Как сделать блок питания на 12 вольт своими руками из блока питания пк

Обновлено: 07.07.2024

Приветствую на канале. Сегодня я покажу как сделать компьютерный блок питания более стабильным. Не многие знают, что под нагрузкой у компьютерных блоков питания просаживается напряжение. Это происходит как на линии 5 вольт, так и на линии 12 вольт. Причина тому, общая обратная связь по обеим линиям.

Буду показывать на примере такого блока питания. На глаз ватт 300.

Важно. Включать блок в сеть, после каких либо изменений в схеме, рекомендую через лампочку 220 вольт 40-60 Ватт.

Включаем блок питания без нагрузки, к выходу подключаем провода мультиметра, и видим напряжение 12,48 вольт.

Да, чтобы блок запустился нужно контакт PS-ON, он же зеленый провод на разъёме, подключить к минусу.

При подключении лампочки накаливания 12 вольт и всего 5 ватт, напряжение просело до 11,98 вольт. Просадка составила 0,5 вольта.

С линией 5 вольт, та же история.

Напряжение просело на 0,2 вольта. Но это только при небольшой нагрузке. С мощной нагрузкой, все будет куда более существенно.

Если посмотреть на упрощённую схему выходной части компьютерного блока питания, то можно заметить, что обратная связь подключена как к 5-ти вольтовой линии, так и к 12-ти. На схеме это резисторы R1 и R2. Мой блок устроен на ШИМ контроллере TL494, поэтому вход обратной связи, это первая нога, у других микросхем, естественно будут другие ноги.

Что происходит при работе? Когда появляется нагрузка, например на линии 12 вольт, блок пытается стабилизировать, то есть приподнять напряжение, в месте с этим поднимает напряжение на 5-ти вольтовой линии. (Трансформатор ведь общий). Но к ней тоже подключена обратная связь, микросхема видит, что напряжение 5 вольт растет, понимая это, пытается его снизить. Тем самым затрагивая напряжение на 12-ти вольтовой линии. В итоге обратная связь по 5-ти вольтовой линии мешает корректно стабилизировать напряжение на 12-ти вольтовой линии. Все тоже самое происходит, если нагружать 5-ти вольтовую линию.

Что делать? Все просто, убираем резистор обратной связи. Нужны 12 вольт, значит убираем резистор с 5-ти вольт. Нужны 5 вольт убираем резистор с 12-ти вольт.

Резистор обратной связи R15 по линии 5 вольт, отпаян с одной стороны. Резистор обратной связи R15 по линии 5 вольт, отпаян с одной стороны.

При удалении резистора обратной связи напряжение немного подрастет, например на линии 12 вольт может подняться более 13 вольт, его можно подстроить подбором резистора обратной связи по 12 ти вольтам. На схеме это R2.

Напряжение на линии 12 вольт с удалённым резистором обратной связи по 5-ти вольтам. Напряжение на линии 12 вольт с удалённым резистором обратной связи по 5-ти вольтам.

Если нужен регулируемый блок питания, то вместо резистора обратной связи, устанавливаем переменный резистор. Чем меньше сопротивление, тем меньше напряжение и наоборот. Более 22 -23 вольт на 12-ти вольтовой линии, поднимать напряжение не рекомендую. И да, если поднимаете напряжение более 14-15 вольт не забудьте заменить выходные электролитические конденсаторы на напряжение 25-35 вольт. Рекомендую 35 вольт.

Установлено 6,76 вольт с помощью переменного резистора. Установлено 6,76 вольт с помощью переменного резистора.

Если произойдет обрыв переменного резистора, то на выходе напряжение взлетит на максимум. Это чревато выходом из строя нагрузки. Поэтому рекомендую поставить переменный резистор вместо R3. Зависимость будет обратная, чем ниже сопротивление тем выше напряжение и наоборот. Еще в таком случае рекомендую увеличить сопротивления, как R1 так и R3, так как суммарное низкое сопротивление приведет к повышенному току на делителе и он будет греться, что приведет к изменению сопротивления, а соответственно напряжения, ну и в итоге к вероятному сгоранию резисторов делителя.

Если сильно изменить напряжение, от номинальных, то супервизор может вырубит TL494. Что бы этого избежать нужно от 4 ноги TL494 отпаять диод, через который супервизор управляет выключением блока. В данном блоке, супервизор сделан на компараторе LM339N.

В итоге получаем адекватный с нормальной стабилизацией блок питания. Сейчас конечно, все больше блоков с DC-DC преобразователями. С ними такой проблемы нет. В них каждое напряжение стабилизируется независимо. Ну, а если нужен просто нормальный блок питания , то можно купить на всем известном сайте .

В видео ниже, можно наглядно посмотреть просадку напряжения, и какой эффект достигается при удалении резистора ОС.

На этом думаю всё. Не забываем подписываться, ставить лайки, писать комментарии. Ну, и по желанию поддержать канал.

Главной задачей блока питания является преобразование переменного тока и дальнейшее формирование требуемого напряжения, для нормальной работы всех комплектующих ПК.

Напряжение, требуемое для работы комплектующих:

Кроме этих заявленных величин существует и дополнительное величины:

Виды электрических схем блока питания компьютера

БП выполняет роль гальванической развязки между электрическим током из розетки и комплектующими потребляющие ток. Простой пример, если произошла утечка тока и человек дотронулся до корпуса системного блока его ударило бы током, но благодаря блоку питания этого не происходит. Часто используются источники питания (ИП) формата ATX.

Где 12 вольт, а где 5? Разбираемся с цветовой маркировкой

Как узнать, на каких проводах какие напряжения формируются? Где, к примеру, 12 вольт на блоке питания компьютера? Для этого не понадобится тестер, поскольку все провода, выходящие из компьютерного блока питания, имеют строго определенную общепринятую расцветку. Поэтому вместо тестера мы вооружаемся табличкой, приведенной ниже.

Расцветка и назначение проводов блока питания ATX

Цвет Назначение Примечание
черный GND провод общий минус
красный +5 В основная шина питания
желтый +12 В основная шина питания
синий -12 В основная шина питания (может отсутствовать)
оранжевый +3.3 В основная шина питания
белый -5 В основная шина питания
фиолетовый +5 VSB дежурное питание
серый Power good питание в норме
зеленый Power on команда запустить БП

Табличка особых пояснений не требует. С зеленым проводом (Power on) мы познакомились в предыдущем разделе – на него материнская плата подает сигнал низким уровнем (замыканием на общий) на включение БП. Синий провод в новых моделях БП может отсутствовать, поскольку производители материнских плат отказались от интерфейса RS-232C (COM-порт), требующего -12 В.

Фиолетовый провод (+5 VSB ) – это как раз дежурные +5 В, питающие дежурные узлы материнской платы. По серому проводу (Power good) блок питания сообщает, что все напряжения в норме и компьютер можно включать. Если какое-то из напряжений в процессе работы выходит за допустимые пределы или пропадает, то сигнал снимается. Причем это происходит до того, как успеют разрядиться накопительные конденсаторы БП, давая процессору время на принятие экстренных мер по аварийной остановке системы. Остальные провода – это провода питания материнской платы и периферийных устройств – дисководов, внешних видеокарт и т. д.

Для чего может понадобиться напряжение с блока питания компьютера

  • Многие мастера из БП ПК делают блок питания для шуруповерта и других электроинструментов.
  • Существует возможность переделать блок питания ПК под автомобильное зарядное для аккумуляторов.
  • Вы всегда можете зарядить любое устройство, выбрав нужное напряжение. Согласитесь, ведь часто бывает так, что оригинальные блоки выходят из строя в самый неподходящий момент.
  • Можно запитать диодную ленту или любой другой осветительный прибор, требующий небольшое напряжение.

12 вольт из блока питания от компьютера

Обзор схем источников питания

Главной частью структурной схемы ИП, формата ATX, является полумостовой преобразователь. Работа преобразователей этого типа заключается в использовании двухтактного режима.

Стабилизация выходных параметров ИП осуществляется применением широтно-импульсной модуляции (ШИМ-контроллер) управляющих сигналов.

В импульсных источниках питания часто используется микросхема ШИМ-контроллера TL494, которая обладает рядом положительных свойств:

  • приемлемые рабочие характеристики микросхемы. Это – малый пусковой ток, быстродействие;
  • наличие универсальных внутренних элементов защиты;
  • удобство использования.

Блоки питания

Разводка для разъемов блока питания стандарта ATX (ATX12V) с номиналами и цветовой маркировкой проводов:

Цветовая маркировка проводов и разъемы питания ATX

Таблица контактов 24-контактного разъема блока питания стандарта ATX (ATX12V) с номиналами и цветовой маркировкой проводов

Как взять 12 вольт с блока питания компьютера

Как вы уже поняли, взять напряжение с блока питания компьютера достаточно просто. Вам необходимо лишь подключить устройство к желтому проводу (плюс) и черному (минус). Только будьте внимательны и не перепутайте полярность, иначе ваше устройство, скорее всего, выйдет из строя.

Опять же повторюсь, не забывайте о том, что блок питание подаст напряжение на провода только тогда, когда он будет запущен. Если вы работаете с демонтированным БП ПК, который изъят из корпуса, то необходимо запустить устройство путем замыкания проводов GND (минус) и PWR SW.

Последовательность действий по переделке БП ATX в регулируемый лабораторный.

Удаляем перемычку J13 (можно кусачками)

Удаляем диод D29 (можно просто одну ногу поднять)

Включаем ПБ только на короткое время, так как напряжение на входа будет максимальное

Перемычка PS-ON на землю уже стоит.

Удаляем 3.3-х вольтовую часть: R32, Q5, R35, R34, IC2, C22, C21.

Удаляем 3.3-х вольтовую часть бп атх

 регулируемый бп из компьютерного - процесс переделки


Удаляем -12В -5В: D13-D16, D17, C20, R30, C19, R29.

Советую его заменить на более мощный, например 2Вт и сопротивление взять 360-560 Ом. Смотрим на мою плату и повторяем:

Убираем всё с ног TL494 1,2,3 для этого удаляем резисторы


Не знаю почему, но R38 у меня был перерублен кем-то 🙂 рекомендую Вам его тоже перерубить. Он участвует в обратной связи по напряжению и стоит параллельно R37-му.

Отделяем 15-ю и 16-ю ноги микросхемы на плате


Теперь подпаиваем шлейф от платы регулятора в точки согласно схемы, я использовал отверстия от выпаянных резисторов, но к 14-й и 15-й пришлось содрать лак и просверлить отверстия, на фото.

Жила шлейфа №7 (питание регулятора) можно взять от питания +17В ТЛ-ки, в районе перемычки, точнее от неё J10/ Просверлить отверстие в дорожку, расчистить лак и туда. Сверлить лучше со стороны печати.

Просверлить отверстие в дорожку, расчистить лак


Ещё посоветовал бы поменять конденсаторы высоковольтные на входе (С1, С2). У Вас они очень маленькой ёмкости и наверняка уже изрядно подсохли. Туда нормально станут 680uF x 200V. Теперь, собираем небольшую платку, на которой будут элементы регулировки. Вспомогательные файлы смотрите тут.

Как сделать регулируемый блок питания из компьютерного - схема

Схема дополнительного блока

12 вольт из блока питания от компьютера

12 вольт из блока питания от компьютера

Как переделать блок питания компьютера в зарядное устройство

Строго говоря, ремонт БП не является главным предметом рассмотрения нашей статьи, в конце концов, можно приобрести и рабочий вариант. Наша основная задача – получить на выходе 12 В. За это отвечает выходная схема, на которой имеются фильтры питания вкупе с выпрямителями:

Схема блока питания компьютера

Не нужно бояться выпаивать лишние элементы – чтобы запустить схему TL494, необходимы только 1 конденсатор и 4 резистора (плюс парочка переменных сопротивлений). Они на схеме имеются, если выпаяете что-то лишнее, всегда можно вернуть их на место.

Микросхема LM339 представляет собой четырёхкомпонентный компаратор, отвечающий за работу цепи защиты – его тоже можно выпаивать.

При переделке БП компьютера в зарядное устройство, совмещённое с лабораторным источником питания, можно воспользоваться схемой:

Схема блока питания ПК

Фактически для переделки блока питания компьютера в ЗУ нам потребуются шунт с номиналом 0.1–0.01 Ом и пара переменных резистора. Разумеется, если вы не в ладах с электроникой, за такую работу лучше не браться.

Уже этого достаточно, чтобы получить диапазон напряжений на выходе в пределах 3–25 В с возможностью ограничить ток заряда величиной 0.5–15 А. То есть для стандартной зарядки нам потребуется выставить напряжение в пределах 14.3–14.6 В, а ток ограничить величиной, составляющей 10% от ёмкости батареи. По существу, мы собрали стабилизатор напряжения, поэтому по мере заряда батареи будет падать ток, что защитит автомобильный аккумулятор от перезаряда и кипения электролита. То есть вам не нужно будет контролировать процесс, а АКБ может стоять на зарядке сколь угодно долго – по мере заряда ток будет падать вплоть до нулевого значения.

Недостаток нашей схемы состоит в отсутствии полноценной защиты от КЗ, поэтому при замыкании клемм батареи максимальный ток будет равен значению, выставленному нами. Но если вы выставите все 5.5 или 6 А, этого будет достаточно, чтобы из вашего блока питания вскоре пошёл сизый дымок… Так что переполюсовка – главный враг нашего ЗУ

Добавление в цепь 15-амперного предохранителя позволит уменьшить риски, но на практике такая защита чаше всего не срабатывает.

Возможные доработки

На достигнутом многие автолюбители не останавливаются и пытаются усовершенствовать конструкцию зарядного устройства, собранного на базе обычного блока питания для персональных компьютеров.

Если комп старый и не используется, а его блок питания вполне ещё работоспособный, его можно смело задействовать в собственных экспериментах, в попытках воссоздать зарядное устройство.

Среди усовершенствований можно выделить довольно простую, но полезную доработку. Заключается она в том, чтобы к полученному блоку подключить цифровой тип вольтметра. Преимущество такой модернизации в возможности следить и контролировать течение зарядного процесса. Тем самым удастся вовремя отключить и прекратить подачу заряда на аккумуляторную батарею.

Допускать перезаряд АКБ нельзя. Это может привести к серьёзным и опасным последствиям, включая полный выход из строя аккумуляторной батареи.

Ещё одна простая, но полезная доработка заключается в установке ручки на корпус блока. Тем самым будет намного удобнее переносить устройство.

Некоторые монтируют в корпус, вырезая отверстие соответствующего размера, цифровой измерительный прибор. На него будут выводиться все цифровые данные, сообщающие о работе блока питания, переделанного в зарядное устройство для аккумуляторных автомобильных батарей.

У зарядного устройства в приведённом примере есть функция защиты от возможной перегрузки и возникающего короткого замыкания. Но защиты от потенциально опасной переполюсовки не предусмотрено.

Потому подключать к ЗУ аккумулятор, нарушая полярность (минус на плюс, плюс на минус), нельзя ни в коем случае. Иначе зарядное устройство моментально выйдет из строя. И все потраченные силы, время и старания окажутся напрасными.

Наглядно видно, что даже старенький блок питания от персонального компьютера может стать превосходной основой для создания зарядного устройства, пригодного для обслуживания автомобильного аккумулятора.

Но без определённых навыков и умений добиться желаемого результата не получится. Здесь нужно разбираться в электронике и электрике, уметь обращаться с электрическими схемами, правильно их читать, находить требуемые компоненты и пр. Потому обычный новичок, который впервые знакомится с устройством ЗУ и БП, такую работу не осилит. Это может показаться простой и легко выполнимой задачей. На практике у многих ничего не получается, либо работоспособность зарядного устройства оказывается далёкой от ожидаемых результатов.

Потому порой самым правильным решением станет покупка современного, функционального и простого в применении заводского зарядного устройства от проверенного и хорошо себя зарекомендовавшего производителя.

Достать бывший в употреблении блок питания компьютера сегодня несложно, а стоит он сущие копейки. Но как его можно использовать без самого компьютера? В этой статье мы это выясним, а заодно сделаем своими руками зарядное устройство и лабораторный блок питания (ЛБП) из компьютерного блока питания.

Как включить блок питания (БП) от компьютера без компьютера

Итак, у нас в руках блок питания ATX компьютера. Прежде всего попробуем его включить. Но для этого нужно знать некоторые тонкости работы этого устройства. Предположим, перед нами компьютер. Включаем его в сеть, но внешне ничего не происходит. Это, казалось бы, понятно – машина отключена, а чтобы ее включить, нужно нажать кнопку питания на лицевой панели системного блока.

На самом деле это не совсем так. Как только мы вставили вилку в розетку, в блоке питания заработала небольшая часть схемы, вырабатывающая дежурное напряжение +5 В. Называется эта часть модулем дежурного питания. Напряжение поступает на материнскую плату и питает ее отдельные узлы, один из которых предназначен для включения компьютера.

Важно. В большинстве блоков питания ATX предусмотрен дополнительный служебный механический выключатель, расположенный на задней стенке ПК. Напряжение сети на БП этих моделей подается после включения этого тумблера.

механический выключатель

Нажимая кнопку на лицевой панели системного блока, мы тем самым подаем команду материнской плате (точнее, ее узлу включения) запустить блок питания. Узел подает на БП сигнал Power on , и БП, а значит, и сам компьютер включаются.

Перемычка

Где 12 вольт, а где 5? Разбираемся с цветовой маркировкой

Как узнать, на каких проводах какие напряжения формируются? Где, к примеру, 12 вольт на блоке питания компьютера? Для этого не понадобится тестер, поскольку все провода, выходящие из компьютерного блока питания, имеют строго определенную общепринятую расцветку. Поэтому вместо тестера мы вооружаемся табличкой, приведенной ниже.

Табличка особых пояснений не требует. С зеленым проводом ( Power on ) мы познакомились в предыдущем разделе – на него материнская плата подает сигнал низким уровнем (замыканием на общий) на включение БП. Синий провод в новых моделях БП может отсутствовать, поскольку производители материнских плат отказались от интерфейса RS-232C (COM-порт), требующего -12 В.

Фиолетовый провод ( +5 VSB ) – это как раз дежурные +5 В, питающие дежурные узлы материнской платы. По серому проводу ( Power good ) блок питания сообщает, что все напряжения в норме и компьютер можно включать. Если какое-то из напряжений в процессе работы выходит за допустимые пределы или пропадает, то сигнал снимается. Причем это происходит до того, как успеют разрядиться накопительные конденсаторы БП, давая процессору время на принятие экстренных мер по аварийной остановке системы. Остальные провода – это провода питания материнской платы и периферийных устройств – дисководов, внешних видеокарт и т. д.

Переделка БП ATX в регулируемый или лабораторный блок питания

А теперь самое время сделать из БП компьютера своими руками импульсный лабораторный блок питания. Дорабатывать будем блок питания, ШИМ контроллер которого собран на специализированной микросхеме TL494 (она же: μА494, μPC494, M5T494P, KIA494, UTC51494, AZ494AP, KA7500, IR3M02, AZ7500BP, КР1114ЕУ4, МВ3759 и подобные аналоги).

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники. Сразу оговоримся – хотя типовые схемы включения этих микросхем одинаковы, некоторые отличия в зависимости от модели БП все же есть. Поэтому универсального решения для переделки всех БП не существует.

Для примера мы доработаем блок питания, схема которого приведена ниже. Поняв идею вносимых изменений, подобрать алгоритм переделки любого другого блока не составит особого труда.

Разбираем БП, вынимаем плату. Сразу же отпаиваем все ненужные провода шлейфов питания, оставив один желтый, один черный и зеленый.

Лишние провода

Также выпаиваем сглаживающие электролитические конденсаторы по всем линиям питания. На схеме они обозначены как С30, С27, С29, С28, С35. Мы собираемся существенно (до 25 В по шине +12 В) поднять выходное напряжение, на которое эти конденсаторы не рассчитаны. На место того, что стоял по шине +12 В, устанавливаем конденсатор той же или большей емкости на напряжение не менее 35 В. Остальные места оставляем пустыми. Зеленый провод припаиваем на место, где был любой черный, чтобы разрешить блоку питания запускаться. Теперь можно заняться доработкой контроллера.

микросхема TL494

Изменим схему обвязки таким образом, чтобы усилитель ошибки 1 отвечал за регулировку выходного напряжения, а усилитель 2 – за регулировку тока. В первую очередь перережем дорожки, обозначенные на приведенной ниже схеме крестиками.

дорожки

Теперь находим резисторы R17 и R18. Первый имеет сопротивление 2.15 кОм, второй 27 кОм. Меняем их на номиналы 1.2 кОм и 47 кОм соответственно. Добавляем в схему два переменных резистора, один постоянный на 10 кОм (отмечены зеленым), клеммы для подключения внешнего потребителя, амперметр и вольтметр. В результате у нас получится вот такая схема.

схема ШИМ

Как видно из схемы, резистор на 22 кОм позволяет плавно регулировать напряжение в пределах 3-24 В, резистор 330 Ом – ток от 0 до 8 А. Кл1 и КЛ2 служат для подключения нагрузки. Вольтметр имеет предел измерения 25-30 В, амперметр – 10 А. Приборы могут быть как стрелочными, так и с цифровыми шкалами, главное, малогабаритными – ведь они должны войти в корпус блока питания. Можно начинать проверку и градуировку.

Приборы измерения

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники. Первое включение нашего лабораторного блока питания производим через лампу накаливания 220 В мощностью 60 Вт. Это поможет избежать проблем, если мы наделали ошибок в монтаже. Если лампа не светится или светится вполнакала, а блок питания запустился, то все в порядке. Если лампа горит в полный накал, а блок питания молчит, то придется искать ошибки.

блока питания, через лампу

Отключаем устройство и собираем его. Наш лабораторный блок питания готов. С его помощью мы можем получить любое напряжение от 3 до 24 вольт и устанавливать ограничение тока через нагрузку в пределах 0-10 А.

Как сделать зарядное устройство

Теперь займемся переделкой компьютерного блока питания в автомобильное зарядное устройство.

Прибор для зарядки постоянным напряжением

Это устройство заряжает аккумулятор постоянным фиксированным напряжением 14 В. По мере зарядки батареи зарядный ток будет падать. Как только напряжение на клеммах батареи достигнет 14 В, ток станет равным нулю, а зарядка прекратится.

Благодаря такому алгоритму аккумуляторную батарею невозможно перезарядить, даже если оставить ее на зарядке на неделю. Это полезно при обслуживании AGM и GEL автомобильных аккумуляторов, которые очень не любят перезарядки.

А теперь за дело, тем более, что схема доработки простая. Дорабатывать будем БП ATX на контроллере TL494 или его аналогах (см. раздел выше). Наша задача – повысить выходное напряжение по шине +12 В до 14 вольт. Сделать это несложно. Вскрываем блок питания, вынимаем плату и отпаиваем все провода питания, оставив лишь желтый, черный и зеленый.

провода

Впаиваем зеленый провод на место любого черного – подаем команду БП на безусловное включение при подключении к сети (см. раздел выше). Выпаиваем электролитические сглаживающие конденсаторы со всех линий питания. На место, где стоял конденсатор по шине +12 В устанавливаем конденсатор той же емкости, но на рабочее напряжение 35 В. Переходим к доработке контроллера. Находим резистор, который соединяет первый вывод микросхемы с шиной +12 В. На схеме ниже он обозначен стрелкой.

выходное напряжение

Нам нужно сменить его номинал. Но на какой? Выпаиваем, измеряем его сопротивление. В нашем случае его номинал – 27 кОм, но в зависимости от модели БП значение может меняться. На место выпаянного устанавливаем переменный резистор номиналом примерно вдвое большим. Движок резистора устанавливаем в среднее положение.

переменный резистор

Включаем блок питания и, измеряя напряжение на шине +12 В (желтый провод относительно черного), вращаем ползунок. Напряжение легко уменьшается, но увеличить его не получается – мешает защита от перенапряжения. Для того чтобы поднять напряжение до необходимых нам 14 В, ее нужно отключить. Находим на схеме резистор и диод, обозначенные на рисунке ниже стрелками, и выпаиваем их.

схема

Снова включаем БП, теперь уже переделанное в зарядку для аккумуляторов устройство. К клеммам подключаем нагрузку – лампу дальнего света автомобиля. Измеряем на клеммах напряжение: если оно не снизилось более чем на 0.2 В, то доработка окончена. Собираем прибор и пользуемся.

Важно! Конечным напряжением зарядки AGM и GEL аккумуляторов является значение 13.8 В, поэтому выходное напряжение имеет смысл снизить с 14 В до 13.8 В.

Единственный, пожалуй, недостаток этой самодельной конструкции – она не имеет защиты от короткого замыкания и переполюсовки (мы ее отключили). Поэтому пользоваться прибором нужно внимательно.

Зарядник с регулировкой тока и напряжения

Теперь попробуем переделать компьютерный БП так, чтобы можно было плавно регулировать напряжение и ток зарядки. Это позволит обслуживать батареи любой емкости и на любое напряжение. Кроме того, это зарядное устройство имеет защиту от короткого замыкания, перегрузки и перегрева. С его помощью можно изменять зарядное напряжение от 0 до 25 В и ток от 0 до 8 А.

В первую очередь производим манипуляции, которые подробно описаны в пункте «Прибор для зарядки постоянным напряжением». Выпаиваем лишние провода, оставив желтый, черный и зеленый. Меняем сглаживающий конденсатор на шине +12 В на прибор с напряжением 35 В. Подключаем зеленый провод на общую шину.

Теперь надо поднять напряжение на шине +12 В до величины 28 В. Для этого удаляем резисторы, соединяющие первый вывод ШИМ контроллера с шинами +5 и +12 В. На схеме ниже они обозначены стрелками.

Теперь ШИМ контроллер будет работать «на всю», а напряжение на шине +12 В поднимется до максимума – 28 В. Но опять сработает защита по перенапряжению. Отключаем ее так же, как и в конструкции выше: выпаиваем диод, помеченный на схеме ниже стрелкой.

узел защиты

Включаем блок питания и измеряем напряжение между желтым и черным проводами – оно должно увеличиться до указанных значений. С блоком питания все. Теперь перейдем к сборке узла регулировки напряжения и тока, представленного на схеме ниже.

узел регулировки напряжения

На транзисторах VT1 и VT2 собран простейший узел регулировки напряжения. Сама регулировка осуществляется при помощи потенциометра R14. В узле управления током используются микросхемы DA2 и DA4, представляющие собой интегральные регулируемые стабилизаторы напряжения/тока. Каждая из микросхем способна выдать ток до 5 А. Включив их параллельно, мы удвоили это значение. Регулировка тока производится потенциометром R17. Резисторы R7 и R8 – токовыравнивающие. Далее напряжение через амперметр PA1 подается на клеммы, к которым подключается заряжаемая батарея. Напряжение на батарее контролируется при помощи вольтметра PV1.

Мощный полевой транзистор, который можно взять из неисправного компьютерного БП, и микросхемы стабилизатора устанавливаются на общий радиатор через слюдяные прокладки. Очень удобно использовать для этих целей радиатор от процессора ПК. Ниже представлен один из возможных вариантов монтажа блока регулировок.

транзистор и стабилизаторы

Если все готово, то включаем зарядное устройство, нагружаем его лампой дальнего света и проверяем работу, регулируя выходные ток и напряжение и контролируя их по приборам.

Что касается защиты, то она уже встроена в микросхемы DA2 и DA4. Эти приборы имеют внутреннюю защиту от перегрузки, короткого замыкания и перегрева.

Вот мы и разобрались с тонкостями доработки компьютерных блоков питания. Теперь нам не составит труда переделать их в зарядное устройство для автомобильного аккумулятора или лабораторный блок питания.

При модернизации компьютеров блок питания в большинстве случаев подлежит замене – он уже не тянет новые нагрузки. В итоге вполне исправный источник питающего напряжения ПК остается не у дел. А у тех, кто занимается апгрейдом регулярно, скапливаются горы таких устройств без дальнейшей перспективы установки в компьютеры – мало кому сейчас нужен источник мощностью в 250-350 ватт.

Для таких БП можно найти другое применение – например, в качестве зарядного устройства для аккумуляторов. Переделка в большинстве случаев минимальна, и ее можно сделать своими руками.

Схема ЗУ

Как из старого блока питания компьютера сделать зарядное устройство

Если рассмотреть структурную схему импульсного блока питания стандарта ATX, то можно обнаружить, что это практически готовое зарядное устройство. Надо лишь удалить из нее все излишнее и добавить несложные цепи регулировки. В зарядном устройстве не понадобятся:

  • схема защиты и выключения;
  • выпрямители и фильтры всех напряжений, кроме канала+12 вольт.

Источник дежурного напряжения, в принципе, не нужен, но от него питается микросхема ШИМ, его надо оставить хотя бы частично. Заряжать аккумуляторы надо в режимах стабилизации напряжения или тока, поэтому придется добавить соответствующие цепи для установки необходимых уровней.

Блок питания стандарта AT содержит еще меньше избыточных цепей (в нем нет источника дежурного напряжения), но его найти сейчас не так просто.

Самостоятельное изготовление устройства

Самостоятельное изготовление зарядного устройства надо начать с поиска принципиальной схемы на имеющийся блок питания. В этом поможет интернет. Чем точнее будет совпадение реального устройства со схемой, тем лучше. Далее надо определить, какого типа ЗУ нужно (со стабилизацией напряжения или дополнительно со стабилизацией тока). После этого можно приступать к анализу работы схемы и планировать переделки.

Подготовка радиодеталей

Радиодеталей понадобится по минимуму:

  • два потенциометра для регулировки тока и напряжения (продаются в любом магазине или в интернете), а если режим стабилизации тока не планируется, хватит и одного;
  • несколько выводных (true hole) резисторов мощностью 0,25 Вт (возможно, найдутся среди удаляемых элементов);
  • две клеммы для присоединения проводов достаточного сечения (желательно, красного и черного цвета);
  • провода для соединений.

Еще понадобятся вольтметр и амперметр для индикации выходных параметров. Можно применить стрелочные, можно современные цифровые (но не стоит уповать на их высокую точность).

Как из старого блока питания компьютера сделать зарядное устройство

Простой зарядник для автомобильных аккумуляторов 12 вольт

Свинцовые автомобильные аккумуляторы заряжаются в режиме постоянного напряжения (ток при этом падает). Поэтому возникает мысль изготовить зарядное устройство для такой АКБ из компьютерного блока питания. Для исправной батареи емкостью 60 А*ч нормальный ток заряда составляет 3-6 ампера, для глубоко разряженной – до 10 А при стабильном напряжении около 14 вольт. Такой ток может обеспечить даже относительно маломощный БП от компьютера (от 250 Вт).

Как из старого блока питания компьютера сделать зарядное устройство

Табличка с характеристиками канала +12 вольт БП мощностью от 360 до 450 Вт.

При всем разнообразии схем исполнения БП стандарта ATX, широко распространены блоки питания на микросхемах – формирователях ШИМ TL494 (или аналогах). Пример переделки в зарядное устройство есть смысл рассмотреть для блоков, построенных на этом электронном компоненте.

Как из старого блока питания компьютера сделать зарядное устройство

В первую очередь надо удалить все лишние жгуты с разъемами. оставив один-два желтых провода (+12 вольт) и один-два черных (0 вольт).

Следующим шагом следует отключить цепи сигнала Power_ON, по которым материнская плата управляет БП. Для этого надо перерезать дорожку, идущую к выводам 13-14-15 микросхемы. После этого схема будет запускаться при подаче сетевого напряжения 220 вольт. Другой вариант – припаять перемычку между контактной площадкой зеленого провода и общей шиной.


Распиновка разъемов блока питания компьютера по цветам и напряжению

Если есть желание, можно полностью удалить часть схемы, обведенную голубой линией. Это немного повысит энергоэффективность зарядника за счет снижения расхода на питание участка схемы и несколько улучшит тепловой режим внутри корпуса БП. Также можно удалить элементы выпрямителей ненужных напряжений. При удалении можно ориентироваться на цвет проводов из таблицы.

Цвет проводаНапряжение, В
Черный0 В (земля, общий провод)
Красный+5
Оранжевый+3,3
Желтый+12
Белый-5
Синий-12
Зеленый+5 Power_ON
Серый+5 PG
Фиолетовый+5 Stand by (дежурное напряжение)
Коричневый+3,3 Sense

Второй этап переделки – создание возможности регулировки выходного напряжения. Для компьютера надо иметь на выходе 12 вольт, для зарядного устройства побольше – до 14,5 вольт минимум. А если регулировать выходной уровень вниз, можно будет заряжать и шестивольтовые аккумуляторы. Для этого надо удалить лишние резисторы, подключенные к выводу 1 микросхемы, и установить вместо них потенциометр на 100 кОм. После этого добавится возможность настраивать уровень выходного напряжения примерно от 6 до 16 вольт, чего хватит для большинства случаев, с которыми можно столкнуться на практике.

Самый «дорогостоящий» этап (с учетом того, что все предыдущие действия практически не требуют материальных затрат) – добавление амперметра и вольтметра. Удобно использовать цифровой блок измерения тока-напряжения.

Как из старого блока питания компьютера сделать зарядное устройство

Органы регулировки и измерения надо вывести на панель получившегося зарядника, и тут дизайн ограничен только собственной фантазией. Также надо найти место для размещения клемм для подключения заряжаемого аккумулятора.

Как из старого блока питания компьютера сделать зарядное устройство

Вариант оформления БП и размещения органов управления индикации и клеммников.

Важно! Схемы контроля уровня заряда данное устройство не имеет. Перед началом зарядки надо выставить напряжение около 14 вольт и проконтролировать зарядный ток. Если он велик (у глубоко разряженной АКБ), надо несколько уменьшить напряжение до получения тока в 6-7 ампер. По мере зарядки ток упадет, напряжение можно вновь повысить до 14-14,5 вольт. При падении зарядного тока до примерно 0,1..0,15 А, аккумулятор полностью зарядится и процедуру надо прекратить.

Зарядное устройство с регулировкой тока

Некоторые типы аккумуляторов требуют зарядки стабильным током. Такой зарядник тоже можно сделать из блока питания компьютера. Надо лишь ввести дополнительные цепи регулировки и измерения тока. В первую очередь надо оторвать средний вывод импульсного трансформатора от земли и в разрыв включить измерительный шунт – сопротивление, замеряя напряжение на котором, можно вычислить ток. Шунт можно взять от стрелочного амперметра. Лучше найти сопротивление в виде спирали – для него проще выделить место при тесном монтаже. Можно попробовать в качестве шунта использовать печатный проводник между средним выводом и общей шиной, но тут успех зависит от топологии разводки платы.

Как из старого блока питания компьютера сделать зарядное устройство

Дальше надо очистить от посторонних элементов ножки 15 и 16 микросхемы, и 16 вывод соединить с общим проводом. Верхний по схеме вывод шунта (средний вывод трансформатора) подключается к ноге 15 через резистор около 270 Ом (окончательный номинал подбирается при наладке). Для регулировки к тому же выводу 15 подключается цепь из резистора 10 кОм и потенциометра (от 1..2 до 20 кОм, какой будет под рукой). В итоге получится зарядное устройство с регулировкой напряжения и максимального тока, которое можно во многих случаях применять и в качестве лабораторного источника питания.

Тестирование переделки

До включения в сеть к зарядному устройству надо подключить нагрузку. На холостом ходу импульсный источник включать, а тем более тестировать, не рекомендуется. В качестве нагрузки удобно применять автомобильные лампы накаливания на напряжение 12 вольт и потребную мощность (для первоначальной проверки устройство можно нагрузить током 10..50% от номинала). Вместо лампочек можно применить магазин сопротивлений.

Дальше надо подготовить схему для включения источника в сеть. Для этого в разрыв одного сетевого провода надо включить лампу накаливания (подобно предохранителю). Если переделка БП прошла успешно, то при включении в сеть лампа гореть не будет или будет тускло светиться. Можно продолжать проверку дальше – лампа влияния не окажет. Если нить ярко светится, значит, в БП есть проблема, и ее надо найти и устранить. Лампа в этом случае ограничивает ток – автомат не выбьет.

Как из старого блока питания компьютера сделать зарядное устройство

Если первое включение прошло нормально, можно проверить пределы регулировки напряжения. Это можно сделать с помощью встроенного вольтметра, а еще лучше дополнительно проконтролировать напряжение мультиметром прямо на нагрузке. Если границы уровней регулирования не устраивают, можно подобрать сопротивление потенциометра до достижения нужного результата. Далее подключая больше или меньше лампочек к выходу в параллель, можно проверить границы регулировки тока. Их уточняют с помощью подбора резистора в цепи измерения (начальное значение – 270 Ом). Если все проходит штатно и результаты проверки устраивают пользователя, можно подключать аккумулятор и пробовать его заряжать.

Читайте также: