Поставь её откуда взял
  • Спасибо большое! Продолжай свои дела.
  • Кхм… Процессор, видишь перец?
  • И так далее.

Этот подход стал настоящим спасением как для разработчиков, так и для бизнеса. Захотел клиент новую инструкцию — не проблема, были бы деньги — мы сделаем. А деньги у клиентов были.

Недостатки CISC

Но был ли такой подход оптимальным. С точки зрения разработчиков — да. Но вот микроархитектура страдала.

Представьте, вы купили квартиру и теперь вам нужно обставить её мебелью. Площади мало, каждый квадратный метр на счету. И вот представьте, если бы CISC-процессор обставил мебелью вам гостиную, он бы с одной стороны позаботился о комфорте каждого потенциального гостя и выделил бы для него своё персональное место.

С другой стороны, он бы не щадил бюджет. Диван для одного человека, пуф для другого, кушетка для третьего, трон из Игры Престолов для вашей Дейенерис. В этом случае площадь комнаты бы очень быстро закончилась. Чтобы разместить всех вам бы пришлось увеличивать бюджет и расширять зал. Это не рационально. Но самое главное, CISC-архитектура существует очень давно и те инструкции, которые были написаны в 60-х годах сейчас уже вообще не актуальны. Поэтому часть мебели, а точнее исполнительных блоков, просто не будут использоваться. Но многие из них там остаются. Поэтому появился RISC…

Преимущества RISC

С одной стороны писать на Assembler'е под RISC процессоры не очень-то удобно. Если в лоб сравнивать код, написанный под CISC и RISC процессоры, очевидно преимущество первого.

Так выглядит код одной и той же операции для x86 и ARM.

x86

Представьте, что вы проектируете процессор. Расположение блоков на х86 выглядело бы так.


Каждый цветной квадрат — это отдельные команды. Их много и они разные. Как вы поняли, здесь мы уже говорим про микроархитектуру, которая вытекает из набора команд. А вот ARM-процессор скорее выглядит так.


Ему не нужны блоки, созданные для функций, написанных 50 лет назад.

По сути, тут блоки только для самых востребованных команд. Зато таких блоков много. А это значит, что можно одновременно выполнять больше базовых команд. А раритетные не занимают место.

Еще один бонус сокращенного набора RISC: меньше места на чипе занимает блок по декодированию команд. Да, для этого тоже нужно место. Архитектура RISC проще и удобнее, загибайте пальцы:

  • проще работа с памятью,
  • более богатая регистровая архитектура,
  • легче делать 32/64/128 разряды,
  • легче оптимизировать,
  • меньше энергопотребление,
  • проще масштабировать и делать отладку.

Поэтому наши смартфоны, которые работают на ARM процессорах с архитектурой RISC, долго живут, не требуют активного охлаждения и такие быстрые.

Лицензирование

Но это все отличия технические. Есть отличия и организационные. Вы не задумывались почему для смартфонов так много производителей процессоров, а в мире ПК на x86 только AMD и Intel? Все просто — ARM это компания которая занимается лицензированием, а не производством.

Даже Apple приложила руку к развитию ARM. Вместе с Acorn Computers и VLSI Technology. Apple присоединился к альянсу из-за их грядущего устройства — Newton. Устройства, главной функцией которого было распознавание текста.

Даже вы можете начать производить свои процессоры, купив лицензию. А вот производить процессоры на x86 не может никто кроме синей и красной компании. А это значит что? Правильно, меньше конкуренции, медленнее развитие. Как же так произошло?


Ну окей. Допустим ARM прекрасно справляется со смартфонами и планшетами, но как насчет компьютеров и серверов, где вся поляна исторически поделена? И зачем Apple вообще ломанулась туда со своим Apple Silicon.

Что сейчас?

Допустим мы решили, что архитектура ARM более эффективная и универсальная. Что теперь? x86 похоронен?

На самом деле, в Intel и AMD не дураки сидят. И сейчас под капотом современные CISC-процессоры очень похожи на RISC. Постепенно разработчики CISC-процессоров все-таки пришли к этому и начали делать гибридные процессоры, но старый хвост так просто нельзя сбросить.


Но уже достаточно давно процессоры Intel и AMD разбивают входные инструкции на более мелкие микро инструкции (micro-ops), которые в дальнейшем — сейчас вы удивитесь — исполняются RISC ядром.

Да-да, ребята! Те самые 4-8 ядер в вашем ПК — это тоже RISC-ядра!

Надеюсь, тут вы окончательно запутались. Но суть в том, что разница между RISC и CISC-дизайнами уже сейчас минимальна.

А что остается важным — так это микроархитектура. То есть то, насколько эффективно все организовано на самом камне.

Ну вы уже наверное знаете, что Современные iPad практически не уступают 15-дюймовым MacBook Pro с процессорами Core i7 и Core i9.


А что с компьютерами?

Недавно компания Ampere представила свой 80-ядерный ARM процессор. По заявлению производителя в тестах процессор Ampere показывает результат на 4% лучше, чем самый быстрый процессор EPYC от AMD и потребляет на 14% меньше энергии.


Компания Ampere лезет в сегменты Cloud и Workstation, и показывает там отличные цифры. Самый быстрый суперкомпьютер в мире сегодня работает на ARM ISA. С обратной стороны, Intel пытается все таки влезть в сегмент low power и для этого выпускает новый интересный процессор на микроархитектуре lakefield.

Пока у ноутбуков и процессоров от Intel есть одно неоспоримое достоинство - (охлаждение и) единство архитектуры. Пока на рынке ARM-процессоров существуют Qualcomm, Samsung, MediaTek, в мире x86 творится монополия и разработчикам сильно легче делать софт и игры под “взрослые” процессоры.

И Apple та компания, которая способна мотивировать достаточное количество разработчиков пилить под свой ARM. Но суть этого перехода скорее не в противостоянии CISC и RISC. Поскольку оба подхода сближаются, акцент смещается на микроархитектуру, которую делает Apple для своих мобильных устройств. И судя по всему микроархитектура у них крута. И они хотели бы ее использовать в своих компьютерах.

И если бы Intel лицензировал x86 за деньги другим людям, то вероятно Apple просто адаптировали свою текущую микроархитектуру под x86. Но так как они не могут этого сделать, они решили просто перейти на ARM. Проблема для нас с микроархитектурой в том, что она коммерческая тайна. И мы про нее ничего не знаем.

Итоги


Спрос на ARM в итоге вырастет. Для индустрии это не просто важный шаг, а архиважный. Линус Торвальдс говорил, что пока рабочие станции не станут работать на ARM — на рынке серверов будут использовать x86.

И вот это случилось — в перспективе это миллионы долларов, вложенных в серверные решения. Что, конечно, хорошо и для потребителей. Нас ждет светлое будущее и Apple, действительно, совершила революцию!

Редактор материала: Антон Евстратенко. Этот материал помогли подготовить наши зрители Никита Куликов и Григорий Чирков. Спасибо ребята!

Мы уже проделали немалый путь к пониманию работы процессора. Начинали мы с самого нижнего уровня абстракции, говорили о транзисторах и логических схемах. После этого переходили к более сложным функциональным блокам. Если вы проделали весь этот путь вместе с каналом, то не забудьте поставить палец вверх, чтобы поддержать эту рубрику!

Сегодня мы будем говорить о микроархитектуре процессора. Для начала определим, что это такое.

Микроархитектура является связующим звеном между логическими схемами и архитектурой. В рамках нашего повествования микроархитектура - это следующий уровень сложности. Она описывает, как именно в процессоре расположены и соединены друг с другом регистры, АЛУ, схемы конечных состояний, блоки памяти и многое другое, необходимое для реализации архитектуры.

У каждой архитектуры, в том числе у многим известной x86 , может быть много различных микроархитектур, обеспечивающих разное соотношение производительности, цены и сложности. Все они смогут выполнять одни и те же программы, но их внутреннее устройство может очень сильно отличаться.

В частном случае состав микроархитектуры определяется тем, какой список команд предусмотрен для данного процессора. Но в общем, в любой микроархитектуре существует разделение на два блока .

Тракт данных - это часть микроархитектуры, которая включает в себя компоненты, которые работают над обработкой данных. Тракт данных получает из памяти все необходимые данные, осуществляет над ними все нужные операции и сохраняет это обратно в память.

Сам тракт данных не знает, что именно нужно совершить с данными, да и вообще, он может не знать можно ему перезаписывать данные в памяти. Определением типа операций, разрешением записи данных и так далее, занимается устройство управления - это второй блок микроархитектуры.

Любая микроархитектура обязана обладать блоками хранения. В самом простом случае мы будем иметь: счетчик команд, регистровый файл и память . Так как мы будем рассматривать Гарвардскую (?) микроархитектуру, память данных и память команд у нас будут разделены. Сейчас обговорим, что и для чего нужно.

Счетчик команд является так называемым хранителем архитектурного состояния системы. То есть благодаря ему мы можем на каждом этапе работы микропроцессора знать, чем он занят. Сам счетчик команд постоянно указывает на какое-либо место в памяти команд. Та команда, на которую указывает счетчик, извлекается процессором и выполняется в тракте данных. После ее завершения значение счетчика изменяется в зависимости от того, как завершилась предыдущая команда. И так повторяется каждый раз. По своему устройству он представляет собой обычный регистр.

Память команд нужна для того, чтобы хранить команды необходимые для выполнения программ на данном процессоре. Вообще под командой мы понимаем в буквальном смысле инструкцию действий для процессора. Например: мы можем сказать процессору, чтобы он взял какие-нибудь два числа, которые хранятся в каком-либо месте в памяти и сложил их, а результат записал в третье место в памяти.

Память данных необходима для того, чтобы хранить данные с которыми будет работать программа по мере ее выполнения. Это как раз те самые два числа, о которых мы с вами говорили.

Ну и регистровый файл - это просто набор регистров, которые хранят в себе данные, с которыми работает процессор непосредственно в момент выполнения команды. В нашем примере, когда мы сказали процессору, какие два числа мы хотим сложить, он извлекет их из памяти и запишет в этот регистровый файл. Из него он сможет максимально быстро поработать с ними. Но основное удобство этого блока состоит в том, что если следующей команде будет необходим результат этого сложения, то процессор сможет не тратить время на обратную запись результата и повторное его извлечение, а просто оставить его в регистровом файле и дать доступ к этому регистру следующей команде.

И вот мы разобрали все блоки, которые необходимы микроархитектуре для хранения. В качестве исполняющего устройства используются АЛУ. Если вы не знаете что это такое, то переходите по ссылке на статью. Все эти компоненты соединяются массой различных способов при помощи промежуточных регистров, мультиплексоров и другого.

Глобально существует всего несколько типов микроархитектур, которые мы с вами разберем в следующих статьях. Сегодня мы лишь поверхностно ознакомились с таким понятием как микроахритектура. В следующих статьях я расскажу об основных ее типах и мы с вами попробуем самостоятельно разработать какую-нибудь микроархитектуру. А чтобы не пропустить новых статей, подписывайтесь на канал и поддерживайте выпуски лайками, так я буду видеть вашу заинтересованность! Всего вам доброго и до скорых встреч!

Понятие архитектуры процессора не имеет единого толкования, поскольку под ним понимаются две различные сущности. С программной позиции она представляет собой совместимость процессора с конкретным набором команд, его способность выполнять определённый набор кодов. То есть это способность программы, которая была собрана для архитектуры семейства x86, функционировать на всех x86-совместимых системах. На ARM системе такая программа работать не будет.

С аппаратной позиции архитектура процессора, называемая иногда микроархитектурой, является набором свойств, характерным для всего семейства процессоров и отражающим базовые особенности его внутренней организации. К примеру, микроархитектура процессоров Intel Pentium имела обозначение Р5, а процессоры Pentium 4 относились к NetBurst. После закрытия Intel микроархитектуры Р5 для производителей AMD разработала архитектуру К7 и К8 для процессоров Athlon, Athlon XP и Athlon 64 соответственно.

CISC

CISC-архитектура (Complex Instruction Set Computer) относится к процессорам с полным набором команд. Она имеет нефиксированную длину команд, отличается кодированием арифметических действий в единой команде и малым количеством регистров, большинство из которых выполняет только выделенную функцию.

CISC реализована во множестве типов микропроцессоров, таких как Pentium, которые выполняют большое количество разноформатных команд (порядка 200-300), применяя более десяти различных способов адресации. Командная система может включать несколько сотен команд различного уровня сложности или формата (от 1 до 15 байт).


Всё это делает возможным реализовывать эффективные алгоритмы для различных задач. В качестве примеров CISC-архитектуры, используемой преимущественно для десктопных версий, можно привести следующие процессоры:

  • x86 (IA-32, сокращенное от "Intel Architecture, 32-bit") - ;
  • x86_64 (AMD64);
  • Motorola MC680x0;
  • мейнфреймы zSeries.

В CISC-процессорах каждую из команд возможно заменить на аналогичную ей либо на группу выполняющих такую же функцию команд. Это формирует как достоинства, так и недостатки архитектуры: она обладает высокой производительностью благодаря возможности замены команд, но большей стоимостью в сравнении с RISC, что связано с усложнённой архитектурой, в которой существует множество сложных для раскодирования команд.

RISC-архитектура (Reduced Instruction Set Computer) относится к процессорам с сокращённым набором команд. В ней быстродействие увеличивается посредством упрощения инструкций: за счёт того, что их декодирование становится проще, уменьшается время исполнения. Изначально RISC-процессоры не обладали инструкциями деления и умножения и не могли работать с числами, имеющими плавающую запятую. Их появление связано с тем, что в CISC достаточно много способов адресации и команд использовались крайне редко.

Система команд в RISC состоит из малого числа часто применяемых команд одного формата, которые можно выполнить за единичный такт центрального процессора. Более сложные и редко применяемые команды выполняются на программном уровне. При этом, благодаря значительному увеличению скорости реализации команд, средняя производительность RISC-процессоров выше, чем у CISC.

RISC процессор ARM Cortex-A15

Благодаря сокращению аппаратных средств, используемых для декодирования и реализации сложных команд, достигается значительное упрощение и снижение стоимости интегральных схем. В то же время возрастает производительность и снижается энергопотребление, что особенно актуально для мобильного сегмента. Эти же достоинства служат причиной использования во многих современных CISC-процессорах, например в последних моделях К7 и Pentium, RISC-ядра. Сложные CISC-команды заранее преобразуются в набор простых RISC-операций, которые оперативно выполняются RISC-ядром.

Характерными примерами RISC-архитектур являются:

  • PowerPC;
  • DEC Alpha;
  • ARC;
  • AMD Am29000;
  • серия архитектур ARM;
  • Atmel AVR;
  • Intel i860 и i960;
  • BlackFin;
  • MIPS;
  • PA-RISC;
  • Motorola 88000;
  • SuperH;
  • RISC-V;
  • SPARC.

RISC быстрее CISC, и даже при условии выполнения системой RISC четырёх или пяти команд вместо единственной, выполняемой CISC, RISC выигрывает в скорости, поскольку его команды выполняются в разы оперативнее. Однако CISC продолжает использоваться. Это связано с совместимостью: x86_64 продолжает лидировать в десктоп-сегменте, а поскольку старые программы могут функционировать только на x86, то и новые десктоп-системы должны быть x86(_64), чтобы дать возможность старым программам работать на новых устройствах.

Для Open Source это не проблема, ведь пользователь может найти в сети версию программы, подходящую для другой архитектуры. Однако создать версию проприетарной программы для другой архитектуры получится только у владельца исходного кода.

MISC

MISC-архитектура (Minimal Instruction Set Computer) является процессором с минимальным набором команд. Она отличается ещё большей простотой и используется для ещё большего снижения энергопотребления и итоговой стоимости процессора. MISC-архитектура применяется в IoT-сегменте и компьютерах малой стоимости вроде роутеров. Первой вариацией такого процессора стал MuP21.

В основе MISC-процессоров лежит укладка ряда команд в единое большое слово, что позволяет параллельно обрабатывать несколько потоков данных. MISC применяет стековую модель устройства и базовые слова языка Forth. Процессоры этой архитектуры отличаются малым числом наиболее востребованных команд и использованием длинных командных слов, что позволяет получить выполнение ряда непротиворечивых команд за единый цикл работы процессора. Порядок исполнения команд определяется так, чтобы максимально загрузить маршруты, пропускающие потоки данных.

Все вышеназванные архитектуры могут применять «спекулятивное исполнение команд», то есть исполнение команды заранее, когда ещё неизвестна её необходимость. Это позволяет увеличить производительность.

VLIW

VLIW-архитектура (Very Long Instruction Word) относится к микропроцессорам, применяющим очень длинные команды за счёт наличия нескольких вычислительных устройств. В отдельных полях команды присутствуют коды, которые обеспечивают реализацию различных операций. Одна команда в VLIW может исполнить одновременно несколько операций в разных узлах микропроцессора. Формированием таких длинных команд занимается соответствующий компилятор во время трансляции программ, которые написаны на высокоуровневом языке.

VLIW-архитектура, являясь достаточно перспективной для разработки нового поколения высокопроизводительных процессоров, реализована в некоторых современных микропроцессорах:

  • Intel Itanium;
  • AMD/ATI Radeon (с R600 до Northern Islands);
  • серия «Эльбрус».

VLIW процессор Эльбрус-8С

VLIW схожа с архитектурой CISC, имея собственный аналог спекулятивной реализации команд. Однако спекуляция выполняется не при работе программы, а при компиляции, что делает VLIW-процессоры устойчивыми к уязвимостям Spectre и Meltdown. Компиляторы в этой архитектуре привязаны к определённым процессорам. Так, в следующем поколении наибольшая длина одной команды может из 256 бит превратиться в 512 бит, и тогда придётся выбирать между обратной совместимостью со старым типом процессора и возрастанием производительности посредством компиляции под новый процессор. И в этом случае Open Sourсe даёт возможность получить программу под определённый процессор при помощи перекомпиляции.

Развитием указанных архитектур стали различные гибридные архитектуры. К примеру, современные x86_64 процессоры CISC-совместимы, однако имеют RISC-ядро. В этих CISC-процессорах CISC-инструкции переводятся в набор RISC-команд. Вероятно, в дальнейшем разнообразие гибридных архитектур только возрастёт.

Используемая вами версия браузера не рекомендована для просмотра этого сайта.
Установите последнюю версию браузера, перейдя по одной из следующих ссылок.

Успевайте делать больше с меньшими затратами

Передовые разработки в микроархитектуре позволяют создавать более компактные и более производительные устройства. Также они являются основой бизнес-модели Intel и ее успеха. Благодаря продуманной конструкции и интеллектуальным процессорным технологиям Intel по-прежнему лидирует в отрасли, разрабатывая еще более портативные транзисторы для создания более энергоэффективных и производительных процессорных ядер.

Что такое микроархитектура?

Микроархитектура — это схема элементов микросхемы. Эта схема, объединенная с передовой нанотехнологией, расширяет возможности вычислительных устройств и повышает их энергоэффективность. Специалисты Intel по микроархитектурам продолжают делать гигантские шаги вперед в области инноваций и не так давно представили первые в мире трехмерные 22-нанометровые транзисторы.

Что нового

Узнайте о преимуществах новой микроархитектуры Intel® (прежнее название — Haswell), которая поддерживает более быстрые и более компактные платформы и обеспечивает улучшенное качество HD-графики, более высокий уровень безопасности, уменьшенное время отклика и превосходную мобильность благодаря автоматической настройке беспроводной связи.

Разработка трехмерной 22-нанометровой микроархитектуры

В соответствии с законом Мура и моделью «Тик-так» корпорация Intel продолжает развивать свои исторические достижения в области микроархитектур, успешно тестируя первый трехмерный 22-нанометровый транзистор и разрабатывая 14-нанометровые технологии следующего поколения.

Представленная в процессорах Intel® Core™ 3-го поколения трехмерная 22-нанометровая микроархитектура Intel® знаменует новый уровень в фундаментальной структуре компьютерных микросхем. До этих пор транзисторы представляли собой исключительно двухмерные (плоские) устройства. В трехмерном транзисторе Intel® используются три затвора, которые размещаются вокруг кремниевого канала в трехмерной структуре, обеспечивая непревзойденное сочетание высокой производительности и сверхнизкого энергопотребления.

Эта новая технология позволяет Intel создавать еще более мощные микропроцессоры, предоставляющие повышенную производительность и увеличенное время автономной работы при меньших финансовых затратах, а также создавать еще более компактные устройства, такие как Ultrabook™.

Микроархитектура процессора Intel® Atom™

Постоянные инновации в микроархитектуре лежат в основе Intel® Atom™, самого маленького и самого универсального процессора из семейства Intel. Процессор Intel® Atom™ позволил создать широкий спектр переносных устройств, включая нетбуки, планшетные ПК, карманные ПК, смартфоны, интеллектуальные телевизоры, интеллектуальные системы и бытовую электронику, обеспечив компактные устройства беспрецедентной производительностью обработки аудио и видео.

Архитектура Intel® Many Integrated Core

Архитектура Intel® Many Integrated Core (архитектура Intel® MIC) — это новейшая передовая разработка в сфере быстродействия суперкомпьютеров, производительности и совместимости. Она обеспечивает на одном кристалле пиковую производительность до одного триллиона операций с плавающей запятой. В архитектуре Intel MIC интенсивно используются параллельные вычисления. Она ориентирована на рынок высокопроизводительных вычислений (HPC), на котором параллельная обработка используется для моделирования климата, создания финансовых моделей, выполнения генетического анализа и обработки медицинских изображений и других применений.

Другие видеоролики. Внимание: в данном разделе могут быть представлены материалы на английском языке.

Объяснение принципа работы 14-нанометровых транзисторов — следование закону Мура

Сотрудник корпорации Intel Марк Бор (Mark Bohr) рассказывает о новой 14-нанометровой транзисторной технологии и о том, как каналы транзисторов tri-gate, которые стали выше, тоньше и расположены ближе друг к другу, обеспечивают более высокую производительность, меньшее энергопотребление и более продолжительное время автономной работы для расширения возможностей компьютеров.

Марк Бор о нанотехнологиях: объяснение принципов работы 22-нанометровой технологии

Трехмерные транзисторы Intel® Tri-Gate, а также возможность их массового производства, ознаменовали собой существенное изменение основной структуры компьютерной микросхемы. Узнайте подробнее об истории транзисторов.

Читайте также: