Что такое техпроцесс в видеокарте

Обновлено: 07.07.2024

В любом электронном устройстве, которыми мы пользуемся каждый день, есть множество чипов, каждый из которых состоит из еще большего множества транзисторов. В новостях о новых смартфонах, процессорах, видеокартах и прочей электронике можно часто встретить термин «техпроцесс» и указание количества нанометров. Что обозначает этот термин? Давайте разберемся вместе.

Для примера можно взять обычный процессор для настольного компьютера — принцип будет одинаковым и для него, и для чипсетов смартфонов, и для чипов видеокарт, и для всех остальных чипов.

Что такое техпроцесс?

Под теплораспределительной панелью, которую вы видите на картинке выше, размещен сам кристалл процессора. Он состоит из миллиардов микроскопических транзисторов, расстояние между которыми и определяет техпроцесс. Так, Intel сейчас выпускает процессоры на базе 10 нм техпроцесса (компания никак не может наладить производство 7 нм чипов), а TSMC — чипсеты для мобильных девайсов на базе 7 нм техпроцесса (Apple A12, Kirin 980 и Snapdragon 855). При этом технологии производства у них заметно отличаются: Intel со своими 10 нм может размещать на одном квадратном миллиметре площади до 100 млн транзисторов, а TSMC со своими 7 нм — лишь 66 млн.

Что же дает постепенное уменьшение (оптимизация) техпроцесса из года в год? В основе всех преимуществ — уменьшение расстояния между транзисторами, что позволяет им быстрее передавать данные и тратить на их передачу меньше энергии.

Таким образом, процессоры на одинаковой архитектуре, но произведенные с использованием разного техпроцесса, будут отличаться в следующих аспектах:

-тактовая частота (повышение производительности);
-потребление энергии;
-возможное увеличение количества ядер;
-снижение себестоимости производства;
-больше кэш-памяти, для которой на кристалле можно выделить больше места.

Что такое техпроцесс?

Краткая история развития техпроцесса

Компьютерные чипы, которые производили в семидесятых годах прошлого столетия, использовали техпроцессы, измеряемые в микронах (мкм) — 10, 8, 6, 4, 3 и 2 мкм. Каждые три года происходило уменьшение примерно в 0.7 раз. Так, 3 мкм техпроцесс начали использовать в 1975 (Zilog) и 1979 (Intel) годах.

Дальнейшее уменьшение шло довольно быстро: в 1982 году Intel достигла отметки в 1.5 мкм, в 1989 — 0.8 мкм, в 1994 — 0.6 мкм. После середины девяностых и до 2008 года каждые два года плотность транзисторов удваивалась. В 1997 Intel, IBM и TSMC достигли 350 нм, в 1998 инженеры Intel смогли освоить 250 нм, а в 1999 — уже 180 нм.

Ниже 100 нм порог снизился уже в начале «нулевых» — так, Intel Pentium 4 на архитектуре Prescott использовал техпроцесс 90 нм. Уже к 2004 году была достигнута отметка в 65 нм (Intel Core, Core 2 Duo, Celeron D и множество других процессоров), а в 2006 — 40 / 45 нм (AMD Phenom II, Athlon II и другие).

Следующая ступень эволюции была довольно высокой — техпроцесс 32 / 28 нм Intel начала использовать лишь к 2011 (TSMC — чуть раньше, в 2010). Еще раз вдвое (22 / 20 нм) плотность увеличили уже к 2012.

В 2014 году основные игроки на рынке начали использовать в производстве микрочипов 14 / 16 нм техпроцесс и технологию FinFET (транзисторы нового типа — с вертикально расположенным затвором, который занимает еще меньше места). Первые 14 нм процессоры Intel появились в продаже уже в 2015. В 2016 на рынке появились iPhone с чипами Apple A10 (16 нм).

Переход на 10 нм начался в 2017 — этот техпроцесс используют в процессорах Apple A11 Bionic, процессорах Intel Cannon Lake и Ice Lake, а также в Qualcomm Snapdragon 835 и Snapdragon 845.

Наконец, в 2018 году мобильные чипсеты начали использовать новейший 7 нм техпроцесс. Это Apple A12 Bionic, Snapdragon 855 и Huawei HiSilicon Kirin 980. Кроме того, в 2019 7 нм техпроцесс начала использовать AMD (в видеокартах Radeon VII).

Первые образцы чипов, производимых с использованием 5 нм техпроцесса, уже изготавливаются в лабораториях TSMC. О коммерческих продуктах на их основе пока никакой информации нет. При этом к 2021 Samsung уже планирует выпускать чипы с использованием 3 нм техпроцесса и технологии GAAFET.

Что такое техпроцесс?

AMD Radeon VII — первая потребительская видеокарта, которая использует 7 нм чип

Чего ждать в ближайшие годы? Энтузиасты (а уж инвесторы — в особенности) надеются на то, что Intel наконец-то сможет преодолеть такой сложный для себя порог в 10 нм. Это позволит ей наконец-то начать выпускать и значительно более экономичные и быстрые процессоры для ПК и ноутбуков, и чипсеты нового поколения для мобильных устройств. Сейчас она не может конкурировать на этом рынке с лидерами вроде Apple, Huawei и Qualcomm.

Также 7 нм техпроцесс будут использовать в видеокартах AMD и Nvidia следующих поколений. RTX 21xx должны благодаря этому стать куда быстрее и экономичнее, а AMD в следующем поколении еще и начнет использовать совершенно новую архитектуру Navi. Кстати, свои собственные видеокарты собирается производить и Intel — правда, их выхода ждать придется, скорее всего, как минимум до 2021 года.

В общем и целом, дальнейшая оптимизация техпроцесса должна сделать наши компьютеры, смартфоны, умные часы и другие устройства еще быстрее, а их время автономной работы от батареи должно будет увеличиться (при прочих равных параметрах). Кроме того, конкуренция между разными производителями (Intel, AMD, Huawei, Apple, Qualcomm и другими) и архитектурами (x86 против ARM) должна привести к постепенному снижению цен.

Стоит ли ждать следующего скачка технологий перед покупкой нового смартфона, компьютера или комплектующих? На этот вопрос мы ответим однозначным «нет», которое перестанет быть актуальным разве что перед самым анонсом девайсов нового поколения. Зацикливаться на техпроцессе как технической характеристике не стоит — куда важнее оценить нужную вам производительность и выбрать самый выгодный вариант прямо сейчас.

Несмотря на то, что техпроцесс напрямую не влияет на производительность процессора, мы все равно будем упоминать его как характеристику процессора , так как именно техпроцесс влияет на увеличение производительности процессора, за счет конструктивных изменений. Хочу отметить, что техпроцесс, является общим понятием, как для центральных процессоров, так и для графических процессоров , которые используются в видеокартах.

Центральные процессоры Интел

Основным элементом в процессорах являются транзисторы – миллионы и миллиарды транзисторов. Из этого и вытекает принцип работы процессора. Транзистор, может, как пропускать, так и блокировать электрический ток, что дает возможность логическим схемам работать в двух состояниях – включения и выключения, то есть во всем хорошо известной двоичной системе (0 и 1).

Техпроцесс – это, по сути, размер транзисторов. А основа производительности процессора заключается именно в транзисторах. Соответственно, чем размер транзисторов меньше, тем их больше можно разместить на кристалле процессора.

Новые процессоры Intel выполнены по техпроцессу 22 нм. Нанометр (нм) – это 10 в -9 степени метра, что является одной миллиардной частью метра. Чтобы вы лучше смогли представить насколько это миниатюрные транзисторы, приведу один интересный научный факт: « На площади среза человеческого волоса, с помощью усилий современной техники, можно разместить 2000 транзисторных затворов!»

Если брать во внимание современные процессоры , то количество транзисторов, там уже давно перевалило за 1 млрд.

Ну а техпроцесс у первых моделей начинался совсем не с нанометров, а с более объёмных величин, но в прошлое мы возвращаться не будем.

Примеры техпроцессов графических и центральных процессоров

Сейчас мы рассмотрим парочку последних техпроцессов, которые использовали известные производители графических и центральных процессоров.

1. AMD (процессоры):

Техпроцесс 32 нм. К таковым можно отнести Trinity, Bulldozer, Llano. К примеру, у процессоров Bulldozer, число транзисторов составляет 1,2 млрд., при площади кристалла 315 мм2.

Техпроцесс 45 нм. К таковым можно отнести процессоры Phenom и Athlon. Здесь примером будет Phemom, с числом транзисторов 904 млн. и площадью кристалла 346 мм2.

Техпроцесс 22 нм. По 22-нм нормам построены процессоры Ivy Bridge (Intel Core ix - 3xxx). К примеру Core i7 – 3770K, имеет на борту 1,4 млрд. транзисторов, с площадью кристалла 160 мм2, видим значительный рост плотности размещения.

Техпроцесс Intel

Техпроцесс 32 нм. К таковым можно отнести процессоры Intel Sandy Bridge (Intel Core ix – 2xxx). Здесь же, размещено 1,16 млрд. на площади 216 мм2.

Здесь четко можно увидеть, что по данному показателю, Intel явно обгоняет своего основного конкурента.

3. AMD (ATI) (видеокарты):

Техпроцесс 28 нм. Видеокарта Radeon HD 7970

4. Nvidia:

Техпроцесс 28 нм. Geforce GTX 690

Техпроцесс в будущем

Вот мы и рассмотрели понятие техпроцесса в центральных и графических процессорах. На сегодняшний день разработчиками планируется покорить техпроцесс в 14 нм, а затем и 9, с применением других материалов и методов. И это далеко не предел!

Что такое техпроцесс в микрочипах и как он влияет на производство полупроводников

Ключевым элементом практически каждой вычислительной схемы является транзистор. Это полупроводниковый элемент, который служит для управления токами. Из транзисторов собираются основные логические элементы, а на их основе создаются различные комбинационные схемы и уже непосредственно процессоры.


Чем больше транзисторов в процессоре — тем выше его производительность, ведь можно поместить на кристалл большее количество логических элементов для выполнения разных операций.

В 1971 году вышел первый микропроцессор — Intel 4004. В нем было всего 2250 транзисторов. В 1978 мир увидел Intel 8086 и в нем помещались целых 29 000 транзисторов. Легендарный Pentium 4 уже включал 42 миллиона. Сегодня эти числа дошли до миллиардов, например, в AMD Epyc Rome поместилось 39,54 миллиарда транзисторов.

Модель Год выпуска Кол-во транзисторов
Xeon Broadwell-E5 2016 7 200 000 000
Ryzen 5 1600 X 2017 4 800 000 000
Apple A12 Bionic (шестиядерный ARM64) 2018 6 900 000 000
Qualcomm Snapdragon 8cx 2018 8 500 000 000
AMD Ryzen 7 3700X 2019 5 990 000 000
AMD Ryzen 9 3900X 2019 9 890 000 000
Apple M1 ARM 2020 16 000 000 000

Много это или мало? На 2020 год на нашей планете приблизительно 7,8 миллиардов человек. Если представить, что каждый из них это один транзистор, то полтора населения планеты
с легкостью поместилась бы в процессоре Apple A14 Bionic.


В 1975 году Гордон Мур, основатель Intel, вывел скорректированный закон, согласно которому число транзисторов на схеме удваивается каждые 24 месяца.


Нетрудно посчитать, что с момента выхода первого процессора до сего дня, а это всего-то 50 лет, число транзисторов увеличилось в 10 000 000 раз!

Казалось бы, поскольку транзисторов так много, то и схемы должны вырасти в размерах на несколько порядков. Площадь кристалла у первого процессора Intel 4004 — 12 мм², а у современных процессоров AMD Epyc — 717 мм² (33,5 млрд. транзисторов). Получается, по площади кристалла процессоры выросли всего в 60 раз.


Как же инженерам удается втискивать такое огромное количество транзисторов в столь маленькие площади? Ответ очевиден — размер транзисторов также уменьшается. Так
и появился термин, который дал обозначение размеру используемых
полупроводниковых элементов.

Упрощенно говоря, техпроцесс — это толщина транзисторного слоя, который применяется в процессорах.

Чем мельче транзисторы, тем меньше они потребляют энергии, но при этом сохраняют текущую производительность. Именно поэтому новые процессоры имеют большую вычислительную мощность, но при этом практически не увеличиваются в размерах
и не потребляют киловатты энергии.

Какие существуют техпроцессы: вчера и сегодня

Первые микросхемы до 1990-х выпускались по технологическому процессу 3,5 микрометра. Эти показатели означали непосредственно линейное разрешение литографического оборудования. Если вам трудно представить, насколько небольшая величина в 3 микрометра, то давайте узнаем, сколько транзисторов может поместиться в ширине человечного волоса.


Уже тогда транзисторы были настолько маленькими, что пару десятков с легкостью помещались в толщине человеческого волоса. Сейчас техпроцесс принято соотносить с длиной затвора транзисторов, которые используются в микросхеме. Нынешние транзисторы вышли на размеры в несколько нанометров.


Для Intel актуальный техпроцесс — 14 нм. Насколько это мало? Посмотрите в сравнении
с вирусом:


Однако по факту текущие числа — это частично коммерческие наименования. Это означает, что в продуктах по техпроцессу 5 нм на самом деле размер транзисторов не ровно столько, а лишь приближенно. Например, в недавнем исследовании эксперты сравнили транзисторы от Intel по усовершенствованному техпроцессу 14 нм и транзисторы от компании TSMC на 7 нм. Оказалось, что фактические размеры на самом деле отличаются не на много, поэтому величины на самом деле относительные.


Рекордсменом сегодня является компания Samsung, которая уже освоила техпроцесс 5 нм. По нему производятся чипы Apple A14 для мобильной техники. Одна из последних новинок Apple M1 — первый ARM процессор, который будет установлен в ноутбуках от Apple.

Продукцию по техпроцессу в 3 нм Samsung планирует выпускать уже к 2021 году. Если разработчикам действительно удастся приблизиться к таким размерам, то один транзистор можно будет сравнить уже с некоторыми молекулами.


Насколько маленьким может быть техпроцесс

Уменьшение размеров транзисторов позволяет делать более энергоэффективные и мощные процессоры, но какой предел? На самом деле ответа никто не знает.

Проблема кроется в самой конструкции транзистора. Уменьшение прослойки между эмиттером и коллектором приводит к тому, что электроны начинают самостоятельно просачиваться, а это делает транзистор неуправляемым. Ток утечки становится слишком большим, что также повышает потребление энергии.


Не стоит забывать, что каждый транзистор выделяет тепло. Уже сейчас процессоры Intel Core i9-10ХХХ нагреваются до 95 градусов Цельсия, и это вполне нормальный показатель. Однако при увеличении плотности транзисторов температуры дойдут до таких пределов, когда даже водяное охлаждение окажется полностью бесполезным.

Самые смелые предсказания — это техпроцесс в 1,4 нм к 2029 году. Разработка еще меньших транзисторов, по словам ученых, будет нерентабельной, поэтому инженерам придется искать другие способы решения проблемы. Среди возможных альтернатив — использование передовых материалов вместо кремния, например, графена.

Не нуждающийся в особых представлениях техноблогер Roman Hartung, более известный под ником der8auer, провёл исследования транзисторов в процессорах Intel и AMD, выполненных по нормам технологических процессов 14 и 7 нанометров, соответственно. Для исследования были взяты старшие модели в настольных линейках компаний: Core i9-10900K, выпущенный на собственных мощностях Intel, и Ryzen 9 3950X, изготовленный силами TSMC.

реклама


С помощью сканирующего электронного микроскопа были получены изображения транзисторов в области расположения кеш-памяти второго уровня. Транзисторы кэша были выбраны в качестве эталона для сравнения, поскольку представляют собой стандартизированную структуру и не имеют большого разброса по параметрам в рамках одного блока.

MSI RTX 3070 сливают дешевле любой другой, это за копейки Дешевая 3070 Gigabyte Gaming - успей пока не началось


Пристальное изучение полученных изображений полупроводниковой структуры показало несколько любопытных фактов. Так, различия ширины затвора транзистора у 14 и 7 нм техпроцессов оказались минимальны: 24 нм у Intel против 22 нм у AMD, высота затворов так и вовсе оказалась равна на уровне погрешности. Как видим, никакого кратного отличия, на которое намекают маркетинговые наименования техпроцессов, нет.

реклама

var firedYa28 = false; window.addEventListener('load', () => < if(navigator.userAgent.indexOf("Chrome-Lighthouse") < window.yaContextCb.push(()=>< Ya.Context.AdvManager.render(< renderTo: 'yandex_rtb_R-A-630193-28', blockId: 'R-A-630193-28' >) >) >, 3000); > > >);


Это ещё раз подтверждает тезис о том, что числа в названии современных литографических технологических процессов уже давно не имеют ничего общего с реальностью. Так, компания Samsung созналась, что её 8 нм технология - это просто 10 нм с новой библиотекой элементов и обновлённым трассировщиком.


Всё это наводит на некоторые мысли. Так, рост производительности процессоров AMD RYZEN вероятнее всего может быть обусловлен в первую очередь именно инженерной работой и совершенствованием архитектуры, а не успехами TSMC в переименовании своих техпроцессов. Следовательно, ощутимый прирост от поколения к поколению будет зависеть от задела к модернизации, избранной AMD технологии чиплетов. Поскольку это первый опыт применения данной компоновки кристаллов, делать какие-то долгосрочные прогнозы сложно, но очевидно, что однажды возможности дальнейшего совершенствования будут исчерпаны, и AMD придётся у перейти к схеме +5% каждый год, либо менять парадигму и искать новые пути развития.

реклама

В то же время переход процессоров Intel на 10 и 7 нм может принести гораздо больший, чем можно предполагать, прирост, поскольку компания не увлекалась маркетингом нанометров, просто добавляя знаки + к своим 14 нанометрам, следовательно, новый техпроцесс может оказаться действительно значительно более продвинутым. Кроме того, Intel уже смотрит в будущее и проводит исследования в области альтернативных методов пространственной компоновки транзисторов и структур кристалла процессора.

Как бы то ни было, становится очевидно, что пресловутые числа в названиях техпроцессов не отражают физической реальности и размеров полупроводниковых элементов. Грядущие 5 и 3 нм от TSMC и Samsung, вероятнее всего, так же будут представлять из себя по сути 7++ и 7+++ технологии. Размеры элементов транзистора уменьшаются незначительно, увеличение плотности размещения транзисторов на единице площади достигается в первую очередь совершенствованием библиотек элементов, развитием программ-автотрассировщиков, оптимизацией самой структуры и компоновки блоков кристалла.


А значит, опасаться, что уже в текущем десятилетии мы упрёмся в физические ограничения создания транзистора на атомном уровне, не стоит. Тормозом станет, скорее, непомерная стоимость разработки и изготовления более совершенных степперов и проблема с созданием новых сверхмощных источников УФ-излучения. Впрочем, решение, возможно, уже не за горами и кроется в применении новых материалов, в частности соединений германия, гафния, либо графена. Но это уже совсем другая история.

Читайте также: