Как сделать блок питания на 5 вольт 2 ампера своими руками

Обновлено: 07.07.2024

5 вольт – одно из самых широко используемых напряжений. От этого напряжения питается большинство программируемых и непрограммируемых микроконтроллеров, всевозможных индикаторов и тестеров. Кроме того 5 вольт используется для зарядки всевозможных гаджетов: телефонов, планшетов, плееров и так далее. Я уверен, что каждый радиолюбитель может придумать множество применений этому напряжению. И в связи с этим я подготовил для вас три хороших на мой взгляд варианта блоков питания со стабилизированным выходным напряжением 5 вольт.

Первый вариант – самый простой.

Этот вариант отличается минимальным количеством используемых деталей, крайней простотой сборки и невероятной ‘живучестью’ – блок почти нереально убить. Итак перейдем к схеме.

Три хороших блока питания на 5 вольт, принципиальная схема первого варианта

Эта схема срисована с недорогой зарядки телефона, обладает стабилизацией выходного напряжения и способна выдавать ток до 0.5 А. На самом деле блок может выдавать и больше, но при повышении тока на выходе начинает срабатывать защита от перегрузки и выходное напряжение начинает уменьшаться. Защита от перегрузок и КЗ реализована на резисторе 10 ом в цепи эмиттера силового транзистора и маломощном транзисторе s9014. При повышении тока через первичную обмотку трансформатора на эмиттерном резисторе создается падение напряжения, достаточное для открытия s9014, который в свою очередь притягивает базу силового транзистора к минусу, тем самым закрывая его и уменьшая длительность импульсов через первичную обмотку. При изменении номинала данного резистора можно увеличить или уменьшить ток срабатывания защиты. Сильно увеличивать не стоит, так как это повлечет за собой повышение нагрева силового транзистора и увеличит вероятность выхода последнего из строя.

Стабилизация выполнена на распространенном оптроне pc817 и на стабилитроне 3.9 В (при изменении номинала которого можно менять выходное напряжение). При превышении выходного напряжения, светодиод оптрона начинает светиться ярче, вызывая повышение тока через транзистор оптрона на базу s9014 и, как следствие, закрытие силового ключа. При уменьшении выходного напряжения, наоборот, транзистор оптрона начнет закрываться и s9014 не будет обрывать импульсы на базе силового ключа, тем самым увеличивая их длительность и, соответственно, увеличение выходного напряжения.

По схеме тут больше добавить нечего, она довольно простая и не требует особых навыков для сборки. Все компоненты можно изменять в пределах 25%, блок прекрасно будет работать. Силовой транзистор можно ставить любой обратной проводимости, соответствующей мощности и с расчетным напряжением коллектора не менее 400 вольт. Базовый транзистор – любой маломощный NPN с такой же цоколёвкой, как и s9014.

Данный блок мощно применять там, где не нужен высокий ток, а нужна компактность, например для питания Arduino или для зарядки устройств с аккумуляторами небольшой ёмкости. Из плюсов данного бп можно отметить компактность, наличие защиты и стабилизации и, конечно, простоту сборки. Из минусов, пожалуй, только малая выходная мощность, которую кстати можно поднять, увеличивая ёмкость входного фильтрующего конденсатора.

Блок кстати выглядит так:

Три хороших блока питания на 5 вольт, внешний вид первого варианта
Три хороших блока питания на 5 вольт, внешний вид первого варианта

Три хороших блока питания на 5 вольт, внешний вид первого варианта

Второй вариант – более мощный.

Этот вариант очень похож на предыдущий, но мощнее. Блок имеет доработанную обратную связь и, следовательно, лучшую стабилизацию. Давайте взглянем на схему.

Три хороших блока питания на 5 вольт, принципиальная схема второго варианта

Схема представляет собой блок дежурного питания компьютерного бп. В отличие от предыдущей схемы в этой более мощный силовой транзистор, большая ёмкость входного фильтрующего конденсатора и, самое главное, трансформатор с большей габаритной мощностью. Всё это как раз и влияет на выходную мощность. Ещё в данной схеме, в отличие от первой, сделана нормальная стабилизация на TL431 – источнике опорного напряжения.

Принцип работы тут такой же, как и у предыдущего варианта. Через резистор 560 кОм на базу силового ключа подается начальное напряжение смещения, он приоткрывается и через первичную обмотку начинает течь ток. Нарастание тока в первичке вызывает нарастание тока во всех остальных обмотках, значит ток, возникающий в базовой обмотке, будет ещё сильнее открывать транзистор, и этот процесс продолжиться до тех пор, пока транзистор полностью не откроется. Когда он откроется, ток через первичку перестанет изменяться, а значит на вторичке перестанет течь и транзистор закроется и цикл будет повторяться.

Про работу защиты по току и стабилизации я подробно рассказал выше и не вижу смысла повторяться, так как тут всё работает точно так же.

Поскольку этот блок питания сделан на основе дежурки компьютерного блока, трансформатор я использовал готовый и не перематывал. Трансформатор EEL-19B. Расчетная габаритная мощность 15 – 20 Вт.

Как и в предыдущей схеме номиналы компонентов можно отклонять в пределах 25%, так как в разных компьютерных бп эта схема прекрасно работает с разными компонентами. Этот экземпляр, благодаря выходному току в 2 А можно использовать как зарядку для телефонов и планшетов или для прочих потребителей, требующих большой ток. Из плюсов данной конструкции можно отметить простоту добычи радиодеталей, ведь наверняка у каждого есть нерабочий блок питания от старого компа или телевизора, а там элементарной базы хватит на 3 – 4 таких бп. Так же плюсом можно считать немалый выходной ток и неплохую стабилизацию. Из минусов справедливо можно отметить размер платы (она довольно высокая из-за трансформатора) и возможность свиста при холостом ходу. Свист может появиться из-за неисправности какого-либо элемента, либо просто из-за слишком низкой частоты преобразования на холостом ходу. Под нагрузкой частота увеличивается.

Блок выглядит вот так:

Три хороших блока питания на 5 вольт, внешний вид второго варианта
Три хороших блока питания на 5 вольт, внешний вид второго варианта

Три хороших блока питания на 5 вольт, внешний вид второго варианта

Третий вариант – самый мощный.

Этот вариант для тех, кому нужна огромная мощность и прекрасная стабилизация. Если вам не жалко пожертвовать компактностью, этот блок специально для вас. Итак, смотрим схему.

Три хороших блока питания на 5 вольт, принципиальная схема третьего варианта

В отличие от предыдущих двух вариантов, в этом применяется специализированный ШИМ – контроллер UC3843, который, в отличие от транзисторов, как ни как умеет менять ширину импульсов и специально сделан для применения в однотактных блоках питания. Также у UCшки частота не меняется в зависимости от нагрузки и её можно четко рассчитать в специализированных калькуляторах.

Итак принцип работы. Начальное питание поступает через резистор 300 кОм на 7 ножку микросхемы, она запускается и начинает генерировать импульсы, которые выходят с 6 ножки и идут на полевик. Частота этих самых импульсов зависит от элементов Rt и Ct. С указанными компонентами частота на выходе 78,876 кГц. Вот кстати устройство микросхемы:

Три хороших блока питания на 5 вольт, UC3843 внутреннее строение

На этой микросхеме очень удобно реализовывать защиту по току, у неё для этого есть специальный вывод – current sense. При напряжении больше 1 вольта на этой ножке сработает защита и контроллер снизит длительность импульсов. Стабилизация здесь сделана при помощи встроенного усилителя ошибки current sense comparator. Поскольку на 2 выводе у нас 0 вольт, усилитель error amp. Всегда выдает логическую единицу и она идёт на вход усилителя current sense comparator, формируя тем самым опорное напряжение 1 вольт на его инвертирующем входе. При превышении напряжения на выходе блока питания, фототранзистор оптрона открывается и шунтирует 1 вывод микросхемы на минус. При этом снижается напряжение на инвертирующем входе current sense comparator, а так как на его не инвертирующем в момент открытия транзистора нарастает напряжение, то в какой то момент оно превысит напряжение на инвертирующем входе (при КЗ случается то же самое) и current sense comparator выдаст логическую единицу, что в свою очередь приведет к уменьшению длительности импульсов и, в конечном итоге, к снижению напряжения на выходе блока питания. Стабилизация в данном блоке питания очень хорошая, чтоб вы понимали, насколько она хорошая, при подключении резистора 1 Ом на выход, напряжение падает всего на 0.06 вольта, при этом на нём рассеивается 25 Вт тепла и он сгорает через пару секунд. Вообще этот блок может выдавать и 30 Вт и 35, так как в роле ключа здесь применён полевой транзистор. На схеме указан 4n60, но я поставил irf840, так как у меня их много. Микросхема может выдавать на управление полевиком ток до 1 А, что дает возможность без дополнительного драйвера управлять довольно мощными полевыми ключами.

Трансформатор для этого блока был взять от сгоревшей 100-ваттной энергосберегающей лампы. Первичка состоит из 120 витков проводом 0.3 мм, обмотка самозапитки – 20 витков тем же проводом и силовая выходная обмотка – 5 витков двумя проводами 1 мм. По выходу стоит полноценный фильтр помех, позволяющий применять этот бп там, где помехи никак не нужны.

Применять бп можно в очень мощных зарядниках для гаджетов. Он спокойно может заряжать 6 и даже 7 устройств одновременно, при этом обеспечивая стабильное 5 В на выходе.

Выглядит это всё примерно так:

Три хороших блока питания на 5 вольт, внешний вид второго варианта
Три хороших блока питания на 5 вольт, внешний вид второго варианта

А вот их относительные размеры:

Три хороших блока питания на 5 вольт, внешний вид второго варианта
Три хороших блока питания на 5 вольт, внешний вид второго варианта

Ну и на этом всё. Если остались какие-либо интересующие вас моменты, о которых я не сказал, задавайте их мне на почту Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.



меню
  • admin » Монитор из планшета
  • bench » Монитор из планшета
  • admin » Монитор из планшета
  • bench » Монитор из планшета
  • admin » Микроскоп 2
  • admin » Дробилка пластика
  • daomsk » Микроскоп 2
  • admin » RF модулятор
  • admin » Лабораторный БП 0-27V 0-10A
  • pipa_kulibaykin » Лабораторный БП 0-27V 0-10A


Обзавелся недавно я б/у планшетом для одной из моих задумок. Достался он без родного блока питания (5 вольт 2 ампера). Чтобы использовать планшет, решил собрать самостоятельно БП, тем более, что все необходимое было в наличии, т.к. в «закромах» имелось несколько сгоревших компьютерных блоков питания.

Никогда ранее не приходилось сталкиваться с импульсными блоками питания, так что я обратился на один из радиолюбительских форумов. Там пользователь Starichok51, привел свою схему импульсного блока питания. После сборки она не работала как нужно, тогда часть ее переделал Serj66610, и дело сдвинулось с мертвой точки. Пользователи Gaff и vertigo принимали активное участие в обсуждении и настройке. В результате совместной работы этих пользователей получился новый мощный (5v 2a) импульсный блок питания. Выражаю им свою глубокую благодарность.


В своей статье я хочу привести рабочую итоговую схему самодельного импульсного блока на 5 вольт 2 ампера, как она сейчас есть. В схеме, как и в печатной плате, учтены все переделки, изменения номиналов деталей. Печатную плату в формате *.lay6 можно скачать ЗДЕСЬ. Все номиналы на схеме указаны, которые у меня в БП. Печатной плата была разведена таким образом, чтобы плату блока питания можно было разместить в корпусе. Корпусом послужила часть от кейса для дискет.


Чтобы получить 5v 2a, нужно было перемотать трансформатор, с сердечником EE19 из компьютерного блока питания. Первичная обмотка содержит 130 витков проволоки диаметром 0.2мм, вторичная – 6 витков диаметром 1мм, обмотка обратной связи – 7 витков диаметром 0.2мм. Зазор между средними выступами элементов сердечника должен быть 0,4мм. Вначале наматывается первая половина первичной обмотки, вторичная обмотка, вторая половина первичной, и в конце - обмотка обратной связи. L1 содержит 10 витков витой пары, намотанных синфазно. L1 можно наматывать на ферритовом кольце любой марки, диаметром от 16 до 32 мм, в моем случае диаметр 18мм. L2 – 20 витков диаметром 0.5мм на кольце от материнской платы. У меня L2 был готовый 1мм на кольце диаметром 16мм. Информацию по трансформатору предоставил Starichok51, а по фильтрам - Serj66610.


Вместо C945 можно использовать SS9014, КТ3102; вместо C5027R – 13003-13005, С4242; вместо TL431 – AZ431; вместо 1N5822 – 1N5820, SR310; вместо КД522 – КД510, 1N4148; вместо FR107 – FR154, FR157. Конечно, можно использовать и другие детали, подходящие по характеристикам, но при любом изменении схемы самодельного импульсного блока питания, возможно, понадобится ее перенастраивать. Напоминаю, что детали в схеме рассчитаны на БП 5v 2a, некоторые с запасом.

Данная статья является выжимкой основных моментов 8ми страниц обсуждения форума. Еще раз спасибо всем, кто принимал участие в настройке моего первого импульсного блока питания.


Я человек ленивый и люблю комфорт, поэтому люблю всяческого рода автоматизацию. В машине у меня есть видеорегистратор, иногда использую навигатор, часто нужно зарядить телефон или планшет себе или семье/знакомым. Как результат указанных потребностей — вся машина окутана проводами и зарядками, при этом всегда надо думать, что выдернуть из тройника прикуривателя и не потеряла ли контакт в прикуривателе очередная зарядка. Конечно, потихоньку в машине образовался клубок проводов и зарядок, а это мало того, что не эстетично, так еще и может привлечь наркоманов.

В один прекрасный момент это всё достало и было принято решение сделать что-то универсальное.

Задача:
  • Выходное напряжение 5.1V
  • Ток не менее 3A (телефон, 0.6А, видеорегистратор — 0.3А, iPad — 2A)
  • Автоматическое включение БП при запуске двигателя
  • Ручное включение БП
  • Автоматическое отключение БП через 15-30 минут после выключения двигателя (с возможностью продлить это время). Чтобы можно было оставить регистратор в машине без необходимости каждый раз его выключать/включать.
  • Автоматическое отключение БП при сильном разряде аккумулятора
  • Ручное выключение БП
  • Свистелки и перделкиСветовая и звуковая сигнализация
  • Достаточное количество USB-разъемов (хотя бы 4 шт.) в легкодоступном месте но без извращения над салоном
  • Нормальный (как родной зарядкой) заряд устройств Samsung и Apple
  • Без занимания прикуривателя.
Решение:

Решение вполне очевидное. Микроконтроллер для автоматизации и какой-нибудь преобразователь напряжения, но у преобразователя должна быть возможность включения/выключения работы логическими уровнями.

С размещением в машине было немного сложнее, сначала хотел вставить USB в подстаканник, но потом откинул эту идею, т.к. не эстетично плюс стакан будет не поставить да и очередные мотки проводов не радовали. Потом я обратил внимание на подлокотник и ящичек находящий в нём. Это было то, что нужно! Сам ящичек вытаскивается — значит можно легко обслуживать, в самом подлокотнике много места — значит спокойно влезет электроника. USB разъемы легко врезать в боковину ящичка и не нужные провода зарядок можно не вытаскивая из разъемов прятать в ящик.

Помимо USB разъемов для зарядок, требовалось питание для видеорегистратора. Для этого был протянут провод от подлокотника до зеркала заднего вида, на зеркале был наклеен еще один USB-разъем и выведен разъем для видеорегистратора.

Если с размещением разъемов, всё было довольно понятно, то с электроникой возникли небольшие проблемы.

Сначала была LM2596.

Это не твой бро



Чуть ранее я заказал на eBay несколько платок регулируемых блоков питания, собранных на микросхеме LM2596. Мне нужно было сделать зарядку для iPad, чтобы заряжала большим током (как родная — 10W). Зарядку я сделал, всё прекрасно работало, зарядка выдавала что-то около 2.1A на 5.1V (при входном напряжении около 12-13V — аккумулятор ИБП), но был один минус — она жутко грелась! Вся плата грелась так, что расплавила пластиковую коробочку, в которой была и сама плата потемнела (несмотря на то, что туда был приколхожен радиатор). После замеров КПД выяснилось, что при большом токе КПД около 60%, что нам совершенно не подходило.
Дополнительным нехорошим моментом было то, что у таких китайских платок не выведена отдельно ножка управления и пришлось бы отпаивать одну ножку микросхемы от платы и подпаивать к ней проводки.



KIS-3R33S — чудо китайских «конверсионных» технологий.


Шерстя eBay, я часто встречал некие модули KIS-3R33S, в описании которых указывалось, что они выдают 3A. Стоимость модулей тоже внушала — при покупке 10 штук, каждый модуль обходится около 50-90 центов с бесплатной доставкой. Почитав Яндекс стало ясно, что это довольно хороший модуль на микросхеме MP2307, который можно переделать в регулируемый преобразователь, а из навесных элементов нужно только два конденсатора — на вход и на выход.
И что важно — даже при нагрузке 2A он совершенно не греется!
Все продающиеся модули — паянные. Откуда они их берут в таком количестве совершенно непонятно ;)

Вообщем за какие-то пять копеек кучка модулей была приобретена и работа закипела.

Подготовка БП.

  1. Вскрываем модуль
  2. Удаляем резистор и стабилитрон отмеченные красным. (некоторые удаляют конденсатор, отмеченный жёлтым — я не стал)
  3. Припаиваем (прямо внутри, чтобы потом корпус можно было закрыть) «выводный» резистор (0,125 ваттный) R между минусом и входом ADJ модуля. Резистор фиолетовый. Резистор номиналом от 9.1ком до 10 ком, в зависимости от резистора будет и разное напряжение (от 5.28V до 5.15V соответственно). Этот резистор включается последовательно с уже установленным резистором на 3.3ком (т.е. общее сопротивление резисторов будет 3.3+9.1=12.4) и параллельно резистору R1, за счёт чего их общее сопротивление падает и напряжение на выходе микросхемы растёт.
  4. Собираем модуль обратно
  5. На вход и выход модуля подпаиваем электролитические конденсаторы примерно указанных ёмкостей. Напряжение конденсаторов меньше брать нельзя, а больше можно.

В принципе, уже всё работает и может заряжать, если не нужна автоматика, то можно закончить читать :)

Микроконтроллер.

  • > 13.8V — машина заведена.
  • < 13.3V — машина заглушена.
  • < 11.8V — дальше аккумулятор лучше поберечь.
Схема управления.

Схема вроде простая. Резистор RV2, обычный подстроечный, чтобы легче было задать нужное напряжение на входе МК. Биппер LS1 обычный компьютерный, светодиод и кнопка тоже компьютерные. Вся схема питается от КРЕНки (78L05). Выход МК подключается к управлению модулями KIS-3R33S — высокий уровень включает, а низкий выключает модули.

Программа
  • Режим 1. Если напряжение выше или равно 13.8V и БП должен включится. Так же должен гореть светодиод и при включении должен пикнуть биппер.
  • Режим 2. Если напряжение упало до 13.3V значит двигатель заглушен, пикнем биппером три раза и начнём отсчет времени (по умолчанию — около 30 минут). Если во время этого режима нажать на кнопку, то к времени ожидания прибавится 1 час, еще одно нажатие — еще час и т.д. Светодиодом начинаем мигать.
  • Если напряжение упало до 11.8V или истекло время предыдущего режима, то пикнем долго и выключим БП. Светодиод погасим.
  • Когда БП выключен, то можно нажать на кнопку и БП включится на 30 мин (во второй режим).
  • При включенном БП и заведенном двигателе можно выключить БП нажав кнопку и удерживая её (около 3-х секунд) до короткого сигнала. БП выключится. Обратного его включить можно коротким нажатием на кнопку либо он включится сам, если двигатель заглушить и снова завестись.



Для программатора PonyProg фьюзы ставить так
«Правильные» зарядки.

USB используются двойные, при том у каждой пары у одного USB-выхода средние контакты закорочены (чтобы большинство устройств понимали, что они воткнуты не в USB, а в зарядку), а у второго поставлены резисторы подтяжки, чтобы Apple-устройства считали, что подключены к родной зарядке и заряжались быстро.

Способов масса. Как вариант:
Чтобы получить «родную» зарядку из неродной необходимо на data-контакты подать потенциалы в 2.00В и 2.70В
Простейший делитель на эти номиналы:

если таких номиналов нет, то можно рассчитать делители и по другим номиналам резисторов, калькулятор в помощь.

Для Samsung-устройств тоже существует "своя схема" зарядки, но даже с закороченными средними контактами, мой телефон SGS2 кушал 600mA, что считаю вполне достаточным для заряда.

Конструкция и размещение в машине.

Схематично всё выглядит так:


Плату я делал под имеющуюся коробочку, делал ЛУТом.





4 USB хорошо разместились в ящике, рядом был выведен светодиод и проделана дырочка (1мм), чтобы лучше слышать биппер.

И обратная сторона «медали». В алюминиевой коробочке находится плата управления и 2 преобразователя. Коробочка приклеивается скотчем к днищу ящика, который вставляется в подлокотник.


А в машине всё выглядит культурно (кнопку ещё нормально не приделал :).


На зеркале чуть хуже.

Питание брал от прикуривателя, размещенного в подлокотнике. Все подключения на разъемах, чтобы можно было всю систему легко вытащить и унести домой на апгрейд.

Сейчас понимаю, что можно было всё сделать красивее, взяв провода потоньше. Наверно весной переделаю.

Архив со схемой, исходник программы, прошивка, поделки платы можно скачать в ZIP.

ПС. Уже две недели собирался написать этот пост и только появившиеся аналогичная статья мотивировала начать :)

Как сделать блок питания своими руками, об этом пойдет речь в данной статье. Выходное стабилизированное напряжение блока – 5 вольт, номинальный ток нагрузки 2 ампера. Выход блока питания имеет защиту от короткого замыкания. Принципиальная схема устройства показана на рисунке 1.


Блок питания 5В, 2А, схема

В схеме применен унифицированный накальный трансформатор ТН-220-50. Данные на него можно посмотреть в таблице ниже.

ТН2-127/220-50, параметры

Данные трансформаторы имеют несколько модификаций. Поэтому подключение первичной обмотки у них отличается. Если трансформатор рассчитан только на напряжение 220 вольт, то это напряжение надо подключать к выводам 1 и 5 первичной обмотки, см. рисунок 2.

ТН2-127/220-50, схема включения

ТН2-127/220-50, ТН2-220-50, схема включения

Если в своем обозначении трансформатор имеет 127, то его схема показана на рисунке 3. В этом случае надо будет еще поставить перемычку между выводами 2 и 4 первичной обмотки. Выходное переменное напряжение величиной 6,3 вольта поступает на выпрямительный мост, состоящий из четырех диодов КД202В, можно применить и готовый мост на ток не менее четырех ампер. Например, из импортных, это RS401, KBL005. Шести амперные мосты – KBU6A, RS601, BR605, KBPC6005 и др. Постоянное напряжение на конденсаторе фильтра будет примерно равно 6,6×1,41= 8,8 вольт. Основой стабилизатора служит микросхема К157ХП2, в состав которой входит источник опорного напряжения с устройством управления временем включения и выключения, усилитель сигнала рассогласования, регулирующий элемент с токовой тепловой защитой. Имеет все то, что нам надо! Правда в состав микросхемы входят еще два транзистора для генератора стирания и тока подмагничивания магнитофонов (микросхема то магнитофонная), но мы их использовать не будем. В качестве регулирующего транзистора в схеме используется мощный составной транзистор КТ829А (схема Дарлингтона). В крайнем случае, можно применить менее мощный транзистор КТ972А или соответствующие импортные, какие ни будь TIP120, 121,122, имеющий ток коллектора пять ампер.

И так, как уже говорилось выше, схема имеет вывод включения/выключения — 9. Что бы включить стабилизатор надо на этот вывод подать напряжение не ниже двух вольт. В первый момент после подачи напряжения на вход стабилизатора, это напряжение формируется цепочкой R1 и С2. За время протекания тока заряда этого конденсатора успевает включиться сам стабилизатор и часть его выходного напряжения через резистор обратной связи так же подается на вывод 9. Это удерживающее напряжение для поддержания стабилизатора в рабочем состоянии. Вывод 8 микросхемы, это выход напряжения источника опорного напряжения. У данной микросхемы это напряжение равно 1,3 вольта. С8 – конденсатор фильтра и одновременно конденсатор задержки включения стабилизатора. Таким образом, если у вас не будет включаться стабилизатор, то надо будет увеличить емкость конденсатора С2. Т.е. увеличить время заряда этого конденсатора, что бы успел включиться стабилизатор.

Чтобы выключить стабилизатор, надо нажать на кнопку SA3 – Стоп. Она зашунтирует вывод 9 DA1 на общий провод, открывающее напряжение пропадет, стабилизатор закроется. Прекрасная микросхема, напряжение выключенного стабилизатора в моем случае равно всего 7,6 мВ. То же самое произойдет, т.е. стабилизатор выключится, когда в его выходной цепи произойдет короткое замыкание. Так же пропадет открывающее напряжение. Через резистор R1 напряжение на вывод 9 поступать не будет, так как уже заряженный конденсатор для постоянного тока имеет очень большое сопротивление. В таком состоянии схема может находиться сколько угодно долго. Для повторного запуска стабилизатора необходимо или снять напряжение питания и снова подать, или нажать на кнопку пуск. В этом случае открывающее напряжение на вывод 9 поступит через резистор R1.

Читайте также: