Как производится организация данных на cd rom основные форматы cd дисков

Обновлено: 06.07.2024

Компакт-диск –оптический или магнитно-оптический диск, предназначенный для записи и чтения цифровых данных при помощи лазерного луча. Технология лазерных компакт-дисков продолжает развиваться сразу в нескольких направлениях. Это CD-ROM, DVD-ROM, устройства с однократной и многократной записью CD-R и CD-RW, перезаписываемые DVD.

Технологии изготовления CD-ROM уже более десяти лет. За этот немалый для компьютерных технологий срок сменилось несколько поколений накопителей CD-ROM. Рассмотрим основы технологии CD-ROM и ее главные характеристики. Толщина диска составляет 1,2 мм, диаметр – 120 мм. Диск изготавливается из прозрачного поликарбоната, который покрыт с одной стороны тонким металлическим отражающим слоем (алюминия, реже золота) и защитной пленкой специального прозрачного лака. Информация на диске записана в виде чередования углублений в поверхности металлического слоя (load). Двоичный нуль представляется на диске как в виде углубления, так и в виде основной поверхности, а двоичная единица – в виде границы между ними.

В соответствии с принятыми стандартами поверхность диска разделена на три области.

• Основная область данных, или файловая система, представлена на диске кольцом шириной 33 мм.

• Выходная директория (lead out) с меткой конца диска.

Основными функциональными элементами привода CD-ROM являются: миниатюрный электродвигатель, полупроводниковый лазер, система оптических линз и датчиков, электронная схема предварительной обработки информации и управления приводом.

В настоящее время можно выделить семь основных групп задач, решаемых с помощью накопителей CD-ROM:

• установка и обновление программного обеспечения;

• работа с программными продуктами;

• поиск информации в базах данных, архивах, энциклопедиях, справочниках;

• работа с обучающими, развлекательными и игровыми программами;

• просмотр видеофильмов и фотоизображений;

• использование накопителя CD-ROM в качестве разделяемого ресурса локальной компьютерной сети;

• прослушивание музыкальных компакт-дисков.

Рассмотрим основные характеристики приводов CD-ROM с точки зрения их влияния на производительность накопителя в составе персонального компьютера и качество решения задач, возлагаемых на накопитель. К основным характеристикам приводов CD-ROM относятся:

• скорость передачи данных (Data Transfer Rate – DTR);

• среднее время доступа (Access Time – AT);

• объем буферной памяти (Buffer Memory);

• коэффициент ошибок (Error Rate);

• средняя наработка на отказ (Mean Time Between Failure – MTBF);

• перечень поддерживаемых форматов CD;

• параметры трактов воспроизведения.

Скорость передачи данных DTR – это максимальная скорость, с которой данные пересылаются от носителя информации в оперативную память компьютера. Это наиболее важная характеристика привода CD-ROM, которая практически всегда упоминается вместе с названием модели. Непосредственно со скоростью передачи данных связан такой параметр, как скорость вращения диска (“кратность”). Первое поколение приводов (или дисководов) CD-ROM имели скорость передачи данных 150 Кбайт/с, как и проигрыватели аудиоCD. Скорости передачи данных следующих поколений устройств, как правило, кратны этому числу (150 Кбайт/с). Такие приводы получили название “накопителей с двух-, трех-, четырехкратной и т.д. скоростью”. Причем скорость передачи данных приводов с n-кратной скоростью зависит от типа читаемой информации. Например, если считывается информация со звукового диска, то скорость передачи составляет 150 Кбайт/с (normal speed), а если считываются файлы данных, то скорость передачи может быть равна 300, 450, 600 Кбайт/с и т. д. Иногда для характеристики накопителей на CD-ROM используют такой показатель, как скорость постоянной передачи данных (Sustained Data Transfer – SDT).

Скорость передачи данных приводов CD-ROM различной кратности представлена ниже:

С переходом на быстродействующие модели приводов наметилась тенденция к размыванию понятия “кратность”. Дело в том, что термин “кратность” соответствует не угловой скорости вращения диска, а линейной скорости движения дорожки диска относительно считывающего устройства. В этом состоит важное отличие накопителя CD-ROM, например, от накопителя на жестких дисках. Если одной из главных целей конструкторов жестких дисков было повышение средней производительности накопителей, то дисководы CD-ROM изначально проектировались для нужд аудиотехники, где требовалось, прежде всего, постоянство скорости передачи данных, независимо от того, с какой области диска в данный момент производится считывание – с внешней или внутренней. До недавнего времени приводы CD-ROM, в отличие от накопителей на магнитных дисках, использовали метод считывания информации с постоянной линейной скоростью (Constant Linear Velocity – CLV), при котором угловая скорость вращения диска является величиной переменной, зависящей от места считывания информации (уменьшается по мере продвижения головки от центра к краю диска).

Для преодоления серьезных технических проблем, возникающих при скоростях передачи информации 2400 Кбайт/с (кратность 16х) и более, производители CD-ROM начали выпускать накопители с частично-постоянной угловой скоростью вращения диска PCAV (Partial Constant Angular Velocity). При использовании метода PCAV (иногда встречается обозначение CLV-CAV) паспортное значение скорости передачи информации достигается только при считывании данных из области на внешнем крае диска, а в области, ближайшей к центру, этот параметр может быть меньше указанного почти в два раза.

Интересное решение предложено специалистами фирмы Hitachi для поддержания постоянной производительности накопителя при чтении как на внешних, так и во внутренних областях диска (Hitachi 16maX Partial CAV-технология). По мере того как оптическая головка перемещается от внутренних областей диска к внешним, скорость передачи данных растет благодаря постоянной скорости вращения диска (CAV-режим).

Современные приводы CD-ROM по максимальной скорости считывания данных превосходят устройства первого поколения в 32–50 раз (32х – 50х, где 1х соответствует 150 Кб/c). Увеличение скорости чтения приводов CD-ROM – это фактически единственное направление совершенствования. Для 40–50-скоростных приводов скорость вращения достигает очень высоких величин – 8600–10400 об/мин. При таких скоростях для обеспечения надежного считывания требуются особые меры. В частности, фирма ASUSTEK снабжает свои приводы 43х, 36х, 40х, 50х специальной виброзащитой, обеспечивая надежное считывание на любой скорости.

В последнее время предложено принципиально новое решение, которое позволяет резко увеличить скорость чтения без увеличения скорости вращения диска. Технология, получившая название TrueX, разработана фирмой Zen Research. Основана она на параллельном считывании данных с нескольких соседних витков дорожки. Первой приводы CD-ROM, использующие эту технологию, выпустила фирма Kenwood. В новых приводах применен более широкий луч лазера, засвечивающий одновременно 7 дорожек, данные с которых считываются параллельно с помощью специального датчика матричного типа.

Среднее время доступа AT (Access Time) – это время (в миллисекундах), которое требуется приводу для нахождения на носителе нужных данных.

Очевидно, что при работе на внутренних участках диска время доступа будет меньше, чем при считывании информации с внешних участков. Поэтому в паспорте накопителя приводится среднее время доступа, определяемое как среднее значение при выполнении нескольких считываний данных с различных (выбранных случайным образом) участков диска. По мере совершенствования приводов CD-ROM величина среднего времени доступа уменьшается, но все же этот параметр значительно отличается от аналогичного для накопителей на жестких дисках (100–200 мс для CD-ROM и 8–12 мс для жестких дисков). Столь существенная разница объясняется принципиальными различиями конструкций: в накопителях на жестких дисках используется несколько магнитных головок, и диапазон их механического перемещения меньше, чем диапазон перемещения оптической головки в приводе CD-ROM. Типовые значения среднего времени доступа приводов CD-ROM представлены ниже:

Приведенные данные характерны для высококачественных устройств. В каждой категории накопителей (с одинаковой кратностью) могут быть устройства с более высоким или более низким значением среднего времени доступа.

Объем буферной памяти (Buffer Memory – ВМ) – это объем оперативного запоминающего устройства привода CD-ROM, используемого для увеличения скорости доступа к данным, записанным на носителе. Буферная память (или кэш-память) представляет собой устанавливаемые на плате накопителя микросхемы памяти для хранения считанных данных. Благодаря буферной памяти данные в компьютер могут передаваться с постоянной скоростью. Например, данные обычно размещены в различных областях диска, а поскольку накопители на CD-ROM имеют относительно большое время доступа, это может привести к задержке поступления данных в компьютер. Это практически незаметно при работе с текстовыми файлами, но при выводе видеоизображений или звукового сопровождения паузы недопустимы. Если для управления приводом CD-ROM используются специальные программы-драйверы, то в буферную память может быть заранее записано оглавление диска. В этом случае обращение к фрагменту запрашиваемых данных происходит значительно быстрее.

Оптимальный объем буферной памяти определяется многими факторами. Принято считать, что для приводов CD-ROM с двукратной скоростью объем буферной памяти должен составлять не менее 64 Кбайт, а для накопителей с кратностью 4х и выше – не менее 256 Кбайт. Современные устройства имеют буферную память объемом 256–512 Кбайт.

Средняя наработка на отказ MTBF (Mean Time Between Failure) – это среднее время (в часах), характеризующее безотказность работы привода CD-ROM. MTBF определяет надежность накопителя как технического устройства.

Для первых моделей приводов CD-ROM средняя наработка на отказ составляла около 30 тыс. ч, или 3,5 года круглосуточной работы. У современных моделей этот показатель лежит в пределах 50–125 тыс. ч, что почти на порядок превышает срок морального старения накопителя.

Параметры аудиотракта. Поскольку приводы CD-ROM используются и для воспроизведения аудиодисков формата CD-DA (Compact Disk-Digital Audio), то они характеризуются и параметрами, описывающими качественные показатели тракта звуковоспроизведения, а именно:

• полосой воспроизводимых частот;

• коэффициентом нелинейных искажений;

• сопротивлением на выходе;

• э. д. с. сигналов на выходе;

• переходным затуханием между каналами и др.

По этим характеристикам можно судить о том, способен ли привод CD-ROM заменить пользователю аудиоCD-проигрыватель.

Как и для жестких дисков, основное разделение приводов CD-ROM на классы производится по типу интерфейса. Для подключения к компьютеру в приводах CD-ROM могут использоваться следующие интерфейсы:

• стандартные интерфейсы типов IDE, EIDE/ATAPI;

• стандартные интерфейсы SCSI;

• нестандартные интерфейсы, применяемые производителями CD-ROM в одной или серии моделей своих приводов.

Интерфейс IDE хорошо известен и широко используется как интерфейс накопителей на жестких дисках. Попытка устранения ограничений по скорости передачи данных для интерфейса IDE и ограничений по емкости накопителей привели к появлению модифицированного интерфейса EIDE/ATAPI, предложенного фирмой Western Digital. Этот интерфейс поддерживает работу до четырех устройств, в том числе приводов CD-ROM. Включение привода CD-ROM с интерфейсом EIDE в систему компьютера осуществляется с помощью драйверов привода и/или операционной системы без изменения установок программы Setup BIOS, т.е. не требуется информирование BIOS о наличии нового периферийного устройства. Для новых моделей IDE приводов CD-ROM начинают все шире использоваться скоростные варианты интерфейса, то есть поддерживающие режим UltraATA/33.

Приводы с интерфейсом SCSI относятся к более высокому классу. Для них характерен более сбалансированный подход, в частности, скорость чтения чрезмерно не форсируется, используются большие объемы кэш-памяти.

Интерфейс SCSI предусматривает подключение к одному адаптеру до семи устройств, в том числе приводов CD-ROM. Интерфейс SCSI является наиболее универсальным, имеет явные преимущества при просмотре видеоизображений, однако его аппаратная реализация дороже, чем реализация интерфейса EIDE.

Статьи к прочтению:

An Old CD-ROM Drive Plays a CD-RW Disc


Похожие статьи:

hdd

Головка (Head) - электромагнит, скользящий над поверхностью диска, для каждой поверхности используется своя головка. Нумерация начинается с 0.

Головка

Продольная (верхний рисунок) и перпендикулярная (нижний рисунок) запись информации на диске

Примерно с 2005 года идет переход с продольной на перпендикулярную запись информации на диске, что обеспечивает большую плотность записи данных.

С 2011-2013 планируется переход на "тепловую магнитную запись", место записи будет предварительно нагреваться лазером, что уменьшит размер домена и повысит надежность хранения. Предположительная максимальная емкость от 30 до 50 ТБ.

Дорожка (Track) - концентрическая окружность, которое может прочитать головка в одной позиции. Нумерация дорожек начинается с внешней (первая имеет номер - 0).

Цилиндр (Cylinder) - совокупность всех дорожек с одинаковым номером на всех дисках, т.к. дисков может быть много и на каждом диске запись может быть с двух сторон.

Маркер - от него начинается нумерация дорожек, есть на каждом диске.

Сектор - на сектора разбивается каждая дорожка, сектор содержит минимальный блок информации. Нумерация секторов начинается от маркера.

sector

Дорожки, цилиндры, сектора, головки

Геометрия жесткого диска - набор параметров диска, количество головок, количество цилиндров и количество секторов.

У современных жестких дисков контроллер встроен в само устройство, и берет на себя большую часть работы, которую не видит ОС.

Например, скрывают физическую геометрию диска, предоставляя виртуальную геометрии.

Физическая и виртуальная геометрия диска

На внешних дорожках число секторов делают больше, а на внутренних меньше. На реальных дисках таких зон может быть несколько десятков.

1.1.2 RAID (Redundant Array of Independent Disk - массив независимых дисков с избыточностью)

Для увеличения производительности или надежности операций ввода-вывода с диском был разработан стандарт для распараллеливания или дублирования этих операций

Основные шесть уровней RAID:

RAID 0 - чередующий набор, соединение нескольких дисков в один большой логический диск, но логический диск разбит так, что запись и чтение происходит сразу с несколько дисков. Например, записываем блок 1, 2, 3, 4, 5, каждый блок будет записываться на свой диск.
Преимущества
- удобство одного диска
- увеличивает скорость записи и чтения
Недостатки
- уменьшает надежность (в случае выхода одного диска, массив будет разрушен), избыточность не предусмотрена.

RAID 1 - зеркальный набор, параллельная запись и чтение на несколько дисков с дублированием (избыточность).
Преимущества
- дублирование записей
- увеличивает скорость чтения (но не записи)
Недостатки
- требует в два раза больше дисковых накопителей

RAID 2 - работает на уровне слов и даже байт. Например, берется полбайта (4 бита) и прибавляется 3 бита четности (1, 2, 4 - рассчитанные по Хэммингу), образуется 7-битовое слово. В случае семи дисков слово записывается побитно на каждый диск. Так как слово пишется сразу на все диски, они должны быть синхронизированы.
Преимущества
- надежность
- увеличивает скорость записи и чтения (при потоке, но при отдельных запросах не увеличивает)
Недостатки
- нужна синхронизация дисков.

RAID 3 - упрощенная версия RAID 2, для каждого слова считается только один бит четности.
Преимущества
- надежность
- увеличивает скорость записи и чтения (при потоке, но при отдельных запросах не увеличивает)
Недостатки
- нужна синхронизация дисков.

RAID 4 - аналогичен уровню RAID 0, но с добавлением диска четности. Если любой из дисков выйдет из строя, его можно восстановить с помощью диска четности.
Преимущества
- надежность
- не нужна синхронизация дисков
Недостатки
- не дает увеличения производительности, узким местом становится диск четности при постоянных пересчетах контрольных сумм.

RAID 5 - аналогичен уровню RAID 4, но биты четности равномерно распределены по дискам.

На практике, как правило, используют RAID 0, 1 и 5.

Системы RAID уровней от 0 до 5.

1.1.3 Компакт-диски

DVD

DVD устройство

Фото устройства для работы с дисками

DVD в работе

Устройство в работе

Демонстрация работы CD-drive

Запись на CD-ROM диски производятся с помощью штамповки.

Под микроскопом

CD-ROM под электронным микроскопом.
Длина пита варьируется от 850 нм до 3,5 мкм

Сначала CD-диски использовались только для записи звука, стандарт которого был описан ISO 10149 ("Красная книга").

Пит - единица записи информации (впадина при штамповке, темное пятно, прожженное в слое краски в CD-R, область фазового перехода)

Запись на CD-ROM производится спирально

В 1984 году была опубликована "Желтая книга", в которой описан следующий стандарт.

Для записи данных было необходимо повысить надежность, для этого каждый байт (8 бит) стали кодировать в 14 разрядное число (по размеру почти дублирование записи, но за счет кодирования эффективность может быть, как при тройной записи), чтобы можно было восстановить потерянные биты.

Логическое расположение данных на CD-ROM для режима 1

Первые 12-ть байт заголовка содержат 00FFFFFFFFFFFFFFFFFFFF00, чтобы считывающее устройство могло распознать начало сектора.

Следующие три байта содержат номер сектора.

Последний байт содержит код режима

ECC (Error Correction Code) - код исправления ошибок.

В режиме 2 поле данных объединено с полем ECC в 2336-байтное поле данных. Этот режим можно использовать, если не требуется коррекция ошибок, например, видео и аудио запись.

Коррекция ошибок осуществляется на трех уровнях:

Поэтому 7203 байта содержат только 2048 байта полезной нагрузки, около 28%.

В 1986 году была выпущена "Зеленая книга", к стандарту была добавлена графика, и возможность совмещения в одном секторе аудио, видео и данных.

Файловая система для CD-ROM называется High Sierra , которая оформлена в стандарт ISO 9660.

Файловая система имеет три уровня:

1 уровень - файлы имеют имена формата, схожего с MS-DOS - 8 символов имя файла плюс до трех символов расширения, файлы должны быть непрерывными. Глубина вложенности каталогов ограничена восемью. Этот уровень понимают почти все операционные системы.

2 уровень - имена файлов могут быть до 31 символов, файлы должны быть непрерывными.

3 уровень - позволяет использовать сегментированные файлы.

Для этого стандарта существуют расширения:

Rock Ridge - позволяет использовать длинные файлы, а также UID, GID и символические ссылки.

1.1.3.1 Компакт-диски с возможностью записи CD-R

Запись на CD-R диски производятся с помощью локального прожигания нанесенного слоя красителя.

В 1989 году была выпущена "Оранжевая книга", это документ определяет формат CD-R, а также новый формат CD-ROM XA , который позволяет посекторно дописывать информацию на CD-R.

CD-R-дорожка - последовательно записанные за один раз секторы. Для каждой такой дорожки создается свой VTOC (Volume Table of Contents - таблица содержания тома), в котором перечисляются записанные файлы.

Каждая запись производится за одну непрерывную операцию, поэтому если у вас будет слишком загружен компьютер (мало памяти или медленный диск), то вы можете испортить диск, т.к. данные не будут поспевать поступать на CD-ROM.

1.1.3.2 Многократно перезаписываемые компакт-диски CD-RW

Запись на CD-RW диски производятся локального перевода слоя из кристаллического в аморфное состояние.

Используются лазеры с тремя уровнями разной мощности.

Эти диски можно отформатировать (UDF), использовать их в место дискет и дисков.

1.1.3.3 Универсальный цифровой диск DVD (Digital Versatile Disk)

Были сделаны следующие изменения:

Размер пита уменьшили в два раза (с 0.8 мкм до 0.4мкм)

Более тугая спираль (0.74 мкм между дорожками, вместо 1.6 у компакт-дисков)

Уменьшение длины волны лазера (650 нм вместо 780 нм)

Это позволило увеличить объем с 650 Мбайт до 4.7 Гбайт.

Определены четыре следующих формата:

Односторонний, одноуровневый (4.7 Гбайт)

Односторонний, двухуровневый (8.5 Гбайт), размеры пита второго уровня приходится делать больше, иначе не будут считаны, т.к. первый полуотражающий слой половину потока отразит и частично рассеет.

Двухсторонний, одноуровневый (9.4 Гбайт)

Двухсторонний, двухуровневый (17 Гбайт)

1.1.3.4 Универсальный цифровой диск Blu-ray (blue ray — синий)

Были сделаны следующие изменения:

Размер пита уменьшили

Более тугая спираль ( 0,32 мкм между дорожками, вместо 0.72 у DVD)

Уменьшение длины волны лазера (405 нм вместо 650 нм в DVD), «синего» (технически сине-фиолетового) лазера, отсюда и название

Определены следующие формата:

однослойный диск 23,3/25/27 или 33 Гб

двухслойный диск 46,6/50/54 или 66 Гб

четырёх слойный 100 Гб

восьми слойный 200 Гб

1.1.4 Твердотельные накопители (Flash, SSD, . )

Устройство ячейки памяти:

Используются полевые транзисторы с плавающим затвором.


Устройство ячейки памяти

Считывание информации:

Если ток через npn-переход идет, то "считывается 0".

Ток идет за счет туннельного эффекта, который возникает под действием управляющего затвора, на который подается "+".


Если ток через npn-переход не идет, то "считывается 1".

Ток не идет за счет "экранирования" управляющего затвора плавающим затвором, на котором накоплен "-".


Запись информации:

"Запись" делается накоплением электронов в плавающем затворе, за счет повышенного напряжения на управляющем затворе и стоке.


Затирание информации:

"Затирание" делается "изъятием" электронов из плавающего затворе, за счет положительного напряжения на истоке и отрицательного на управляющем затворе, но стоке 0В.


1.2 Форматирование дисков (программная часть)

1.2.1 Низкоуровневое форматирование

Низкоуровневое форматирование - разбивка диска на сектора, производится производителями дисков.

Каждый сектор состоит из:

Заголовка (Prefix portion) - по которому определяется начало (последовательность определенных битов) сектора и его номер, и номер цилиндра.

Область данных (как правило, 512 байт, планируют перейти на 4 Кб (к 2010г.))

На диске могут быть запасные сектора, которые могут быть использованы для замены секторов с дефектами (а они почти всегда есть). За счет этого обеспечивается одинаковая емкость на выходе.

При низкоуровневом форматировании часть полезного объема уменьшается, примерно до 80%.

Перекос цилиндров

Перекос цилиндров - сдвиг 0-го сектора каждой последующей дорожки, относительно предыдущей. служит для увеличения скорости. Головка тратит, какое то время на смену дорожки, и если 0-й сектор будет начинаться в том же месте, что и предыдущий, то головка уже проскочит его, и будет ждать целый круг.

Перекос цилиндров делают разным в зависимости скоростей вращения и перемещения головок.

Перекос головок - приходится применять, т.к. на переключение с головки на головку тратится время..

Чередование секторов

Если, например, один сектор прочитан, а для второго нет в буфере места, пока данные копируются из буфера в память, второй сектор уже проскочит головку.

Чтобы этого не случилось, применяют чередование секторов.

Если копирование очень медленное, может применяться двукратное чередование, или больше.

1.2.2 Разделы диска

После низкоуровневого форматирования диск разбивается на разделы, эти разделы воспринимаются ОС как отдельные диски.

Для чего можно использовать разделы:

Отделить системные файлы от пользовательских (например, своп-файлы)

Более эффективно использовать пространство (например, для администрирования).

На разные разделы можно установить разные ОС.

Основные разделы диска:

Первичный (Primary partition) - некоторые ОС могут загружаться только с первичного раздела. (В MBR под таблицу разделов выделено 64 байта. Каждая запись занимает 16 байт. Таким образом, всего на жестком диске может быть создано не более 4 разделов. Раньше это считалось достаточным.)

Расширенный (Extended partition) - непосредственно данные не содержит, служит для создания логических дисков (создается, что бы обойти ограничение в 4-ре раздела).

Логический (Logical partition) - может быть любое количество.

Информация о разделах записывается в 0-м секторе 0-го цилиндра, головка 0. И называется таблицей разделов.

Таблица разделов (Partition Table) - содержит информацию о разделах, номер начальных секторов и размеры разделов. На Pentium-компьютерах в таблице есть место только для четырех записей, т.е. может быть только 4 раздела (к логическим это не относится, их может быть не ограниченное количество).

Этот сектор называется главной загрузочной записью.

Т.к. MBR может работать только с разделами до 2.2 ТБ (2.2 ? 1012 байт), насмену приходит GPT.

Активный раздел - раздел, с которого загружается ОС, может быть и логическим. В одном сеансе загрузки может быть только один активный раздел.

Пример структуры разделов

В Windows разделы будут называться (для пользователей) устройствами C:, D:, E: и т.д.

1.2.3 Высокоуровневое форматирование

Высокоуровневое форматирование (создание файловой системы) - проводится для каждого раздела в отдельности, и выполняет следующее:

Создает загрузочный сектор (Boot Sector)

Создает список свободных блоков (для UNIX) или таблицу (ы) размещения файлов (для FAT или NTFS)

Создает корневой каталог

Создает, пустую файловую систему

Указывает, какая файловая система

Помечает дефектные кластеры

Кластеры и блоки - единица хранения информации в файловых системах, файлы записываются на диск, разбитыми на блоки ли кластеры.

При загрузке системы, происходит следующее:

BIOS считывает главную загрузочную запись, и передает ей управление

Загрузочная программа определяет, какой раздел активный

Из этого раздела считывается и запускается загрузочный сектор

Программа загрузочного сектора находит в корневом каталоге определенный файл (загрузочный файл)

Этот файл загружается в память и запускается (ОС начинает загрузку)

1.3 Алгоритмы планирования перемещения головок

Факторы, влияющие на время считывания или записи на диск:

Время поиска (время перемещения головки на нужный цилиндр)

Время переключения головок

Задержка вращения (время, требуемое для поворота нужного сектора под головку)

Время передачи данных

Для большинства дисков самое большое, это время поиска. Поэтому, оптимизируя время поиска можно существенно повысить быстродействие.

Алгоритмы могут быть реализованы в контроллере, в драйверах, в самой ОС.

1.3.1 Алгоритм "первый пришел - первым обслужен" FCFS (First Come, First Served)

Рассмотрим пример. Пусть у нас на диске из 28 цилиндров (от 0 до 27) есть следующая очередь запросов:

и головки в начальный момент находятся на 1 цилиндре. Тогда положение головок будет меняться следующим образом:

Как видно алгоритм не очень эффективный, но простой в реализации.

1.3.2 Алгоритм короткое время поиска первым (или ближайший цилиндр первым) SSF (Shortest Seek First)

Для предыдущего примера алгоритм даст следующую последовательность положений головок:

Как видим, этот алгоритм более эффективен. Но у него есть не достаток, если будут поступать постоянно новые запросы, то головка будет всегда находиться в локальном месте, вероятнее всего в средней части диска, а крайние цилиндры могут быть не обслужены никогда.

1.3.3 Алгоритмы сканирования (SCAN, C-SCAN, LOOK, C-LOOK)

SCAN – головки постоянно перемещаются от одного края диска до его другого края, по ходу дела обслуживая все встречающиеся запросы. Просто, но не всегда эффективно.

LOOK - если мы знаем, что обслужили последний попутный запрос в направлении движения головок, то мы можем не доходить до края диска, а сразу изменить направление движения на обратное

C-SCAN - циклическое сканирование. Когда головка достигает одного из краев диска, она без чтения попутных запросов перемещается на 0-й цилиндр, откуда вновь начинает свое движение.

C-LOOK - по аналогии с предыдущим.

1.4 Обработка ошибок

Т.к. создать диск без дефектов сложно, а вовремя использования появляются новые дефекты.

Поэтому системе приходится контролировать и исправлять ошибки.

Ошибки могут быть обнаружены на трех уровнях:

На уровне дефектного сектора ECC (используются запасные, делает сам производитель)

Дефектные блоки или кластеры могут обрабатываться контроллером или самой ОС.

Блоки и кластеры не должны содержать дефектные сектора, поэтому система должна уметь помечать дефектные сектора.

700 mb и 4700 mb – 9400 mb . Для записи информации используются специальные программы, наиболее распространенной из которых является NERO . Основными пользовательскими режимами данной программы являются запись диска и дозапись диска (мультисессия).

Программа Nero

Программа Nero предусматривает два основных режима работы:

режим эксперта , когда все настройки программы и процесса записи доступны (рисунок 1);

hello_html_5c06698f.jpg

облегченный режим , когда доступны только основные настройки и ничто не отвлекает от процесса записи (рисунок 2).

hello_html_m17fb7df0.jpg

В ходе работы с программой можно с легкостью переходить из одного режима в другой в зависимости от потребностей. Чтобы перейти из полнофункционального режима в режим Nero Express, нужно на панели инструментов щелкнуть мышкой по кнопке . Обратный переход из режима Nero Express можно сделать, нажав на пункт, раскрывающегося по стрелочке слева меню, Переход к Nero Burning ROM.

Помимо этих двух режимов в пакете Nero, появилось специальное средство Nero StartSmart, дополняющее режим Nero Express и позволяющее еще больше облегчить работу с Nero (рисунок 3).

hello_html_2c3589b2.jpg

Помощник Nero StartSmart позволяет очень удобно начать работу с программой Nero и выбрать тот тип диска, который нужно записать. После выбора нужного типа диска в Nero StartSmart можно перейти к заданию данных для записи в режиме Nero Express. Поэтому, если хотите максимально удобно начать работу с Nero, то рекомендуется делать это через Nero StartSmart. Пиктограмма Помощника помещается на Рабочий стол при установке Nero. В дальнейшем в случае необходимости всегда можно перейти в полнофункциональный режим, чтобы задать более «тонкие» настройки.

Физическое устройство компакт-диска

Компакт-диск состоит из нескольких слоев, соединенных в единую круглую тонкую пластину (рисунок 4). Диаметр подавляющего большинства компакт-дисков составляет 120 мм, что равняется пяти дюймам. Стандартный 5-дюймовый диск содержит 640—800 Мбайт информации.

Процесс изготовления CD-дисков включает несколько этапов. На первом этапе создается информационный файл для последующей записи на носитель. На втором этапе с помощью лазерного луча производится запись информации на носитель, в качестве которого используется стеклопластиковый диск с покрытием из фоторезистивного материала. Информация записывается в виде последовательности расположенных по спирали углублений, иногда называемых питами (pit — углубление). Глубина каждого пита, равна 0,12 мкм, ширина (в направлении, перпендикулярном плоскости рисунка) — 0,8 — 3,0 мкм. Они расположены вдоль спиральной дорожки, расстояние между соседними витками которой составляет 1,6 мкм, что соответствует плотности 16000 витков/дюйм (625 витков/мм). На следующем этапе производятся проявление фоторерезистивного слоя и металлизация диска. Изготовленный по такой технологии диск называется штампованным или CD-ROM диском. Штампованный информационный узор и отражающий слой отражают луч считывающего лазера по-разному в разных участках. После создания всех слоев диск готов к использованию. Информация считывается с рабочей стороны диска через прозрачную основу.

Рисунок 4 - Физическое устройство компакт-диска

Для однократной записи используются диски, представляющие собой обычный компакт-диск CD-R, отражающий слой которого выполнен, как правило, из золотой или серебряной пленки. Между ним и поликарбонатной основой расположен регистрирующий слой, выполненный из органического материала, темнеющего при нагревании. В процессе записи лазерный луч, длина волны которого, как и при чтении, составляет 780 нм, а интенсивность более чем в 10 раз выше, нагревает отдельные участки регистрирующего слоя, которые темнеют и рассеивают свет, образуя участки, подобные питам. Однако отражающая способность зеркального слоя и четкость питов у дисков CD-R ниже, чем у CD-ROM, изготовленных промышленным способом.

В перезаписываемых дисках CD-RW регистрирующий слой выполнен из органических соединений, известных под названиями цианин (Cyanine) и фталоцианин (Phtalocyanin), которые имеют свойство изменять свое фазовое состояние с аморфного на кристаллическое и обратно под воздействием лазерного луча. Такое изменение фазового состояния сопровождается изменением промежуточного слоя. При нагревании лазерным лучом выше некоторой критической температуры материал регистрирующего слоя переходит в аморфное состояние и остаётся в нем после остывания, а при нагревании до температуры значительно ниже критической восстанавливает своё первоначальное (кристаллическое) состояние (рисунок 5).

Из-за наличия регистрирующего слоя требования к отражающему слою у записываемых и перезаписываемых дисков выше, чем у штампованных, поэтому вместо алюминия приходится применять более дорогие материалы. Для отражающего слоя в CD-R и CD-RW применяют золото или серебро, хотя могут быть использованы сложные сплавы.

Защитный лаковый слой

Защитный лаковый слой

Преимущество CD-R/RW дисков - они тускнеют и выходят из строя медленнее обычных, поскольку отражающий слой из золота и серебра менее подвержен окислению, чем алюминий в большинстве штампованных CD-ROM дисков. Недостатки CD-R/RW дисков - материал регистрирующего слоя CD-R/RW дисков более чувствителен к свету и так же подвержен окислению и разложению. Кроме того, регистрирующая пленка находится в полужидком состоянии и потому весьма чувствительна к ударам и деформациям.

DVD - это семейство оптических дисков, одинакового размера с компакт-дисками (CD), но значительно большей емкости хранения, достигнутой за счет увеличения плотности записи.

Преимущества DVD технологии:

запись и воспроизведение высококачественного видео и аудио в реальном времени, эффективная работа с компьютерной мультимедийной информацией, а также обеспечение эффективного произвольного доступа к данным, хранимыми в виде множества мелких файлов;

объем диска до 4,7 ГБ (около 2-х часов MPEG-2) на одну сторону для записи в один слой и 8,5 ГБ на одну сторону для двуслойной записи;

возможность записи информации в два слоя на каждую из сторон;

единая файловая система UDF(Universal Disk Format);

возможность записи и многократной перезаписи DVD дисков;

обратная совместимость с существующими CD-дисками - геометрические размеры DVD и CD дисков идентичны, все DVD оборудование способно читать диски CD-Audio и CD-ROM (спецификация MultyRead).

Стандарт DVD предусматривает четыре варианта дисков, которые образуются из комбинации числа рабочих слоёв и сторон и имеют следующие характеристики:

DVD – 5 односторонний однослойный диск ёмкостью 4,7 Гб;

DVD – 9 односторонний двухслойный диск ёмкостью 8,5 Гб;

DVD – 10 двухсторонний однослойный диск ёмкостью 9,4 Гб;

DVD – 18 двухсторонний двухслойный диск ёмкостью 17 Гб.

Устройство привода

Оптический привод - представляет собой устройство хранения данных с оптическим принципом считывания и записи.

В качестве основных узлов привода можно выделить: лазерный диод, который излучает свет; разделитель лазерного луча (интерференционный поляризатор); систему из двух фокусирующих линз и приемник отраженного от диска лазерного луча.

Привод чтения CD-дисков работает следующим образом:

лазер генерирует маломощный пучок, который, проходя через направляющую призму и разделитель луча, попадает на отражающее зеркало;

серводвигатель по командам микропроцессора перемещает каретку с отражающим зеркалом к нужной дорожке на компакт-диске;

луч, попав на диск, отражается и попадает на зеркало. Отразившись от зеркала, попадает на разделитель луча. Разделительный куб отражает луч на другую направляющую призму;

из призмы луч попадает в фотодатчик, сигналы от которого декодируются встроенным микропроцессором и передаются на компьютер в виде данных.

Обычно в CD - приводах используются инфракрасные полупроводниковые лазеры с длиной волны 780 нм, а в DVD – приводах с длиной волны 650 нм красная область спектра.

Отличие приводов CD и DVD состоит в количественной оценке скорости выполнения операций чтения, записи или же перезаписи дисков, поскольку за единицу скорости принято считать 1250Кб/с, что соответствует примерно 8х для CD – приводов.

Программы для создания интерактивных загрузочных меню для CD- и DVD-дисков

Автозапуск дисков в Windows

Программы для создания загрузочных меню ( а utorun)

Longtion AutoRun 6.0

CDMenuPro 5.20

Power AutoPlay Menu Creator 6.3

Typhoon AutoRun III 3.1

CD Autorun Creator 4.6

Power AutoPlay Menu Wizard 1.1

Visual Autorun 2.3

На первый взгляд кажется, что в записи любого такого диска нет ничего сложного — нужно лишь взять подходящую программу и скопировать нужные папки и файлы. Однако не все так просто: вставив такой диск в CD-ROM или DVD-ROM, пользователю придется самому найти и запустить нужные файлы, а это предполагает наличие у пользователя определенной подготовки, что бывает далеко не всегда. К тому же на запуск файла, открытие документа и т.п. затрачивается гораздо больше времени, поскольку требуется внимательно изучить файловую структуру диска и сориентироваться. А если предположить, что на диске находится презентация компании, электронный каталог или рекламный букет, которые нужно представить потенциальным клиентам, либо иллюстративный материал для публичного выступления на конференции, семинаре и т.п., то в этом случае очень важно произвести впечатление на аудиторию, что окажется весьма сложным, если в момент диалога с клиентом или в процессе выступления приходится прерваться для того, чтобы вставить диск, открыть его (например, в проводнике Windows), перейти в нужную папку и загрузить нужный файл. А уж если предполагается демонстрировать несколько документов, иллюстраций, презентаций, слайд-шоу и пр., то тогда многочисленные операции по открытию и запуску придется повторять неоднократно. Весьма сомнительно, что при современном развитии информационных технологий такая суета произведет благоприятное впечатление на зрителя. И совсем уж полный провал гарантирован, если подобные диски продаются пользователям (например, диски с ПО или с образовательными программами) либо раздаются потенциальным клиентам или заказчикам на профильных выставках и ярмарках (диски с информацией о компании и/или ее разработках): в первом случае пользователи, наконец-то разобравшись с установкой программных продуктов, будут обижены на вас из-за напрасно потраченного на это времени и, вполне возможно, в следующий раз отдадут предпочтение другому разработчику, а во втором — вовсе не исключено, что потенциальные клиенты вообще не ознакомятся с вашими материалами, ведь им совсем не захочется тратить время на выяснение того, что конкретно нужно загружать. Так что вы потеряете шанс получить новых клиентов.

Отсюда следует закономерный вывод: требуется не просто скопировать на CD- или DVD-диск нужную информацию, а обеспечить к ней удобный интерактивный доступ, ибо не стоит заставлять пользователей и клиентов тратить время на чтение прилагаемого руководства к диску. На деле это означает, что после помещения диска в накопитель на экране монитора должно автоматически появляться интерактивное меню, обеспечивающее навигационный доступ ко всем материалам диска. Реализовать такую возможность совсем не сложно: достаточно снабдить диск автозагружающейся графической оболочкой (загрузочным меню — autorun), при наличии которой диск станет удобным инструментом для установки ПО или драйверов, внятным учебным пособием, иллюстрацией ваших личных разработок, визитной карточкой компании, информационным бюллетенем и т.п. (автозагружающиеся диски могут с не меньшим удобством представлять и иную информацию). Загрузочные меню позволяют ускорить доступ к хранящимся на диске дистрибутивам, превратить обычные диски с фотографиями в эффектные слайд-шоу, четко организовать итоговые документы компании, ускорить доступ к хранящимся на диске электронным книгам или видеозаписям и т.п. Загрузочные меню необходимы и для осуществления автозапуска различных мультимедийных презентаций, для составления обзоров, инструкций по эксплуатации и аналогичных материалов, в особенности если они не относятся к компьютерной сфере и их загрузка создает потенциальные проблемы для пользователей.

Приложения для разработки самозагружающихся графических оболочек к дискам представляют огромный интерес для самых разных специалистов: разработчиков ПО и обучающих программных продуктов, продавцов видео и аудио, фотографов, проектировщиков и пр. Интересны такие приложения и для домашних пользователей, которые могут использовать их для управления дисками с софтом, для организации фотоальбомов и домашнего видео и т.п.

См. ПРИЛОЖЕНИЕ 1

1. Вставьте компакт диск CD - RW в привод дисковода.

2. Загрузите программу NERO , либо через кнопку Пуск, либо через пиктограмму с названием Nero StartSmart .

3. После появления окна NERO в поле выбора вида носителя выберите носитель CD , а в поле пиктограмм режимов работы выберите режим Создать CD с данными.

hello_html_m716598ef.jpg

4. При появлении окна формирования списка записываемых файлов (рис.1.) перенесите мышкой графический файл из папки Temp диска C : в поле Имя (второе поле от левого края окна) и затем щелкните по пиктограмме Запись.

hello_html_502a5f13.jpg

Рис.1.

5. После появления окна Запись проекта (Рис.2.) щелкните по ярлычку Наклейка, в поле Имя диска впишите имя Студент, затем щелкните по кнопке Прожиг.

Сегодня мы с вами поговорим о самых, пожалуй, распространенных носителях информации – CD и DVD дисках.

Как известно, компьютер — это машина, в которой циркулируют потоки информации.

компакт-диски

И такая информация нуждается в носителе. Основной носитель — это винчестер (жесткий диск). Но он спрятан в недрах компьютера.

Диск можно быстро вставить в привод (не разбирая компьютер), записать на него информацию и хранить ее. В настоящее время появилась альтернатива таким носителям – всякого рода облачные сервисы хранения данных, но списывать их со счета преждевременно. Остановимся чуть более подробно на CD и DVD.

Как устроены CD и DVD

CD (Compact Disc) — это диск из пластика толщиной 1,2 мм с центрирующим отверстием посредине. Информация может располагаться на одной или обеих (в DVD) сторонах диска. Информационная сторона представляет собой одну длинную спиральную канавку, начинающуюся от центра.

Считывание информации производится маломощным лазером. Как известно, все многообразие информационного потока обеспечивается посредством квантов (битов) информации, каждый из которых может значение 0 или 1. 0 можно трактовать как отсутствие сигнала, 1 — его наличие.

площадки и выступы CD

На дне информационной канавки диска располагаются чередующиеся выступы (площадки) и впадины.

Лазерный луч, непрерывно отражаясь от выступов и впадин канавки, попадает через оптическую систему в приемник. С терминами «выступ» и «впадина» существует некоторая путаница. Если смотреть на диск сверху (с той стороны, где бумажная наклейка), то это будет впадина.

Но считывание происходит с нижней (информационной) части диска, поэтом для лазерного луча это будет выступ. При отражении от выступа длина хода волны луча лазера получается меньшей — на половину длины волны. Поэтому волна гасится, что эквивалентно отсутствию сигнала.

однослойный CD в разрезе

Переход от площадки к выступу и наоборот трактуется как 1.

Если такого перехода (в течение некоторого времени) не происходит, то это трактуется как 0.

DVD (Digital Versatile Disc, универсальный цифровой диск) устроен аналогичным образом, но шаг канавки у него меньше (0,7 мкм), длина и высота выступов также меньше. Поэтому при одинаковом диаметре диска на него можно записать больше информации.

Информационные диски, производящиеся массовыми тиражами, изготавливают штамповкой из поликарбоната с помощью металлической матрицы. На ту сторону, где канавки, наносится светоотражающий слой из алюминия. Затем на эту поверхность наносится тонкий слой лака и наклеивается бумажная этикетка. Емкость DVD — 4,7 Gb.

Двухслойные и двухсторонние DVD

Двухслойный DVD в разрезе

Существуют двухслойные DVD,в которых два идентичных диска с канавками.

В таких случаях на ближний к лазеру диск наносят полупрозрачное золотое покрытие (со стороны канавок), так что луч может проходить через него и считывать данные с «дальнего» слоя.

Для устойчивого считывания канавки в двухслойных дисках сделаны шире, чем в однослойных, поэтому емкость диска равна 8,5 Gb (а не 9,4 Gb, как это можно было предположить). Переход на «ближний» или «дальний» диск в двухслойных дисках осуществляется изменением фокусировки луча лазера.

Ввиду того, что площадки и выступы в DVD меньше, чем в CD, лазер DVD работает на меньшей длине волны (в CD длина волны — 780 нм, в DVD — 650 нм). Существуют и двухсторонние DVD, каждая сторона которых может состоять из одного или двух дисков с канавками. Таким образом, максимальная емкость DVD может быть равной 17 Gb. Отдельные диски с канавками (как в односторонних, так и в двухсторонних дисках) склеивают в одно целое.

Однократно записываемые диски

DVD диск

Существуют также однократно записываемые диски CD-R и DVD-R (R – recordable, записываемые). Для DVD существует несколько разновидностей записываемых дисков — из-за того, что разработкой стандартов записи занималось несколько фирм.

Не будем сейчас вникать в скучные и сухие подробности и конкретизировать отличия одного стандарта от другого.

Записываемые диски похожи, естественно, по строению на штампованные, но канавка содержит в себе один длинный выступ (со стороны лазера) по всей длине канавки, без впадин. Отличие еще в том, что пред нанесением светоотражающего покрытия на диск со стороны канавки наносится тонкий слой прозрачного лака.

При считывании информации луч отражается от светоотражающего слоя в тех местах, где лак не был выжжен. Где лак был выжжен, отражения луча не происходит.

Многократно записываемые диски

Существуют еще многократно перезаписываемые диски CD-RW, DVD-RW (RW – rewritable, перезаписываемые). В таких дисках на сторону, где расположена канавка вместо слоя прозрачного лака наносится тонкая пленка металлического сплава, который может изменять свое фазовое состояние под влиянием нагрева. Сплав может находиться в двух состояниях — в кристаллическом и в аморфном.

При этом коэффициенты отражения для разных состояний отличны. В исходном (незаписанном) состоянии пленка сплава находится в кристаллическом состоянии и обладает некоторым коэффициентом отражения. При записи луч лазера нагревает пленку сплава до температуры 500 — 700 градусов, сплав в этих местах плавится и переходит в аморфное состояние.

При этом коэффициент отражения сильно уменьшается, и это воспринимается схемой считывания как отсутствие сигнала. Стереть данные можно, если перевести пленку сплава вновь в кристаллическое состояние. Для этого ее нагревают тем же лучом лазера до температуры 200 градусов. Этого недостаточно для плавления, но достаточно для размягчения.

При последующем охлаждении происходит переход из аморфного в кристаллическое состояние. Стирание данных происходит во время перезаписи дисков. При этом луч лазера генерирует импульсы разной мощности, создавая области с кристаллической и аморфной структурой.


Цифровые данные на диск записаны в избыточном коде.

Это необходимо для коррекции ошибок, которые будут всегда, хотя бы из-за того, что поверхность диска царапаются. Поэтому с дисками надо обращаться осторожно и брать их только за внешние края. Отпечатки пальцев на информационной стороне могут привести к ошибкам считывания. Из-за этого диск будет считываться дольше, чем мог бы или «подтормаживать».

Если на диске много царапин, диск тоже будет долго считываться (если считается вообще). Скорость считывания дефектного диска может зависеть от конкретной модели привода (от микропрограммы, «зашитой» в нем).

Как вынуть диск из неисправного привода?

отверстие для извлечения CD из привода

В заключение упомянем об одной полезной мелочи. Иногда привод DVD отказывает «прямо на глазах», и диск остается в нем.

В таких случаях при нажатии на кнопку извлечения диска никаких действий не происходит. Достать диск можно, разобрав привод. Но это долго и хлопотно! Для таких экстренных случаев существует небольшое отверстие на передней панели привода.


Чтобы извлечь диск, надо вставить в это отверстие металлическую шпильку (можно распрямить скрепку) до упора и слегка нажать.

При этом подвижная часть привода слегка выедет. После этого можно вручную выдвинуть ее до обычного открытого состоянии и извлечь диск. А вы думали, что это дырка для вентиляции?

Читайте также: