Как рассчитать входной фильтр блока питания

Обновлено: 07.07.2024

1.5.3. Электрический расчет входного и выходного фильтра.

Природа и источники электрического шума.

Борьба с генерацией и излучением высокочастотного шума – один из загадочных “черных ящиков” в проектировании импульсных источников питания и конечного изделия.

Шум создается везде, где имеют место быстрые переходы в сигналах напряжения или тока. Много сигналов, особенно в импульсных преобразователях напряжения, являются периодическими, то есть, сигнал, который содержит импульсы с ВЧ фронтами, повторяется с предполагаемой частотой следования импульсов (pulse repetition frequency, PRF). Для импульсов прямоугольной формы значения этого периода определяет основную частоту самой волны. Преобразование Фурье волны прямоугольной формы создает множество гармоник этой основной частоты двойного значения времени переднего или заднего фронта импульсов. Это типично в мегагерцовом диапазоне, и гармоники могут достичь очень высоких частот.

В импульсных преобразователях напряжения с ШИМ ширина импульсов постоянно меняется в ответ на выходную нагрузку и входное напряжение. В результате получаем почти распределение энергии белого шума с отдельными пиками и уменьшением амплитуды с повышением частоты.

Кондуктивный шум (то есть, шумовые токи, которые выходят из корпуса прибора через линии питания ) может появляться в двух формах: синфазных помех (common-mode) и помех при дифференциальном включении (differential-mode). Синфазные помехи – это шум, который выходит из корпуса только по линиям электропитания, а не заземления. Помехи, при дифференциальном включении – это шум между линией и одним из выводов питания. Шумовые токи фактически вытекают через вывод заземления.

Типовые источники шума.

Существует несколько основных источников шума внутри импульсного преобразователя напряжения с ШИМ, что и создает большую часть излучаемого и кондуктивного шума.

Источники шума являются частью шумовых контуров, которые представляют собой соединение на печатной плате между потребителями ВЧ тока и источниками тока. Главным источником шума является входная схема питания, которая содержит ключ, первичную обмотку трансформатора и конденсатор входного фильтра. Конденсатор входного фильтра обеспечивает трапецеидальные сигналы тока, необходимые для преобразования напряжения, поскольку входная линия всегда хорошо фильтруется с полосой пропускания, какая намного ниже рабочей частоты преобразователя напряжения. Конденсатор входного фильтра и ключ должен размещаться близко возле трансформатора, чтобы минимизировать длину соединений. Кроме этого, поскольку электролитические конденсаторы имеют плохие ВЧ характеристики, параллельно им должен быть включенный керамический или пленочный резистор.

Чем хуже характеристики конденсатора входного фильтра, тем больше блок из силовой линии будет забирать энергию ВЧ тока, что приведет к возникновению кондуктивных синфазных электромагнитных помех.

Вторым основным источником шума является контур, который состоит из выходных диодов, конденсатора выходного фильтра и вторичных обмоток трансформатора. Между этими компонентами протекают трапецеидальной формы токи большой амплитуды. Конденсатор выходного фильтра и выпрямитель необходимо размещать как можно ближе к трансформатору; для минимализации излучаемого тока. Этот источник также создает синфазные кондуктивные помехи, главным образом, на выходных каскадах источника питания.

Фильтры кондуктивных электромагнитных помех.

Существует два типа входных силовых шин. Силовые шины постоянного тока – это однопроводные силовые соединения, второе плечо питания которых формирует заземление. Другим типом входного соединения является двух или трехпроводная система питания от сети переменного тока. Проектирование фильтра электромагнитных (далее ЭМ) помех для систем постоянного тока осуществляется в основном в виде простого LC-фильтра. Все помехи между одним силовым проводом и соединением через “землю” называются синфазными. Фильтр постоянного тока, значительно более сложный, поскольку учитывает паразитарные характеристики компонентов.

Проектирование фильтра синфазных помех.

Фильтр синфазных помех фильтрует шум, который создается между двумя линиями питания (H1 и H2). Схема такого фильтра приведена ниже на рис.1.5.11.

Рис. 1.5.11. Фильтр синфазных помех.

В фильтре синфазных помех обмотки катушки индуктивности находятся в фазе, но переменный ток, который протекает через эти обмотки – в противофазе. В итоге, для тех сигналов, которые совпадают или противоположны по фазе на двух линиях электропитания, синфазный поток внутри сердечника уравновешивается.

Проблема проектирования фильтра синфазных помех заключается в том, что при высоких частотах (когда собственно и нужная фильтрация) идеальные характеристики компонентов искажаются через паразитарные элементы. Основным паразитарным элементом является межвитковая емкость самого дросселя. Это небольшая емкость, которая существует между всеми обмотками, где разница напряжений (В/виток) между витками ведет себя подобно конденсатору. Этот конденсатор при высокой частоте действует как шунт вокруг обмотки и позволяет ВЧ переменному току протекать в обход обмоток. Частота, при которой это явление является проблемой, выше частоты авторезонанса обмотки.

Между индуктивностью самой обмотки и этой распределенной межвитковою емкостью формируется колебательный контур. Выше точки авто резонанса влияние емкости становится большим от влияния индуктивности, что снижает уровень затухания при высоких частотах.

Частотная характеристика фильтра изображена на рис. 1.5.12.

Рис. 1.5.12. Частотная характеристика фильтра.

Этот эффект можно уменьшить, использовав Cx большей емкости. Частота авторезонанса является той точкой, в которой проявляется возможность наибольшего затухания для фильтра. Таким образом, путем выбора метода намотки обмоток индуктивности, можно разместить эту точку поверх частоты, которая нужна для наилучшей фильтрации.

Чтобы начать процесс проектирования необходимо измерить спектр не фильтрованного кондуктивного шума или принять по отношению к нему некоторые предположения. Это необходимо для того, чтобы знать, каким должно быть затухание и на каких частотах.

Примем, что нам необходимо 24дБ затухания на частоте переключения преобразователя напряжения.

Определим частоту среза характеристики фильтра:

Выбор коэффициента затухания

Расчет начальных значений компонентов

Принимаем Сх=0,22мкФ400В. Данные конденсаторы размещены между линиями электропитания и должны выдерживать напряжение 250 В и скачки напряжения.

Поскольку суммарная емкость выбранных конденсаторов больше рассчитанной, то можно допустить, что фильтр будет обеспечивать минимум — 60 дБ затухания при частотах в диапазоне от 500 кГц до 10 Мгц.

Расчетная схема фильтра подходит как для входной, так и для выходной цепи:

сетевой помехоподавляющий фильтр для импульсного БП.

Скоко в нете и в журналах не искал так и не нашел статей на эту тему.
Интересует как зависит индуктивность катухи от тока? Как выбрать емкость кондеров и зависит ли чтонибудь от частоты преобразования?
Предполагается мотать катушку на колечке 2000нм на ток ампера 3-4.

Мотать дроссель на колечке 2000НМ не следует, так как постоянный ток (те самые 3-4А) это кольцо введет в насыщение, после чего дроссель будет больше сопротивлением, чем индуктивностью.
От частоты преобразования зависят и емкости кондеров, и индуктивность дросселя - чем частота выше, тем меньше д.б. номиналы для достижения тех же показателей фильтрации.
Для рассчета на пальцах можно, например, считать, что на частоте пульсаций емкостное сопротивление кондера д.б. в 10 раз меньше сопротивления нагрузки, а индуктивное сопротивление дросселя - в 10 раз больше. Для радиолюбительских целей вполне достаточно, я думаю.
Обе оценки задают минимальные значения для емкости и индуктивности.

JLCPCB, всего $2 за прототип печатной платы! Цвет - любой!

Я бы вообще не стал заморачиваться с рассчётом, и взял бы готовый фильтр от подходящего по мощности компьютерного БП. Они иногда бывают на отдельной платке, тогда и мудрить ничего не надо.

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Кстати, а какой именно фильтр нужен, помехоподавляющий (который на входе, защищает от помех питающую сеть), или сглаживающий (на выходе)?

Приглашаем всех желающих 25/11/2021 г. принять участие в вебинаре, посвященном антеннам Molex. Готовые к использованию антенны Molex являются компактными, высокопроизводительными и доступны в различных форм-факторах для всех стандартных антенных протоколов и частот. На вебинаре будет проведен обзор готовых решений и перспектив развития продуктовой линейки. Разработчики смогут получить рекомендации по выбору антенны, работе с документацией и поддержкой, заказу образцов.

Кстати, а какой именно фильтр нужен, . который на входе, . или сглаживающий (на выходе)?

Приглашаем 30 ноября всех желающих посетить вебинар о литиевых источниках тока Fanso (EVE). Вы узнаете об особенностях использования литиевых источников питания и о том, как на них влияют режим работы и условия эксплуатации. Мы расскажем, какие параметры важно учитывать при выборе литиевого ХИТ, рассмотрим «подводные камни», с которыми можно столкнуться при неправильном выборе, разберем, как правильно проводить тесты, чтобы убедиться в надежности конечного решения. Вы сможете задать вопросы представителям производителя, которые будут участвовать в вебинаре

Нет, не правы. на 3 А - это на входе. Да и на выходе тоже нужно будет.
От комповского не подойдет т.к. нет такого бп на 800 ват. Даж в моем компе то всего 450.
Готовые тоже некатят поскольку могут держать 2 А всего. (PLA10)

А формулы какие нибудь есть для рассчетов?
2 Yellow Tiger. А на чем можно мотать? и кстати если рассчитать так, чтобы индукция была = 0,5-0,75 инд. насыщения?
Это все нужно для полумоста с частотой преобр. 60-70 кГц.

При построении качественного блока питания важно правильно рассчитать фильтр подавления пульсаций на выходе диодного выпрямителя.

Промышленный высоконадежный блок питания общего назначения Промышленный высоконадежный блок питания общего назначения

Для самодельного простого лабораторного блока питания, можно особо не думать, и поставить на выходе выпрямителя электролитический конденсатор емкостью в 1000мкФ, выбрав лишь правильный номинал максимального напряжения , с запасом, по выходному напряжению вашего трансформатора.

Для большинства лабораторных БП 25 Вольт будет достаточно.

Простые схемы на микроконтроллерах, стандартной логике потребляют малый ток, и когда задача состоит в том чтобы помигать светодиодом, или запустить маломощный моторчик проблем не будет. В нашей схеме выше, при известных входных и выходных напряжениях не учитывается ток, потребляемый нагрузкой.

Ниже представлена относительно мощного промышленного блока питания для радиоаппаратуры:

Схема его почти ничем не отличается от показанной выше.

В сегодняшней статье я рассматриваю расчет сглаживающего фильтра в блоке питания, который можно будет использовать для питания сложных устройств таких как радиоприемники и радиостанции.

Допустим, мы имеем мощный трансформатор 220/24 В на номинальный ток 14 ампер и соответствующий этому , проходящему току диодный мост (сборку) , выбранный , с запасом. От такого блока питания можно запитать мощную нагрузку!

Правильность работы технически сложных устройств, потребителей энергии этого БП , будет сильно зависеть от качества фильтрации пульсаций переменного напряжения.

Уровень постоянного напряжения на выходе БП 12В (без пульсаций) БП нагружен на минимальную нагрузку. Уровень постоянного напряжения на выходе БП 12В (без пульсаций) БП нагружен на минимальную нагрузку.

Рассчитать номинал сглаживающего конденсатора очень просто, определившись с требуемым коэффициентом пульсаций. Выберем его равным 8%.

Определим, что нагрузка будет потреблять максимальный ток 12 Ампер, тогда емкость конденсатора фильтра для двуполупериодного выпрямителя определим по формуле:

С1= Iн / (6.28* Uн*F*Кп) - , где

Iн (номинальный ток нагрузки)

Uн (номинальное выходное напряжение БП)

F (частота промышленной сети в герцах) 50Гц

Кп (коэффициент пульсаций )

Подставляем значения в формулу, и получаем:

С1=19000 мкФ , т.е. потребуется параллельно подключить 4 конденсатора емкостью 4700 мкФ х 50В.

На что повлияет малая емкость конденсатора фильтра на практике?

Напряжение на выходе блока питания "просело" под большей нагрузкой, наблюдаются пульсации . Напряжение на выходе блока питания "просело" под большей нагрузкой, наблюдаются пульсации .

Напряжение "просело" потому, что примененный фильтр не рассчитывался под большой ток, хотя, трансформатор и диодный мост получить такую мощность позволяют.

При работе радиостанции в режиме приема, так как потребляемый в этом режиме ток очень мал, дефект проявляться не будет (см. первую осциллограмму).

Но в режиме передачи (см. вторую осциллограмму) , потребляемый ток радиостанцией резко возрастает, и следовательно подсаживается напряжение на выходе БП , что повлияет на максимальную выходную мощность передатчика.

В особо запущенных случаях, когда фильтр неисправен, радиостанция будет выключаться.

При использовании импульсного источника питания на его первичной стороне возникают кондуктивные помехи, которые проникают в питающую сеть и могут привести к сбоям другого оборудования, подключенного к этой же сети. Они могут наводиться на оборудование, которое получает питание от этой сети. Сетевые фильтры, подавляющие генерируемые радиопомехи, можно легко разработать с использованием пассивных компонентов, например сетевых дросселей с компенсацией токов утечки и конденсаторов X/Y. В статье описывается разработка однофазного сетевого фильтра.

Паразитные токи на входе импульсного источника питания

Паразитные токи создают падение напряжения радиопомех на компонентах электрической цепи. На рисунке 1 показано, как протекают эти токи в импульсном источнике питания.

Паразитные токи на входе импульсного источника питания

Рис. 1. Паразитные токи на входе импульсного источника питания

Активная составляющая высокочастотного тока iDM протекает через первичную цепь источника питания. Частота этого тока равна рабочей частоте импульсного регулятора, что приводит к появлению дифференциальной помехи. Из-за быстрых коммутационных процессов в полупроводниковых компонентах (как правило, в MOSFET), возникают высокочастотные колебания и паразитные эффекты. Дифференциальный ток протекает со стороны сети электропитания L через выпрямительный мост и по первичной обмотке изолирующего трансформатора, MOSFET и нейтральному проводнику возвращается в сеть. Ключ установлен на охлаждающий его радиатор, подключенный к защитному земляному проводнику РЕ.

Возникшая емкостная связь между радиатором и стоком ключа приводит к появлению синфазной помехи. Синфазный ток iCM возвращается по заземляющей линии РЕ на вход импульсного источника питания, где снова через паразитную емкость создает помехи в линии L и нейтральной линии N. Ток iCM протекает по обеим линиям сетевого питания и выпрямительный мост, где снова наводит помеху на заземляющую линию РЕ из-за паразитной связи с радиатором.

Расчетный спектр шума

Выпрямленное сетевое напряжение прикладывается к участку сток–исток. Пиковый уровень этого напряжения определяется следующим образом:

VP = 230 В • √2 = 325 В.

В рассматриваемом случае используется импульсный источник тока с частотой 100 кГц. На этой частоте синхросигналы следуют с интервалом 10 мкс, а их длительность составляет 2 мкс. Следовательно, коэффициент заполнения:


Исходя из того, что импульсы тока через выпрямительный мост имеют трапециевидную форму, можно приблизительно определить спектр ЭМС в отсутствие сетевого фильтра и без преобразования Фурье. Сначала установим первую угловую точку для спектральной плотности амплитуды.


Первая частота среза, ограничивающая спектральную плотность амплитуды, определяется следующим образом:

FCO1 = nCO1 • fCLK = 1,592 • 100 кГц = 159,2 кГц.

Таким образом, можно определить амплитуду первой гармоники:


Предположив, что емкость паразитной связи CP между импульсным источником питания и заземлением равна 20 пФ, можно установить величину синфазного тока первой гармоники ICM1:


Напряжение радиопомехи VCM измеряется с помощью эквивалента цепи (LISN) и приемника для измерения ЭМС. Поскольку входной импеданс измерительного приемника величиной 50 Ом включен параллельно выходному импедансу эквивалента цепи 50 Ом, суммарный импеданс Z соединения равен 25 Ом. Рассчитаем измеряемое напряжение радиопомехи VCM:

VCM = Z ∙ ICM1 = 25 Ом ∙ 2,6 мА = 0,065 В.

В единицах дБмкВ получаем:


Расчеты показывают, что возможно появление больших радиопомех. Для оценки их уровня можно воспользоваться, например, стандартом EN 55022. В диапазоне частот 0,15–0,5 МГц этот стандарт определяет допустимый квазипиковый уровень помех в пределах 66–56 дБмкВ. На рисунке 2 представлен результат измерения напряжения кондуктивной радиопомехи импульсного источника питания в отсутствие сетевого фильтра. Очевидно, что в данном случае без фильтра не обойтись.

Напряжение радиопомехи в импульсном источнике питания без сетевого фильтра

Рис. 2. Напряжение радиопомехи в импульсном источнике питания без сетевого фильтра

Проектирование сетевого фильтра

На рисунке 3 представлена схема простого однофазного сетевого фильтра. Компания Würth Elektronik выпускает разные модели сетевых дросселей, в т. ч. серии WE-CMB, для реализации сетевых фильтров. Как правило, дроссель состоит из кольцевого марганцево‑цинкового сердечника с двумя раздельными обмотками, намотанными в противоположных направлениях.

Однофазный сетевой фильтр

Рис. 3. Однофазный сетевой фильтр

На рисунке 4 показан внешний вид дросселя WE-CMB. В этом случае он работает как катушка фильтра, которая противодействует току, уменьшая его амплитуду. Необходимо выбрать синфазный дроссель с как можно меньшей собственной резонансной частотой (СРЧ) в диапазоне самых низких частот, т. к. в рассматриваемом случае используется источник питания с очень низкой частотой импульсов. Выбор минимально возможной СРЧ обеспечивает хорошее подавление сигнала в диапазоне нижних частот.

Внешний вид дросселя WE-CMB

Рис. 4. Внешний вид дросселя WE-CMB

На рисунке 5 представлена характеристика дросселя WE-CMB размером XS с индуктивностью 39 мГн в 50‑Ом системе.

Характеристики подавления помех в синфазном и дифференциальном режимах отличаются друг от друга (см. рис. 5). В синфазном режиме максимальная величина подавления сетевым дросселем WE-CMB достигается на частоте 150 кГц. Однако с дальнейшим увеличением частоты подавление ослабевает. Возникает необходимость в использовании конденсаторов X и Y, поскольку помеху следует подавлять до частоты 30 МГц. Конденсатор Х устанавливается до и после сетевого фильтра для блокирования дифференциальных помех со стороны сети и импульсного источника питания. Индуктивность рассеяния дросселя WE-CMB вкупе с конденсатором Х образует фильтр низкой частоты, который уменьшает дифференциальные помехи и последующие синфазные помехи.

Характеристика подавления помех дросселем WE-CMB XS

Рис. 5. Характеристика подавления помех дросселем WE-CMB XS

В рассматриваемом случае были выбраны два конденсатора Х емкостью по 330 нФ. Их собственная резонансная частота составляет около 2 МГц.

Из соображений безопасности резистор следует установить на стороне электрической сети параллельно конденсатору Х, который будет разряжаться после отсоединения источника питания от сети. Перед сетевым фильтром также устанавливается варистор, чтобы закоротить перенапряжение в переходном процессе. С этой задачей успешно справятся дисковые варисторы серии WE-VD от Würth Elektronik. Для защиты от перегрузок перед варистором устанавливается плавкий предохранитель. Защита срабатывает в случае короткого замыкания варистора. Конденсаторы Y применяются для последующего подавления синфазных помех. В сочетании с дросселем WE-CMB они определяют частоту среза f0 в соответствии с уравнением «Томсона»:


Чтобы уровень помех был ниже допустимого 66 дБмкВ (при 150 кГц), требуется обеспечить подавление величиной 40 дБ, что соответствует двум декадам в логарифмическом представлении. Для расчета емкости конденсатора Y используется преобразованное уравнение колебаний:


Поскольку требуются два конденсатора Y, расчетное значение делится пополам. Эти конденсаторы позволяют вернуть синфазную помеху от импульсного источника питания к заземлению. В зависимости от типа устройства допускается, чтобы ток утечки был в диапазоне 0,25–3,5 мА, а емкость не превышала 4,7 нФ. С учетом этих требований выбираются два конденсатора Y с номинальным значением емкости из ряда E12 и емкостью 2,2 нФ. На рисунке 6 представлен результат измерения схемы при использовании такого сетевого фильтра.

Напряжение радиопомехи при использовании сетевого фильтра

Рис. 6. Напряжение радиопомехи при использовании сетевого фильтра

Использование сетевого фильтра с расчетными параметрами позволяет успешно пройти испытания на подавление напряжения помехи. Разность между соответствующими предельными значениями помехи и результатами измерений квазипиковых и средних значений на частоте 150 кГц превышает 10 дБ. Эта величина значительно возрастает в остальной части отведенного диапазона.

Оптимизация сетевого фильтра

Чтобы в еще больше мере обеспечить подавление помехи в диапазоне нижних частот, можно заменить два конденсатора Х емкостью 330 нФ двумя конденсаторами Х емкостью 1,5 мкФ. На рисунке 7 представлены результаты измерения схемы с оптимизированным сетевым фильтром.

Напряжение радиопомехи в схеме с оптимизированным сетевым фильтром

Рис. 7. Напряжение радиопомехи в схеме с оптимизированным сетевым фильтром

В результате изменения емкости конденсаторов напряжение радиопомехи в диапазоне нижних частот уменьшилось приблизительно на 15 дБ, что увеличило отношение сигнала к шуму.

Использование сетевого фильтра без дросселя

Часто на начальных этапах проектирования возникает соблазн обойтись без синфазного дросселя, задействовав только конденсаторы Х и Y. Однако такой подход не соответствует принципу использования сетевого фильтра для нейтрализации тока помехи с помощью элемента фильтра с большим импедансом. На рисунке 8 представлены результаты измерения напряжения радиопомехи в схеме с тем же фильтром, но без синфазного дросселя.

Напряжение радиопомехи в схеме с сетевым фильтром без дросселя WE-CMB

Рис. 8. Напряжение радиопомехи в схеме с сетевым фильтром без дросселя WE-CMB

Как и ожидалось, в отсутствие сетевого дросселя WE-CMB радиопомехи в диапазоне нижних частот в значительной мере увеличиваются. На 200 кГц квазипиковое значение уровня помех составляет около 78 дБмкВ, а средняя величина – 60 дБмкВ. Результаты измерений квазипиковых и средних значений показывают, что уровень помех превышает допустимый до частоты 600 кГц. Таким образом, использование сетевого фильтра без дросселя недопустимо.

Дополнительный дифференциальный фильтр

Если дросселя WE-CMB и конденсаторов Х недостаточно для подавления дифференциальной помехи, используется дополнительный дифференциальный фильтр, состоящий из двух последовательно соединенных катушек. На рисунке 9 показана схема такого сетевого фильтра.

Сетевой фильтр с дросселем WE-CMB and WE-TI HV

Рис. 9. Сетевой фильтр с дросселем WE-CMB and WE-TI HV

Катушки серий WE-TI HV и WE-PD2 HV или WE-SD компании Würth Elektronik в полной мере пригодны для подавления в дифференциальном режиме. В случае ВЧ-помех рекомендуется использовать компоненты серии WE-UKW. Для расчета параметров этих катушек применяется уравнение «Томсона». Если необходимо, чтобы каждая катушка обеспечила подавление 40 дБ на декаду, частота среза должна составлять 1/10 от рабочей частоты. Для расчета катушки используются то же значение емкости конденсаторов Х:


Поскольку катушки для подавления дифференциального тока установлены последовательно, расчетная величина делится надвое. Ближайшее наибольшее значение индуктивности WE-TI HV равно 470 мкГн. При выборе катушки для подавления дифференциальных помех ее номинальный ток должен намного превышать номинальный ток импульсного источника питания.

Выводы

Итак, импульсному источнику питания недостаточно сетевого фильтра без синфазного дросселя. Одни только конденсаторы не способны полностью подавить излучение помех – перед сетевым фильтром необходимо установить дополнительные дроссели, которые помогают подавить дифференциальный шум. При использовании сетевого фильтра уровень всех помех становится ниже допустимого значения, что позволяет импульсному источнику питания успешно пройти испытания на электромагнитную совместимость.

2 комментариев
Сергей

Здравствуйте, как понять что в расчетах не фигурирует ток ? от него будут зависеть и ёмкости и индуктивности фильтра

Добрый день, Сергей. Вы были бы абсолютно правы, иди речь о сглаживающем фильтре, который устанавливается на выходе преобразователя. Однако в статье говорится о помехоподавляющем фильтре, для которого важна АЧХ, чтобы ослабить помехи в заданном диапазоне частот и удовлетворить требованиям стандартов ЭМС.
Сетевые фильтры действительно нормируются по максимальному току и напряжению, но не для выбора номинальных значений емкости и дросселя, а для того чтобы не превысить максимально допустимые значения токов и напряжений для них. Например, дроссель 4,7 мкГн может быть рассчитан и на ток 100 мА и на ток 100 А. Это будут разные по размеру дроссели, но их индуктивность будет одинакова

Читайте также: