Как посмотреть диски в raid

Обновлено: 17.05.2024

Чтобы компенсировать «врожденную» медлительность там, где она вообще не к месту (речь идет в первую очередь о серверах и высокопроизводительных ПК) придумали использовать так называемый дисковый массив RAID — некую «связку» из нескольких одинаковых винчестеров, работающих параллельно. Такое решение позволяет значительно поднять скорость работы вкупе с надежностью.

Что такое RAID массив и зачем он вам нужен

В первую очередь, RAID массив позволяет обеспечить высокую отказоустойчивость для жестких дисков (HDD) вашего компьютера, за счет объединения нескольких жестких дисков в один логический элемент. Соответственно, для реализации данной технологии вам понадобятся как минимум два жестких диска. Кроме того, RAID это просто удобно, ведь всю информацию, которую раньше приходилось копировать на резервные источники (флешки, внешние винчестеры), теперь можно оставить «как есть», ибо риск её полной потери минимален и стремится к нулю, но не всегда, об этом чуть ниже.

RAID переводится примерно так: защищенный набор недорогих дисков. Название пошло еще с тех времен, когда объемные винчестеры стоили сильно дорого и дешевле было собрать один общий массив из дисков, объемом поменьше. Суть с тех пор не поменялась, в общем-то как и название, только теперь можно сделать из нескольких HDD большого объема просто гигантское хранилище, либо сделать так, что один диск будет дублировать другой. А еще можно совместить обе функции, тем самым получить преимущества одной и второй.

Все эти массивы находятся под своими номерами, скорее всего вы о них слышали — рейд 0, 1. 10, то есть массивы разных уровней.

Разновидности RAID

Скоростной Рейд 0

Рейд 0 не имеет ничего схожего с надежностью, ведь он только повышает скорость. Вам необходимо как минимум 2 винчестера и в этом случае данные будут как бы «разрезаться» и записываться на оба диска одновременно. То есть вам будет доступен полностью объем этих дисков и теоретически это значит, что вы получаете в 2 раза более высокую скорость чтения/записи.

Так распределяются данные в RAID 0

Но, давайте представим, что один из этих дисков сломался — в этом случае неизбежна потеря ВСЕХ ваших данных. Иначе говоря, вам все равно придется регулярно делать бекапы, чтобы иметь возможность потом восстановить информацию. Здесь обычно используется от 2 до 4 дисков.

Рейд 1 или «зеркало»

Тут надежность не снижается. Вы получаете дисковое пространство и производительность только одного винчестера, зато имеете удвоенную надежность. Один диск ломается — информация сохранится на другом.

Распределение данных в массиве RAID 1

Массив уровня RAID 1 не влияет на скорость, однако объем — тут в вашем распоряжении лишь половина от общего пространства дисков, которых, к слову, в рейд 1 может быть 2, 4 и т.д., то есть — четное количество. В общем, главной «фишкой» рейда первого уровня является надежность.

Рейд 10

Совмещает в себе все самое хорошее из предыдущих видов. Предлагаю разобрать — как это работает на примере четырех HDD. Итак, информация пишется параллельно на два диска, а еще на два других диска эти данные дублируются.

Распределение данных в массиве RAID 10

Как результат — увеличение скорости доступа в 2 раза, но и объем только лишь двух из четырех дисков массива. Но вот если любые два диска сломаются — потери данных не произойдет.

Рейд 5

Этот вид массива очень схож с RAID 1 по своему назначению, только теперь уже надо минимум 3 диска, один из них будет хранить информацию, необходимую для восстановления. К примеру, если в таком массиве находится 6 HDD, то для записи информации будут использованы всего 5 из них.

Распределение данных в массиве Рейд 5

Из-за того, что данные пишутся сразу на несколько винчестеров — скорость чтения получается высокая, что отлично подойдет для того, чтобы хранить там большой объем данных. Но, без дорогущего рейд-контроллера скорость будет не сильно высокой. Не дай БОГ один из дисков поломается — восстановление информации займет кучу времени.

Рейд 6

Этот массив может пережить поломку сразу двух винчестеров. А это значит, что для создания такого массива вам потребуется как минимум четыре диска, при всем при том, что скорость записи будет даже ниже, нежели у RAID 5.

Распределение данных в RAID 6

Учтите, что без производительного рейд-контроллера такой массив (6) собрать вряд ли удастся. Если у вас в распоряжении всего 4 винчестера, лучше собрать RAID 1.

Как создать и настроить RAID массив

так выглядит рейд-контроллер

Рейд массив можно сделать путем подключения нескольких HDD к материнской плате компьютера, поддерживающей данную технологию. Это означает, что у такой материнской платы есть интегрированный контроллер, который, как правило, встраивается в южный мост чипсета. Но, контроллер может быть и внешний, который подключается через PCI или PCI-E разъем. Каждый контроллер, как правило, имеет свое ПО для настройки.

Рейд может быть организован как на аппаратном уровне, так и на программном, последний вариант — наиболее распространен среди домашних ПК. Встроенный в материнку контроллер пользователи не любят за плохую надежность. Кроме того в случае повреждения материнки восстановить данные будет очень проблематично. На программном уровне роль контроллера играет центральный процессор, в случае чего —можно будет преспокойно перенести ваш рейд массив на другой ПК.

Аппаратный

Как же сделать RAID массив? Для этого вам необходимо:

  1. Достать где-то материнскую плату с поддержкой рейда (в случае аппаратного RAID);
  2. Купить минимум два одинаковых винчестера. Лучше, чтобы они были идентичны не только по характеристикам, но и одного производителя и модели, и подключались к мат. плате при помощи одного интерфейса.
  3. Перенесите все данные с ваших HDD на другие носители, иначе в процессе создания рейда они уничтожатся.
  4. Далее, в биосе потребуется включить поддержку RAID, как это сделать в случае с вашим компьютером — подсказать не могу, по причине того, что биосы у всех разные. Обычно этот параметр называется примерно так: «SATA Configuration или Configure SATA as RAID».
  5. Затем перезагрузите ПК и должна будет появиться таблица с более тонкими настройками рейда. Возможно, придется нажать комбинацию клавиш «ctrl+i» во время процедуры «POST», чтобы появилась эта таблица. Для тех, у кого внешний контроллер скорее всего надо будет нажать «F2». В самой таблице жмем «Create Massive» и выбираем необходимый уровень массива.

После создания raid массива в BIOS, необходимо зайти в «управление дисками» в ОС Windows 7–10 и отформатировать не размеченную область — это и есть наш массив.

Программный

Для создания программного RAID ничего включать или отключать в BIOS не придется. Вам, по-сути, даже не нужна поддержка рейда материнской платой. Как уже было упомянуто выше, технология реализовывается за счет центрального процессора ПК и средств самой винды. Ага, вам даже не нужно ставить никакое стороннее ПО. Правда таким способом можно создать разве что RAID первого типа, который «зеркало».

Жмем правой кнопкой по «мой компьютер»—пункт «управление»—«управление дисками». Затем щелкаем по любому из жестких, предназначенных для рейда (диск1 или диск2) и выбираем «Создать зеркальный том». В следующем окне выбираем диск, который будет зеркалом другого винчестера, затем назначаем букву и форматируем итоговый раздел.

Добавление нескольких томов для создания рейд массива программным способом в windows

В данной утилите зеркальные тома подсвечиваются одним цветом (красным) и обозначены одной буквой. При этом, файлы копируются на оба тома, один раз на один том, и этот же файл копируется на второй том. Примечательно, что в окне «мой компьютер» наш массив будет отображаться как один раздел, второй раздел как бы скрыт, чтобы не «мозолить» глаза, ведь там находятся те же самые файлы-дубли.

Что будет, если один из HDD в программно рейде сломается

Если какой то винчестер выйдет из строя, появится ошибка «Отказавшая избыточность», при этом на втором разделе все останется в сохранности.

Подытожим

RAID 5 нужен для ограниченного круга задач, когда гораздо большее (чем 4 диска) количество HDD собрано в огромные массивы. Для большинства юзеров рейд 1 — лучший вариант. К примеру, если есть четыре диска емкостью 3 терабайта каждый — в RAID 1 в таком случае доступно 6 терабайт объема. RAID 5 в этом случае даст больше пространства, однако, скорость доступа сильно упадет. RAID 6 даст все те же 6 терабайт, но еще меньшую скорость доступа, да еще и потребует от вас дорогого контроллера.

Добавим еще RAID дисков и вы увидите, как все поменяется. Например, возьмем восемь дисков все той же емкости (3 терабайта). В RAID 1 для записи будет доступно всего 12 терабайт пространства, половина объема будет закрыта! RAID 5 в этом примере даст 21 терабайт дискового пространства + можно будет достать данные из любого одного поврежденного винчестера. RAID 6 даст 18 терабайт и данные можно достать с любых двух дисков.

В общем, RAID — штука не дешевая, но лично я бы хотел иметь в своем распоряжении RAID первого уровня из 3х-терабайтных дисков. Есть еще более изощренные методы, вроде RAID 6 0, или «рейд из рейд массивов», но это имеет смысл при большом количестве HDD, минимум 8, 16 или 30 — согласитесь, это уже далеко выходит за рамки обычного «бытового» использования и пользуется спросом по большей части в серверах.

Вот как-то так, оставляйте комментарии, добавляйте сайт в закладки (для удобства), будет еще много интересного и полезного, и до скорых встреч на страницах блога!

Мы обеспечиваем пользователей по всему миру наиболее эффективным, надежным и экономичным решением из доступных на рынке программного обеспечения.






При обсуждении процесса восстановления данных с RAID мы полагали, что знаем его параметры. Однако бывают случаи, когда параметры воссоздаваемого RAID неизвестны. Как их определить? Параметры RAID, которые были установлены по умолчанию, можно узнать у производителя дискового массива, однако в процессе его эксплуатации они могли быть изменены. Может R-Studio помочь в этом случае? Да, для этого следует проанализировать данные компонент RAID при помощи встроенного Текстового/шестнадцатиричного редактора. В данной статье будет рассмотрен этот процесс на примере простого NTFS RAID 5.

Итак, попробуем найти неизвестные параметры простого тома RAID 5

Пусть нам известны следующие параметры RAID:
1. Число дисков: Три
2. Файловая Система: NTFS (созданная в Windows XP/2003, далее используется стандартная Главная Загрузочная Запись (стартовый блок MBR))
3. Тип: Обычный том

Необходимо определить:
1. Порядок диска
2. Размер блока
3. Порядок блока
4. Смещение диска

Определение параметров RAID: Файлы-образы компонентов RAID

Диски, образующие RAID, являются созанными в R-Studio файлами-образами:
Disk1.arc
Disk2.arc
Disk3.arc

Кликните по изображению чтобы его увеличить
Файлы-образы компонент RAID, открытые в R-Studio

Обратите внимание: несмотря на то, что R-Studio нашла объект Disk1 на Disk2.arc, это вовсе не означает, что именно он является первым диском RAID.

Определение параметров RAID: Диалог Search

Определение Главной Загрузочной Записи
Во-первых следует определить MBR, чтобы найти смещение RAID
1. Последовательно откройте все три файла-образа в Текстовом/шестнадцатиричном редакторе.
2. Не включайте режим Разрешить Запись (enable write), чтобы избежать случайного повреждения данных на редактируемых объектах!
3. Запишите сигнатуру диска Windows для каждого объекта, чтобы в дальнейшем знать, какое окно редактора какому объекту соответствует.
4. Выполните поиск стартового блока MBR. Для этого в диалоговом окне Search (Поиск) введите 33 C0 8E D0 BC (в большинстве случаев это стандартный стартовый блок MBR) в поле HEX; после этого установите радиокнопку From start position (С начальной позиции) и введите 0 в поле Search in offset (Искать в смещении).
5. Нажмите OK (Да) чтобы начать поиск.

Данные диалогового окна Search (Поиск) для начала поиска Главной Загрузочной Записи (MBR)

Определение параметров RAID: Disk1.arc, открытый в Текстовом/шестнадцатиричном редакторе.

Результаты поиска:

Кликните по изображению чтобы его увеличить
Disk1.arc, открытый в Текстовом/шестнадцатиричном редакторе.

Определение параметров RAID: Disk2.arc, открытый в Текстовом/шестнадцатиричном редакторе.


Кликните по изображению чтобы его увеличить
Disk2.arc, открытый в Текстовом/шестнадцатиричном редакторе. Найден шаблон MBR.

Определение параметров RAID: Disk3.arc, открытый в Текстовом/шестнадцатиричном редакторе.


Кликните по изображению чтобы его увеличить
Disk3.arc, открытый в Текстовом/шестнадцатиричном редакторе. Найден шаблон MBR.

Из рисунков следует, что шаблон MBR найден в Текстовом/шестнадцатиричном редакторе по адресу 00 на Disk2.arc и Disk3.arc (на Disk1.arc мы видим одни нули). Это означает, что смещение равно 0 и Disk1.arc не может быть первым диском в RAID.

При помощи редактора были корректно распознаны шаблоны на Disk2 и Disk3, являющиеся кодом главного инициализирующего загрузчика (master bootstrap loader code). В нашем случае два диска содержат одинаковые данные MBR в одном месте.

Определение параметров RAID: Шаблон диска

NДалее необходимо определить загрузочный сектор NTFS.
Посмотрим значение поля Sectors preceding partition (Сектора предшествующие разделу) в панели Templates (Шаблоны)

Кликните по изображению чтобы его увеличить
Панель Templates (Шаблоны) для Disk2 и Disk3

В нашем случае сектор предшествующий разделу - это сектор 16,065.

Если данная величина больше 63, то мы должны разделить ее на N-1, где N - число дисков (в нашем случае N = 3), в результате чего мы получаем значение 8,032. Это приблизительная позиция, с которой следует начать поиск загрузочного сектора NTFS. Начинать поиск надо с этой позиции, чтобы не найти загрузочных секторов прежних NTFS разделов.

Определение параметров RAID: Поиск сектора

Перейдите в поле Sectors (Секторы) в Редакторе, чтобы произвести поиск шаблона загрузочного сектора NTFS.

Кликните по изображению чтобы его увеличить
Поле поиска Sectors (Секторы) в Тестовом/шестнадцатиричном редакторе

Определение параметров RAID: Поиск загрузочного сектора NTFS


В диалоговом окне Search (Поиск) введите EB 52 90 4E 54 46 53 20 20 20 20 (загрузочный сектор NTFS всегда начинается с этих байтов) в поле HEX, установите радиокнопку From current position (С текущей позиции) и введите 0 в поле Search at offset (Искать в смещении).

Кликните по изображению чтобы его увеличить
Данные диалогового окна Search (Поиск) для начала поиска загрузочного сектора NTFS

Данный шаблон найден в Редакторе в секторе 8064 на Disk2 и Disk3.

Определение параметров RAID: Найденный загрузочный сектор NTFS

Теперь выберем шаблон Boot sector NTFS (Загрузочный сектор NTFS) в панели Templates (Шаблоны).

Кликните по изображению чтобы его увеличить
Disk2.arc, открытый в Текстовом/шестнадцатиричном редакторе. Найден шаблон загрузочного сектора NTFS. Тот же шаблон найден на Disk3.arc.

Мы нашли следующие параметры
Bytes per sector (Байтов в секторе): 512
Sectors per cluster (Секторов в кластере): 8
Logical Cluster Number for the file $MFT (Логический Номер Кластера для файла $MFT): 786432

Ранее найденные параметры:
Смещение RAID: 0

Далее нам нужно определить MFT (главную файловую таблицу) на диске:

1. Попробуем найти примерное смещение MFT с начала RAID:
Смещение MFT с начала раздела в секторах = Логический Номер Кластера файла $MFT * Секторов в кластере+смещение RAID = 786,432*8+0 = 6,291,456
Если смещение RAID не 0, то его необходимо прибавить к результату вышеприведенного уравнения.
Начало MFT на первом диске = Смещение MFT с начала раздела в секторах/(N-1) = 6,291,456/2 = 3,145,728

Определение параметров RAID: Шаблон файла

2. Начнем поиск точного начала MFT с позиции примерно на 2000 секторов меньше данной величины. Например, с сектора 3,140,000.
В диалоговом окне Search (Поиск) введите "FILE" в поле ANSI, установите радиокнопку From current position (С текущей позиции) и ведите 0 в поле Search at offset (Искать в смещении).

Кликните по изображению чтобы его увеличить
Шаблон найден в секторе 10,241,463 на Disk2 и в секторе 3,153,792 на Disk3.

Определение параметров RAID: Шаблон файла


Кликните по изображению чтобы его увеличить
Первый сектор файловой записи на Disk3. Начало блока данных.

Важно отметить следующее: сигнатура FILE заканчивается значением 0, что означает, что индекс файловой записи не был перезаписан значением fixup. Если бы она заканчивалась значением * (FILE*), то в дальнейшем нам пришлось бы изменить наш поиск.

Шаблон $.M.F.T. (HEX 24 00 4D 00 46 00 54) показывает, что это корректное начало MFT.
Так как сектор 3,153,792 ближе к найденному нами примерному смещению MFT 3,145,728, чем к сектору 10,241,463, то это позволяет допустить, что Disk3 является первым диском RAID.

Далее нам надо учесть, что файловая запись в MFT занимает два сектора и при успешной записи данных на RAID 5 один блок данных записывается на один диск, потом следующий блок данных на следующий диск, далее блок четности на третий диск. Пример такой схемы приведен в следующей таблице .

Первый диск RAID Второй диск RAID Третий диск RAID
PD 1 2
3 PD 4
5 6 PD
. где числа означают порядок, в котором блоки данных записываются на соответствующие диски, а PD означает блок "четности данных".
(Данная таблица приведена как пример, в общем случае порядок блока может быть произвольным.)

В нашем случае это означает, что индекс файловой записи в MFT будет увеличиваться на единицу с каждым блоком данных. Далее MFT будет располагаться на следующем диске, где индекс файловой записи будет увеличиваться на единицу с каждым соответствующим блоком данных, далее на третьем диске, содержащим блок четности. И так далее.

Так что для нахождения размера блока мы посмотрим на индекс файловой записи на данном блоке и найдем место, в котором он перестают увеличиваться на единицу. Это место будет означать конец блока данных. После этого просмотрим другие диски и найдем тот диск и место, где индекс файловой записи в MFT опять начинает увеличиваться на единицу. Далее аналогично просмотрим следующий диск и т.д.

Такой поиск может быть выполнен путем прокручивания текста в Редакторе через два сектора.

На Disk 3 блок данных заканчивается в секторе 3,153,919 с индексом файловой записи 3F 00.

Определение параметров RAID: Запись последнего файла


Кликните по изображению чтобы его увеличить
Последняя файловая запись на Disk3. Блок данных заканчивается в следующем секторе (3,153,919).

Посмотрев на другие диски мы увидим, что данная MFT продолжается на Disk 1 в секторе 3,153,792 с индексом файловой записи 40 00 и заканчивается в секторе: 3,153,919 с индексом файловой записи 7F 00. И так далее.

Определение параметров RAID: Файловая запись на Disk1


Кликните по изображению чтобы его увеличить
Файловая запись продолжается на Disk1. Начало блока данных.

Определение параметров RAID: Конец блока данных


Кликните по изображению чтобы его увеличить
Последняя файловая запись на Disk1. Блок данных заканчивается в следующем секторе (3,153,919)

Окончательный результат представлен в следующей таблице:

Disk1 Disk2 Disk3
Сектор: 3,153,792 Запись: 40 00
Сектор: 3,153,918 Запись: 7F 00
Сектор: 3,153,919 Конец stripe блока
Сектор: 3,153,792 Нет записей
Сектор: 3,153,918 Нет записей
Сектор: 3,153,919 Конец stripe блока
Сектор: 3,153,792 Запись: 00 00
Сектор: 3,153,918 Запись: 3F 00
Сектор: 3,153,919 Конец stripe блока
Сектор: 3,153,920 Запись: Нет записей
Сектор: 3,154,046 Запись: Нет записей
Сектор: 3,154,047 Конец stripe блока
Сектор: 3,153,920 Запись: C0 00
Сектор: Сектор: 3,154,046 Запись: FF 00
Сектор: 3,154,047 Конец stripe блока
Сектор: 3,153,920 Запись: 80 00
Сектор: 3,154,046 Запись: BF 00
Сектор: 3,154,047 Конец stripe блока
Сектор: 3,154,048 Запись: 00 01
Сектор: 3,154,174 Запись: 3F 01
Сектор: 3,154,175 Конец stripe блока
Сектор: 3,154,048 Запись: 40 01
Сектор: Сектор: 3,154,174 Запись: 7F 01
Сектор: 3,154,175 Конец stripe блока
Сектор: 3,154,048 Запись: Нет записей
Сектор: 3,154,174 Запись: Нет записей
Сектор: 3,154,175 Конец stripe блока
Нет записей означает, что данный блок является блоком четности

Определение параметров RAID: Сектор четности


Кликните по изображению чтобы его увеличить
Пример сектора блока четности

Из вышеприведенной таблицы мы сможем определить следующие параметры:

Порядок дисков:
Первый диск RAID - Disk3.arc
Второй диск RAID - Disk1.arc
Третий диск RAID - Disk2.arc

Смещение: 0
Размер stripe блоков: 128 секторов или 65,536Б (64КБ)
Порядок stripe блоков: (PD означает Четность Данных)

Первый диск RAID Второй диск RAID Третий диск RAID
1 2 PD
3 PD 4
PD 5 6

Теперь мы можем создать такой RAID в R-Studio:
Определение параметров RAID: Созданный объект RAID 5

Кликните по изображению чтобы его увеличить
Объект RAID 5, созданный в R-Studio

При помощи R-Studio на RAID найден объект с файловой системой (Partition 1)

Определение параметров RAID: Найденная структура файлов и папок

Дважды щелкнем мышью по данному объекту, чтобы просмотреть его файлы:

Кликните по изображению чтобы его увеличить
Структура Папок/Файлов, найденная при помощи R-Studio

Определение параметров RAID: Просмотр файла

Если при помощи R-Studio можно просмотреть структуру папок/файлов, то это хороший знак. Чтобы окончательно убедиться в том, что мы создали RAID с корректными параметрами, следует просмотреть файл. Размер просматриваемого файла должен превышать размер блока * (Число дисков -1). В нашем случае это 128КБ.

Кликните по изображению чтобы его увеличить
Просмотр файла Picture 236.jpg

Просмотр файла дал положительный результат - следовательно, мы создали RAID с корректными параметрами.

Что такое RAID-массив и зачем он нужен

В системах хранения данных критически важны сохранность и время восстановления в случае сбоя. Свою ценность, а в некоторых задачах и более высокую, имеет скорость работы накопителей. Использование RAID-массивов в различных конфигурациях — это поиск компромисса между перечисленными параметрами.

RAID — это технология объединения двух и более накопителей в единый логический элемент с целью повышения производительности и (или) отказоустойчивости отдельно взятого элемента массива.

RAID-массивы классифицируются по следующим параметрам:

  • по исполнению RAID контроллера;
  • по типам поддерживаемых интерфейсов накопителей;
  • по поддерживаемым уровням RAID.

RAID-контроллеры: аппаратные и не очень

По исполнению контроллеры делятся на программные и аппаратные. Программные реализуются непосредственно средствами операционной системы или на уровне материнской платы. Последние также известны как интегрированные, а также Fake-RAID. Они работают быстрее чисто софтверных решений за счет специального чипа для управления массивом. Недавно публиковался текст о развертывании таких технологий. Дополнительной железки при этом никакой нет и в любом случае будут использоваться ресурсы вычислительной машины.

Аппаратные RAID-контроллеры выполняются в форм-факторе платы PCIe либо в составе внешнего автономного устройства — дискового массива.

Они имеют на борту собственные процессор, память, BIOS и специальный интерфейс для конфигурации. Платы PCIe также комплектуются дополнительными модулями, сохраняющими данные, если произойдет сбой в электропитании: BBU с Li-Ion аккумулятором и ZMCP на базе суперконденсатора.


Оба модуля позволяют сделать сэйв содержимого кэша. После восстановления работы эти данные будут немедленно записаны на диск. Дисковый массив, будучи автономным, располагает собственными блоком питания и системой охлаждения.


Накопители подключаются к плате либо кабелями напрямую, либо через платы расширения. Автономные дисковые массивы содержат все накопители внутри себя, а наружу смотрит все тот же интерфейс PCIe (есть и другие варианты, например, USB 3.2 и Thunderbolt 3). Кстати, известный вид дисковых массивов — сетевое хранилище данных (NAS).

Что можно подключать к RAID-контроллеру

Следующий важный параметр, по которому различаются RAID-массивы, это поддержка интерфейсов накопителей. Не будем тревожить склеп с IDE-дисками, а констатируем, что по большому счету применяются три типа: SATA, SAS и NVMe. SAS — удел серверов, а вот остальные применяются повсеместно.

Есть программные и аппаратные RAID-контроллеры, которые умеют управлять массивом дисков с одним из интерфейсов. В формате PCIe есть и такие платы, которые реализуют режим Tri-Mode, позволяющий работать со смешанным составом накопителей.


Уровни RAID

Разобравшись с основными конструктивными особенностями RAID-контроллеров, перейдем к главной характеристике — поддержке уровней RAID. В подавляющим большинстве контроллеры работают с уровнями 0, 1, 1E, 10, 5, 5EE, 50, 6, 60. Другие занесены в красную книгу и на практике встречаются редко. Простейшие программные контроллеры позволяют создать RAID 0 и 1. Более продвинутые добавляют RAID 10 и 5. В аппаратных, как правило, такой перечень минимален, и многие платы поддерживают весь спектр уровней. Рассмотрим подробнее каждый из них.

Несколько важных нюансов для понимания эффективных объема и быстродействия, получаемых в результате объединения в массив:

  • при использовании накопителей разного объема контроллер «обрезает» объем каждого из них до наименьшего из используемых. Если у вас есть много дисков 4 ТБ и один 2 ТБ, то в массиве все диски будут восприниматься как 2 ТБ;
  • при использовании накопителей с разными скоростями ввода/вывода и задержками, то операции доступа будут осуществляться с наихудшими из всех параметров. Другими словами, самым быстрым дискам придется ждать, пока отработает самый медленный.

RAID 0


Единственный массив, который не совсем оправдывает название, поскольку не обладает избыточностью. При этом скорость и эффективный объем максимальны. Данные разбиваются на одинаковые блоки, равномерно записываемые на все диски по очереди. Эти блоки называются страйпами, отсюда и сам RAID 0 часто именуют страйпом. Считывание данных также происходит параллельно. Здесь конечно же есть свое но.

Дело в том, что прирост производительности не прямо пропорционален количеству дисков (как хотелось бы). В силу специфики накопителей, особенно механических, выигрыш в конфигурации RAID 0 хорошо заметен только на операциях последовательного чтения. Другими словами, при работе с большими файлами. Типичная область применения — игры, видеомонтаж и рендеринг. При условии, что регулярно производится резервирование на сторонние накопители. Наряду с этим при случайном доступе к файлам разница с отдельно взятым диском уже не так ощутима. Более позитивная картина наблюдается в случае твердотельных накопителей, но они и так удовлетворяют большинству запросов по быстродействию.

В общем, в современных реалиях RAID 0 далеко не всегда оправдает свое применение, а основная задача RAID-массива все же в повышении надежности хранения данных.

Обратная сторона медали за скорость как раз в отсутствии избыточности, что означает нулевую отказоустойчивость. В случае сбоя хотя бы одного из элементов массива, восстановление всего содержимого практически невозможно.

RAID 1


RAID 1, известный как «зеркало», представляет собой другую крайность. Он максимально избыточен — в нем производится 100 % дублирование данных. Этот процесс «съедает» ровно половину объема массива. Число дисков в нем, соответственно, четное. Позволяет увеличить скорость чтения, но синхронная скорость записи в некоторых случаях падает. При отказе одного из дисков работа автоматически продолжается с дублером. Если доступна функция горячей замены дисков, то восстановление штатного режима происходит без остановки. RAID 1 идеален для чувствительных данных.

RAID 5


Состоит минимум из трех накопителей, при этом доступный объем уменьшается на один. Данные записываются в страйпы на все диски кроме одного, на котором размещается контрольная сумма этой части данных. Запись этого блока также чередуется между всеми накопителями, распределяя равномерную нагрузку. Если их больше четырех, то скорость чтения будет выше чем в RAID 1, но запись будет осуществляться медленнее. Контрольные суммы позволяют достать информацию в случае выхода из строя одного из элементов. Сама операция восстановления вызывает повышенную нагрузку на оставшиеся диски. Значительно падает производительность и риск утери всех данных в случае отказа еще одного диска. Желательно иметь опцию горячей замены для оперативного возвращения в нормальный режим работы.

Со всеми плюсами и минусами эти три уровня наиболее распространены и просты в развертывании.

RAID 6


Развитие RAID 5 по части надежности, позволяющее пережить потерю двух дисков. В данной конфигурации в каждом проходе пишется две независимые контрольные суммы на два накопителя. Требуется минимум четыре диска, из которых два уйдет на описанный алгоритм повышения отказоустойчивости. При этом скорость записи будет еще ниже, чем у RAID 5.

Следующие уровни — производные и комбинации перечисленных.

RAID 10


Неплохо было бы объединить достоинства RAID 0 (производительность) и RAID 1 (отказоустойчивость)? Встречайте RAID 10: страйп и зеркало, два в одном. Но и недостатки не забудьте — по-прежнему половина объема уходит на резерв. А что делать, за надежность приходится платить. В этом плане менее экономичен, чем RAID 5 И RAID 6, но более прост в восстановлении после сбоя.

RAID 50


По похожей схеме получаем RAID 50. Здесь уже страйпы не зеркалируются, а распределяются по двум и более массивам RAID 5. Требуется от шести дисков, скорость чтения значительно увеличивается. Кроме того, нивелируется и слабое место RAID 5 и RAID 6 — низкая скорость записи. Отрицательная сторона опять лежит в плоскости экономики. Из эффективного объема выпадают два диска, как и RAID 6, при этом массив выдержит потерю только одного.

RAID 60


Данный гибрид RAID 0 и RAID 6 призван решить проблему производительности последнего. Отказоустойчивость остается на том же уровне, как и часть объема накопителей, отводимая на реализацию алгоритмов контроля целостности данных. Дисков для такого удовольствия понадобится как минимум восемь.

RAID 1E


Еще одна вариация совмещения алгоритмов зеркалирования и чередования данных. Записанные на одной итерации страйпы повторно записываются на следующей, но в обратном порядке. Таким образом в RAID 1E можно использовать три диска. Массив останется тем же зеркалом с эффективным объемом, равным половине от исходного.

RAID 5EE


Один из вариантов использования RAID 5 с резервным диском. Отличается тем, что этот диск не простаивает до выхода из строя одного из элементов массива, а используется наряду с другими. На каждой итерации помимо страйпов данными и контрольной суммой записывается резервный блок. Сделано это для ускорения процесса сборки массива в случае нештатной ситуации. Платой за такую опцию становится второй диск, исключаемый из эффективного объема RAID 5EE.

В таблице ниже приведены сравнительные характеристики рассмотренных уровней RAID.


Не забудем и про массив с незатейливым названием JBOD (дословно переводится как «просто связка дисков»). Строго говоря, он не является RAID-массивом. Это объединенные в один несколько дисков без дополнительной функциональности. Позволяет развернуть логический диск с объемом, который недоступен в рамках одного накопителя. Такой диск полезен для перемещения файлов больших размеров в несколько терабайт.

Вместо заключения напомним самое главное правило для всех, кто хранит данные в RAID-массиве: RAID-массив ≠ бэкап! Регулярно делайте резервные копии данных на независимые носители и да пребудет с вами сила.

Вы можете использовать Веб Консоль Intel® RAID 3 или SAS3IRCU для проверки состояния дисков, подключенных к интегрированной системе RAID (IR) Intel® RAID Controller.

Как определить текущее состояние дисков, подключенных к Intel® Integrated RAID Module RMS3JC080 без перезагрузки сервера?

Вы можете использовать любой из приведенных ниже способов определения состояния дисков, подключенных к указанным выше контроллерам Intel® RAID IR:

    Веб Консоль Intel® RAID 3 (RWC3)
    Поддержка RWC3 Windows*И Linux*которые могут отслеживать и управлять Intel RAID продукцией. См. раздел Руководство пользователя RWC3 для установки и использования.

RAID Web Console 3

Для отображения состояния дисков может использоваться следующий синтаксис:

sas3ircu.exe 0 display

sas3ircu.exe 0 display

Другие статьи по этой теме

Вам нужна дополнительная помощь?

Оставьте отзыв

Отказ от ответственности

Содержание данной страницы представляет собой сочетание выполненного человеком и компьютерного перевода оригинального содержания на английском языке. Данная информация предоставляется для вашего удобства и в ознакомительных целях и не должна расцениваться как исключительная, либо безошибочная. При обнаружении каких-либо противоречий между версией данной страницы на английском языке и переводом, версия на английском языке будет иметь приоритет и контроль. Посмотреть английскую версию этой страницы.

Для работы технологий Intel может потребоваться специальное оборудование, ПО или активация услуг. // Ни один продукт или компонент не может обеспечить абсолютную защиту. // Ваши расходы и результаты могут отличаться. // Производительность зависит от вида использования, конфигурации и других факторов. // См. наши юридические уведомления и отказ от ответственности. // Корпорация Intel выступает за соблюдение прав человека и избегает причастности к их нарушению. См. Глобальные принципы защиты прав человека в корпорации Intel. Продукция и программное обеспечение Intel предназначены только для использования в приложениях, которые не приводят или не способствуют нарушению всемирно признанных прав человека.

Читайте также: