Из каких элементов состоит дорожка цифровой записи компакт диска

Обновлено: 08.07.2024

При тиражировании компакт-дисков неизбежно возникают некоторые отклонения записи, которые зовутся красивым словом эксцентриситет. Его (эксцентриситета) предельная величина, в соответствии со стандартом, не должна превышать ±70 мкм. Однако и эта цифра достаточно велика. Для воспроизведения информации с дорожки шириной 0,6. 0,8 мкм нужно, чтобы сфокусированный луч лазера удерживался на ней с точностью ±0,1 мкм. Поэтому требуется применение системы автоматического слежения за дорожкой, называемой автотрекингом, с глубиной регулировки не менее 700. Исполнительный механизм такой системы должен перемещать объектив (или всю оптическую головку) в радиальном направлении, компенсируя влияние эксцентрисита.

Способ трех лучей

Для реализации данного способа, кроме основного считывающего луча, необходимы ещё два дополнительных, которые формируются путем расщипления основного. Для формирования дополнительных лучей в качестве светоделителя с равным успехом могут быть использованы полупрозрачное зеркало, поляризиционная призма, фазовая дифракционная решетка или оптические клинья. Расположение основного и дополнительных пятен на дорожке при трехлучевом способе автотрекинга показано на рис. 1.



Рис. 1 - Положение сфокусированных пятен на дорожке при трехлучевом способе автотрекинга

Основной луч А располагается посередине, а дополнительные В и С - по обеим стронам от него вдоль оси дорожки на расстоянии Y. Кроме того, дополнительные лучи смещены перпендикулярно оси дорожки на некоторую величину Х. Один (В) смещен влево, другой (С) - на такую же величину вправо. Каждому из трех лучей соответствует свой фотоприемник.

Когда основной луч А следует точно по центру дорожки, дополнительные лучи В и С только слегка захватывают её каждый со своей стороны. Сигналы с фотоприемников дополнительных лучей одинаковы, а разность их, соответственно, равна нулю. Если основной луч А смещается в ту или иную сторону, то один из фотоприемников дополнительных лучей начинает получать больше света, а другой - меньше. При их вычитании получается определенная разность, которая и будет характеризовать величину и знак сигнала ошибки.

Из-за простоты и устойчивости в работе способ трех лучей получил наиболее широкое распространение в проигрывателях компакт-дисков, хотя и является очень старым, заимствованным ещё из системы лазерной видеозаписи LV (Laser Vision).

Дифракционный способ

При таком способе используется явление дифракции света на микрорельефе регистрирующего слоя компакт-диска.

Под дифракцией в оптике понимают любое отклонение световых лучей от прямых линий, возникающее в результате ограничения или искажения волнового фронта. Дифракционные явления присущи любому изображению, полученному с помощью оптических приборов, поскольку фронт световой волны, проходящий через оптику, всегда ограничен её размерами.

Если размеры изображаемых предметов велики в сравнении с длиной волны света, то эти явления теряются на фоне общей картины изображения. Но если размеры предметов и длина волны излучения имеют один порядок, как в случае пит на поверхности компакт-диска, то дифракционная структура изображения начинает играть определяющую роль.

FAQ по звуковым компакт-дискам (CD-DA)

Все права в отношении данного текста принадлежат автору. При воспроизведении текста или его части сохранение Copyright обязательно. Коммерческое использование допускается только с письменного разрешения автора.

Как устроен компакт-диск?

Конструкция диска CD-DA (Compact Disk - Digital Audio, компакт-диск - цифровой звук) и способ записи звука на нем описывается стандартом предложивших его фирм Sony и Philips, изданным в 1980 году под названием Red Book (Красная Книга).

Стандартный компакт-диск (CD) состоит из трех слоев: основы, отражающего и защитного. Основа выполнена из прозрачного поликарбоната, на котором методом прессования сформирован информационный рельеф. Поверх рельефа напыляется металлический отражающий слой (алюминий, золото, серебро, другие металлы и сплавы). Отражающий слой покрывается сверху защитным слоем поликарбоната или нейтрального лака - так, чтобы вся металлическая поверхность была защищена от контакта со внешней средой. Общая толщина диска - 1.2 мм.

Информационный рельеф диска представляет собой непрерывную спиральную дорожку, начинающуюся от центра и состоящую из последовательности углублений - питов (pits). Промежутки между питами носят название lands. Чередованием питов и промежутков различной длины на диске записывается закодированный цифровой сигнал: переход от промежутка к питу и наоборот обозначает единицу, а длина пита или промежутка - длину серии нулей. Расстояние между витками дорожки выбирается от 1.4 до 2 мкм, стандарт определяет расстояние в 1.6 мкм.

Каким образом на диске представляется звуковой сигнал?

Как записываются и изготавливаются компакт-диски?

Как воспроизводятся компакт-диски?

Каковы параметры звукового сигнала на CD?

  • Диапазон частот: 0..22050 Гц
  • Динамический диапазон: 98 дБ
  • Уровень шума: -98 дБ
  • Коэффициент нелинейных искажений: 0.0015% (на максимальном уровне сигнала)

Что такое jitter?

Что означают аббревиатуры AAD, DDD, ADD?

Могут ли два одинаковых диска звучать по-разному?

  • Недостаточно надежная система считывания и декодирования во многих дорогих CDP, преднамеренно рассчитанная на столь же редкие и дорогие диски. Это косвенно подтверждается тем, что нередко диски низкого качества, успешно считываемые дешевыми CDP, крайне плохо воспроизводятся проигрывателями класса High End.
  • Применение в декодере CIRC стратегий, ориентированных на обнаружение ошибок, нежели на их исправление, в результате чего безошибочно считываются только очень качественные диски, а большая часть обычных порождает ошибки, маскируемые интерполятором.
  • Недостаточно полное подавление помех, создаваемых механической системой CDP, которая при плохом качестве сигнала с диска работает с большей нагрузкой и создает помехи большей интенсивности.
  • Различные коэффициенты отражения/преломления луча, глубина/форма питов, неровность дорожки, а также прочие особенности дисков, влияющие на интенсивность отраженного луча и форму сигнала, создаваемого им в фотоприемнике. Даже если восстановленный при декодировании цифровой сигнал в обоих случаях будет одинаковым, тем не менее электрические процессы, происходящие в CDP, в общем случае будут различны. Отголоски этих процессов в виде паразитных помех могут проникать в схему ЦАП и влиять на выдаваемый им звуковой сигнал.

Как обращаться с компакт-дисками?

Избегая механического повреждения любой из поверхностей, попадания на диск органических растворителей и прямого яркого света, ударов и перегибов диска. Надписи на записываемых дисках допускается делать только карандашами или специальными фломастерами, исключая нажим и использование шариковых или перьевых ручек.

При извлечении диска из коробки следует остерегаться его перегиба. Один из удобных и безопасных методов требует участия двух рук - большой палец левой руки слегка нажимает на фиксатор, ослабляя его, в то время как другая рука снимает диск с фиксатора. Метод с использованием одной руки, когда указательный палец ослабляет фиксатор, а большой и средний снимают диск, требует более точного согласования усилий, без которого легко перегнуть диск или сломать лепестки фиксатора.

Загрязненный диск можно мыть теплой водой с мылом или неагрессивным поверхностно-активным веществом (шампунь, стиральный порошок), либо специально выпускаемыми жидкостями. Неглубокие царапины на прозрачном слое можно заполировать - полирующими пастами, не содержащими органических растворителей и масел, или обычной зубной пастой.

Это фломастер, наполненный специальным составом, хорошо поглощающим инфракрасное излучение. Им закрашивается внешняя кромка диска с целью ослабить отражения луча от ее внутренней поверхности, и тем самым снизить помехи от паразитных отражений на основной луч.

Многие пользователи и эксперты утверждают, что обработанный таким образом диск дает более чистое звучание в аппаратах высокого класса, приписывая это более точному считыванию цифровой информации с диска, который в своем исходном виде якобы не может быть достоверно считан в большинстве приводов. Однако тщательно выполненная система (привод и декодер) в состоянии правильно считывать не только необработанные диски, но и диски среднего качества, и даже слегка загрязненные и поцарапанные, поэтому возможные причины улучшения звучания следует искать не в диске. Наиболее вероятными объяснениями этого феномена представляются те же факторы, которые создают различное звучание совпадающих по цифровому содержимому экземпляров дисков.

На рис.3.1 представлено увеличенное схематичное изображение КД. Дорожка КД представляет собой последовательность питов и флэтов. Ширина питов составляет 0,4  0,5 мкм, глу­бина  0,1 мкм. Длина питов и флэтов может изме­няться от 1 до 3 мкм. Расстояние между соседними дорожками, которое названо шагом спиральной дорожки, постоянно и составляет 1,6 мкм (определяется удвоенной длиной волны лазера, что будет пояснено позже).


Вобычных проигрывателях грампластинок звукосниматель, сле­дуя по канавкам записи на грампластинке, одновременно считыва­ет два сигнала: один для правого, другой  для ле­вого канала. На КД информация для левого и правого стереоканалов нанесена блоками в одну последовательность, попеременно, через фиксированный интервал времени. В результате такая организа­ция дорожки записи теоретически приводит к полному отсутствию перекрестной связи между каналами (реально 90 дБ).

Наряду с собственно аудиоинформацией, высокая информационная емкость КД дает возможность на­носить на них всевозможную дополнительную информацию о на­звании, длительности записи и т.д., а также необходимую информацию для коррекции ошибок воспроизведения. Записывают­ся также необходимые синхронизирующие сигналы, обеспечиваю­щие постоянную линейную скорость воспроизведения, т. е. посто­янную скорость считывания информации.

1.3. Структурная схема проигрывателя компакт-дисков

Информация с КД считывается при отсутствии механического контакта между считывающим устройством и пластинкой с помощью узкого луча, который вырабатывается полупроводниковым лазером.

Световой поток от лазера фокусируется с помощью оптической системы (на рис.3.2 она условно показана в виде линзы Л) таким образом, что точка фокуса Ф располагается на поверхности дискового носителя записи Д.








ри совмещении точки фокуса с питом П отраженный от поверхности микроуглубления световой поток ОП за счет дифракции практически не попадает на поверхность линзы. Однако, если световой поток ОФ отражается от поверхности диска (флэт), покрытого защитным слоем ЗС, он достигает линзы и, пройдя че­рез расщепитель Р, попадает на фотоприемник ФП. Сигнал воспроиз­ведения КД представляет собой последователь­ность прерываемых отражений лазерного луча. При этом логической «1» соответствует участок отражающей поверхности, а логиче­скому «0» – участок рассеивающей поверхности, т. е. микроуг­лубление. От размеров питов, однозначно определяемых параметра­ми записанного сигнала, зависят характеристики выходного сигнала фотоприемника. Таким образом, существует связь между парамет­рами записываемого и воспроизводимого сигналов.

В связи с тем, что между считывающим устройством и КД от­сутствует механический контакт и информация располагается под защитным слоем, КД не изнашивается и не теряет своих качествен­ных параметров в процессе эксплуатации, а частички пыли на поверх­ности диска, возможные отпечатки пальцев и легкие царапины прак­тически не влияют на воспроизведение. Проиллюстрируем это утверждение.

Объектив лазерного звукоснимателя фокусирует луч строго на информационной поверхности, т. е. в той плоскости КД (рис.3.3), где нанесена информация в виде микроуглублений. Глубина резко­сти объектива составляет не более 2 мкм. На поверхности прозрач­ного слоя КД лазерный луч расфокусирован. Диаметр пятна лазер­ного луча составляет около 1 мм, а это приводит к тому, что частички пыли, отпечатки пальцев или царапины на поверхности КД не мо­гут быть "прочитаны" лазерным звукоснимателем.


Для того, чтобы прослушивать обычную грампластинку, тонарм следует перемещать до тех пор, пока он не окажется в нужной точке дорожки записи. В процессе работы звуковая головка совмещена с дорожкой записи, сигнал с ее выхода обрабатывается в последующих электронных схемах и преоб­разуется в звуковые колебания. Подобный порядок работы свойст­венен всем дисковым устройствам воспроизведения информации и лазерному проигрывателю в том числе.

На рис.3.4 представлена обобщенная структурная схема лазерного проигры­вателя КД.


Головка воспроизведения (лазерный звукосниматель) ГВ проигры­вателя устанавливается в требуемую зону дорожки записи с помощью системы позиционирования (СП).

Система радиального слежения САРРС постоянно обеспечивает совмеще­ние головки воспроизведения с дорожкой записи во время работы.

КД приводится в движение двигателем, являющимся исполни­тельным элементом системы автоматического регулирования часто­ты вращения диска САРЛС, которая обеспечивает изменение частоты вра­щения в зависимости от положения головки воспроизведения и, как следствие, постоянной стабильной скорости считывания информа­ции, записанной на диске. Число оборотов в минуту является пе­ременным и изменяется непрерывно от 500 об/мин при расположе­нии головки воспроизведения на внутреннем диаметре КД (в начале проигрывания) до 200 – на внешнем диаметре. При этом обеспе­чивается постоянная линейная скорость воспроизведения 1,25 м/с и считывание информации с постоянной скоростью 4,3218 Мбит/с.

Одним из основных узлов проигрывателя КД является ГВ. В его задачу входит формирование правильного светового пятна диаметром около 1 мкм. Этот луч «просматривает» поверхность КД и производит считывание информации. ГВ в своем составе имеет ряд оптических элементов, с помощью которых световое излучение по­лупроводникового лазера фокусируется строго в плоскости КД. Счи­тывание информации осуществляется фотоприемником, который реагирует на свет, отраженный от КД.

Кроме задачи считывания ГВ решает зада­чи слежения за поверхностью КД. Микрообъектив ГВ, который фокусирует свет в пятно микронных размеров, имеет малую глубину резкости. Это означает, что, если поверх­ность КД сместится в вертикальном направлении на единицы мик­рон, то размер светового пятна на поверхности КД увеличивается, что приводит к нарушению достоверности процесса считывания ин­формации или к полному его прекращению.

Несмотря на же­сткие требования, предъявляемые к КД в процессе из­готовления, биения поверхности диска, вызываемые несовершенством механических узлов проигрывателя, существуют и должны быть непременно скомпенсированы. Для компенсации таких отклонений в каждом лазерном проигрывателе имеются встроенные системы ав­томатической фокусировки лазерного луча САРФ, обеспечивающие по­стоянство размера светового пятна на поверхности КД.

Все названные автоматические системы в лазерном проигрыва­теле являются сервосистемами, так как в их состав входят элемен­ты с перемещающимися в пространстве узлами (двигатели, пьезо­электрические преобразователи, магнитооптические дефлекторы и т. п.).

На рис.3.4 условно показаны все электронные устройства обработки сигналов (объединены в блок ЭУОС), с помощью которых формируются звуковые сигналы на выходе проигрывателя КД. Обратное преобра­зование записанной на КД цифровой информации в аналоговую форму, а это является самым критичным звеном в Нi-Fi-цепи, про­исходит только в самом конце процесса обработки информации.

Управление работой ГВ, ЭУОС и всех сервосистем осуществляется с помощью системного микропроцессора СМП и панели управления и индикации ПУИ, которые фактически являются «мозгом» лазерного проигрывателя.


Моя предыдущая статья была посвящена внутреннему устройству чипа от Nvidia, да и, пожалуй, внутреннему устройству любого современного процессора. В этой статье мы перейдём к средствам хранения информации, и я расскажу, что представляют собой CD и HDD диски на микроуровне.

Начнём с CD диска. Наш подопытный — простой CD-R от Verbatim. Обычный диск с записанной (а точнее, напечатанной) информацией состоит из 3 основных слоёв. Слой А – поликарбонатный диск, который отвечает сразу за несколько функций. Первое – основа диска, которая выдерживает огромные скорости вращения внутри дисковода.



Так в общих чертах можно представить строение CD диска [1]

Поликарбонатный диск, как оказалось, дополнительно покрывают специальным лаком, который защищает от легких механических повреждений внешнюю поверхность диска.



Слой лака выделен красным цветом, под ним «начинается» поликарбонат



Под пучком электронного микроскопа, слой защитного лака чувствует себя не очень хорошо

Второе – именно на поликарбонате, в прямом смысле этого слова, печатается информация с матрицы — будь то фильм, музыка или программы. Как сообщает нам Вики, поликарбонатная основа имеет толщину 1,2 мм и весит всего-навсего 15-20 грамм [1].

Естественно, что поликарбонат и лак прозрачны для лазерного излучения, поэтому «напечатанную» информацию для лазера необходимо сделать «видимой», для чего поверхность покрывают тонким слоем алюминия (слой B). Стоит отметить, что CD-ROM с «напечатанной» информацией, CD-R и CD-RW имеют незначительные отличия. В двух последних случаях, добавляется промежуточный слой между поликарбонатом и алюминием, который может изменять свои свойства под действием лазерного излучения определённой длины волны, а на поликарбонате печатаются пустые дорожки. Это могут быть либо красители в случае CD-R (что-то похожее на фоторезист), либо металлические сплавы в случае CD-RW. Именно поэтому перезаписываемые диски не рекомендуется подвергать действию прямых солнечных лучей и перегреву, который также может спровоцировать изменение оптических свойств.

Давайте сравним диск и алюминиевый слой, оторванный от него. Видно, что на поликарбонате есть «канавки» (питы), а на слое алюминия наоборот возвышения, которые полностью соответствуют канавкам:



Привычные углубления на поверхности поликарбоната (АСМ-изображение)



На защитном алюминиевом слое видны питы-«наоборот»: не канавки, а выступы (АСМ-изображение)

Далее полученный «пирог» покрывают специальным защитным слоем С, чья основная обязанность – защитить «нежный» алюминиевый отражающий слой. Далее на этот слой можно что-то наклеивать, писать маркером, наносить специальные дополнительные слои для печати и т.д. и т.п.

В данном видео представлены все технологические этапы производства CD дисков:

Запись на CD диске подобная записи на виниловой пластинке, т.е. дорожка с информацией идёт по спирали. Он берёт своё начало в центре диска и заканчивается у внешнего края. А вот прямо посреди диска «стыкуются» пустые участки и дорожки с записанной информацией:



Вот была запись, а вот её и нет. Сравнение пустых дорожек и дорожек с записанной информацией (СЭМ-микрофотографии)

Принципиальных отличий на микроуровне CD от DVD и, наверное, Blu-Ray нет. Разве что питы будут меньших размеров. В нашем случае размеры 1 минимального углубления составляют 330 нм в ширину и 680 нм в длину, при этом расстояние между дорожками

N.B. Если у вас есть исцарапанный CD диск, который не читается ни в одном приводе, попробуйте его заполировать. Для этого подойдёт практически любая прозрачная полироль. Она заполнит углубления, которые мешают чтению информации, и Вы хотя бы сможете скопировать информацию с диска.

Как же всё-таки иногда причудливо изгибается слой алюминия (практически произведение искусства – чёрное и белое):



Чёрные и белые полосы нашей жизни. CD (СЭМ-микрофотография)

И напоследок ещё пара изображений CD, полученных с помощью оптического микроскопа:



Оптическая микроскопия: слева — алюминиевый отражающий слой, справа — слой Al (более светлая область) на поликарбонатном диске (более тёмная область)

Приступим теперь к жёсткому диску. Для меня всегда, ещё со времён дискет и VHS оставалось загадкой, как же всё-таки устроена магнитная память?! Перед написанием статьи, я попытался найти хоть какие-то видео и медиа материалы, которые демонстрировали бы, как в предыдущем ролике, основные этапы производства жёстких дисков, и был неприятно обрадован Вики: «Обе плоскости пластин, подобно магнитофонной ленте, покрыты тончайшей пылью ферромагнетика — окислов железа, марганца и других металлов. Точный состав и технология нанесения составляют коммерческую тайну» [2]. Пришлось смириться и не искать правды от производителей HDD (разве что, Seagate слегка приоткрыл свои секреты), тем более что с приходом эры SSD конкуренция на рынке ещё больше усилилась.

Сами пластины изготавливаются из немагнитных металлических сплавов. Основу этих сплавов составляют алюминий и магний, как самые лёгкие конструкционные материалы. Далее на них наносится тонкий, опять таки согласно Вики, 10-20 нм слой магнитного – тут, пожалуй, слово нанокристаллический будет уместно – материала, который затем покрывается небольшим слоем углерода для защиты. Так как диск NoName, и выполнен он по древней технологии параллельной записи информации, то я позволю себе привести здесь состав материала по данным EDX (рентгеноспектральный микроанализ): Co – 1,1 атомных %, Y – 1,53 ат. %, Cr – 2,38 ат. %, Ni – 45,81 ат. %. Содержание углерода 36,54 %. Откуда-то взялись Si и P, содержание которых составляет 0,46 ат. % и 12,25 ат. %, соответственно. Происхождение кремния – по всей видимости, в следовых количествах остался на поверхности после работы микротома и моей полировки, а фосфор – просто заляпал образец.
Честно, я пытался найти слой магнитного материала толщиной «10-20 нм», но безуспешно. Если исходить из того, что увидел я, то поверхностный слой имеет толщину примерно 12 микрометров:



Тот сам «тоненький» слой, который хранит информацию в наших жёстких дисках

Сама поверхность диска очень и очень гладкая, перепад высот лежит в пределах 10 нм, что сравнимо с шероховатостью поверхности монокристаллического кремния. А вот и изображения в режиме фазового контраста, которые соответствуют распределению магнитных доменов на поверхности, т.е. мы видим фактически отдельные биты информации:



АСМ-изображения поверхности жёсткого диска. Справа представлены изображения в фазовом контрасте

Немножко о фазовом контрасте: сначала игла АСМ-микроскопа «ощупывает» рельеф, затем зная рельеф и повторяя его форму игла делает второй проход на расстоянии 100 нм от образца, чтобы «заглушить» действие Ван-дер-Ваальсовых сил и «выделить» действие магнитных сил. Флешку о том, как это происходит можно посмотреть тут.

Кстати, заметили, что единичные магнитные домены вытянуты вдоль плоскости диска и параллельны ему?! Позволю себе пару слов о методах записи. На данный момент диски с перпендикулярным методом записи информации (т.е. такие у которых магнитные домены ориентированы перпендикулярно плоскости диска), появившиеся в 2005 году, практически полностью вытеснили диски с параллельной записью. Преимущество перпендикулярной записи очевидно – выше плотность записи, но тут есть один тонкий момент в связи с данными Вики о толщине магнитного слоя. Этот нюанс называется – суперпарамагнитный предел. Т.е. существует некоторый критический размер частицы, после которого ферромагнетик уже при комнатной температуре переходит в парамагнитное состояние. Т.е. тепловой энергии хватает, что проворачивать, переориентировать такой маленький магнитик. В случае магнитной записи часто поступают следующим образом: делают один из размеров «магнитика» больше, чем два остальных (это хорошо видно на картинке с распределением магнитных доменов), тогда в этом большем направлении магнитный момент сохраняется. Так вот, если в случае параллельной записи я ещё могу поверить, что слой магнетика десятки нанометров при размерах 1 бита в несколько микрометров, то в случае перпендикулярной записи – этого просто не может быть. Толщина такой намагничиваемой области при минимальных размерах в плоскости диска, просто обязана быть минимум несколько микрометров. Так что, возможно, Вики немножко подвирает. Либо наносят магнетик в виде наночастиц диаметром 10-20 нм, а уже потом каким-то «хитрым» образом разбивают диск на области, которые и отвечают за хранение информации. К сожалению, я не полностью удовлетворил своё любопытство и ответил на вопросы о магнитной записи информации, может быть кто-нибудь поможет?!



Сравнение параллельного и перпендикулярного методов записи информации на жётских дисках [2]

Хотел бы также поделиться тремя видео, которые нашлись на просторах Интернета и связаны с жёсткими дисками. Первое посвящено принципам работы HDD (How does it work?):

Сегодня мы с вами поговорим о самых, пожалуй, распространенных носителях информации – CD и DVD дисках.

Как известно, компьютер — это машина, в которой циркулируют потоки информации.

компакт-диски

И такая информация нуждается в носителе. Основной носитель — это винчестер (жесткий диск). Но он спрятан в недрах компьютера.

Диск можно быстро вставить в привод (не разбирая компьютер), записать на него информацию и хранить ее. В настоящее время появилась альтернатива таким носителям – всякого рода облачные сервисы хранения данных, но списывать их со счета преждевременно. Остановимся чуть более подробно на CD и DVD.

Как устроены CD и DVD

CD (Compact Disc) — это диск из пластика толщиной 1,2 мм с центрирующим отверстием посредине. Информация может располагаться на одной или обеих (в DVD) сторонах диска. Информационная сторона представляет собой одну длинную спиральную канавку, начинающуюся от центра.

Считывание информации производится маломощным лазером. Как известно, все многообразие информационного потока обеспечивается посредством квантов (битов) информации, каждый из которых может значение 0 или 1. 0 можно трактовать как отсутствие сигнала, 1 — его наличие.

площадки и выступы CD

На дне информационной канавки диска располагаются чередующиеся выступы (площадки) и впадины.

Лазерный луч, непрерывно отражаясь от выступов и впадин канавки, попадает через оптическую систему в приемник. С терминами «выступ» и «впадина» существует некоторая путаница. Если смотреть на диск сверху (с той стороны, где бумажная наклейка), то это будет впадина.

Но считывание происходит с нижней (информационной) части диска, поэтом для лазерного луча это будет выступ. При отражении от выступа длина хода волны луча лазера получается меньшей — на половину длины волны. Поэтому волна гасится, что эквивалентно отсутствию сигнала.

однослойный CD в разрезе

Переход от площадки к выступу и наоборот трактуется как 1.

Если такого перехода (в течение некоторого времени) не происходит, то это трактуется как 0.

DVD (Digital Versatile Disc, универсальный цифровой диск) устроен аналогичным образом, но шаг канавки у него меньше (0,7 мкм), длина и высота выступов также меньше. Поэтому при одинаковом диаметре диска на него можно записать больше информации.

Информационные диски, производящиеся массовыми тиражами, изготавливают штамповкой из поликарбоната с помощью металлической матрицы. На ту сторону, где канавки, наносится светоотражающий слой из алюминия. Затем на эту поверхность наносится тонкий слой лака и наклеивается бумажная этикетка. Емкость DVD — 4,7 Gb.

Двухслойные и двухсторонние DVD

Двухслойный DVD в разрезе

Существуют двухслойные DVD,в которых два идентичных диска с канавками.

В таких случаях на ближний к лазеру диск наносят полупрозрачное золотое покрытие (со стороны канавок), так что луч может проходить через него и считывать данные с «дальнего» слоя.

Для устойчивого считывания канавки в двухслойных дисках сделаны шире, чем в однослойных, поэтому емкость диска равна 8,5 Gb (а не 9,4 Gb, как это можно было предположить). Переход на «ближний» или «дальний» диск в двухслойных дисках осуществляется изменением фокусировки луча лазера.

Ввиду того, что площадки и выступы в DVD меньше, чем в CD, лазер DVD работает на меньшей длине волны (в CD длина волны — 780 нм, в DVD — 650 нм). Существуют и двухсторонние DVD, каждая сторона которых может состоять из одного или двух дисков с канавками. Таким образом, максимальная емкость DVD может быть равной 17 Gb. Отдельные диски с канавками (как в односторонних, так и в двухсторонних дисках) склеивают в одно целое.

Однократно записываемые диски

DVD диск

Существуют также однократно записываемые диски CD-R и DVD-R (R – recordable, записываемые). Для DVD существует несколько разновидностей записываемых дисков — из-за того, что разработкой стандартов записи занималось несколько фирм.

Не будем сейчас вникать в скучные и сухие подробности и конкретизировать отличия одного стандарта от другого.

Записываемые диски похожи, естественно, по строению на штампованные, но канавка содержит в себе один длинный выступ (со стороны лазера) по всей длине канавки, без впадин. Отличие еще в том, что пред нанесением светоотражающего покрытия на диск со стороны канавки наносится тонкий слой прозрачного лака.

При считывании информации луч отражается от светоотражающего слоя в тех местах, где лак не был выжжен. Где лак был выжжен, отражения луча не происходит.

Многократно записываемые диски

Существуют еще многократно перезаписываемые диски CD-RW, DVD-RW (RW – rewritable, перезаписываемые). В таких дисках на сторону, где расположена канавка вместо слоя прозрачного лака наносится тонкая пленка металлического сплава, который может изменять свое фазовое состояние под влиянием нагрева. Сплав может находиться в двух состояниях — в кристаллическом и в аморфном.

При этом коэффициенты отражения для разных состояний отличны. В исходном (незаписанном) состоянии пленка сплава находится в кристаллическом состоянии и обладает некоторым коэффициентом отражения. При записи луч лазера нагревает пленку сплава до температуры 500 — 700 градусов, сплав в этих местах плавится и переходит в аморфное состояние.

При этом коэффициент отражения сильно уменьшается, и это воспринимается схемой считывания как отсутствие сигнала. Стереть данные можно, если перевести пленку сплава вновь в кристаллическое состояние. Для этого ее нагревают тем же лучом лазера до температуры 200 градусов. Этого недостаточно для плавления, но достаточно для размягчения.

При последующем охлаждении происходит переход из аморфного в кристаллическое состояние. Стирание данных происходит во время перезаписи дисков. При этом луч лазера генерирует импульсы разной мощности, создавая области с кристаллической и аморфной структурой.


Цифровые данные на диск записаны в избыточном коде.

Это необходимо для коррекции ошибок, которые будут всегда, хотя бы из-за того, что поверхность диска царапаются. Поэтому с дисками надо обращаться осторожно и брать их только за внешние края. Отпечатки пальцев на информационной стороне могут привести к ошибкам считывания. Из-за этого диск будет считываться дольше, чем мог бы или «подтормаживать».

Если на диске много царапин, диск тоже будет долго считываться (если считается вообще). Скорость считывания дефектного диска может зависеть от конкретной модели привода (от микропрограммы, «зашитой» в нем).

Как вынуть диск из неисправного привода?

отверстие для извлечения CD из привода

В заключение упомянем об одной полезной мелочи. Иногда привод DVD отказывает «прямо на глазах», и диск остается в нем.

В таких случаях при нажатии на кнопку извлечения диска никаких действий не происходит. Достать диск можно, разобрав привод. Но это долго и хлопотно! Для таких экстренных случаев существует небольшое отверстие на передней панели привода.


Чтобы извлечь диск, надо вставить в это отверстие металлическую шпильку (можно распрямить скрепку) до упора и слегка нажать.

При этом подвижная часть привода слегка выедет. После этого можно вручную выдвинуть ее до обычного открытого состоянии и извлечь диск. А вы думали, что это дырка для вентиляции?

Читайте также: