Как сделать фильтр для блока питания

Обновлено: 07.07.2024

Недавно для экспериментов понадобилось напряжение 220 В с развязкой от фазы. Порылся в «тумбочке» - готового решения нет. Есть железо от ТС-180. Можно намотать трансформатор 1:1. И уже было собрался делать, когда на глаза попались валяющиеся без дела источники бесперебойного питания Back-UPS CS-500 (модель BK500EI) (рис.1). А ведь в них стоят достаточно мощные трансформаторы в преобразователе – почему бы не попробовать на одном понизить напряжение, а другим опять повысить? Получится требуемая развязка…

Вторичных обмоток две (рис.3). Одна из них, сильноточная, имеет отвод от средины и намотана проводом диметром 1,6 мм (по изоляции). Это выводы красного, чёрного и белого цветов. Другая вторичная обмотка выполнена проводом диаметром по изоляции 0,5 мм. Её выводы коричневого и синего цвета.


При проверке тока холостого хода трансформаторов оказалось, что они немного разные. У одного ток около 55 мА, у другого – 42 мА. Выходные напряжения тоже отличались, примерно на 0,15-0,2 В.

Сначала была собрана схема по рисунку 4. При подаче на вход напряжения 225 В на выходе получалось напряжение 221 В. При подключении нагрузки (лампы накаливания 220 В/60 Вт) напряжение на выходе проседает до 212 В. При уменьшении нагрузки до 40 Вт поднимается до 215 В. Трансформаторы при длительной работе нагреваются примерно до 50-60 градусов. В общем, всё достаточно хорошо.

Затем решил проверить, как ведёт себя такой преобразователь в качестве фильтра гармоник сетевого напряжения и всевозможного мусора, присутствующего в нём. К входным и выходным цепям были подключены резисторные делители R1R2 и R3R4 (рис.5), сигнал с которых подавался в звуковую карту компьютера и обрабатывался программой SpectraPLUS.

Спектральная характеристика, снятая в полосе частот 10 Гц – 23 кГц, показана на рисунке 6. Здесь и далее по тексту верхний график (левый канал) – входное сетевое напряжение, нижний (правый канал) – выходное. «Палка», стоящая в обоих каналах на частоте 17,7 кГц – это внутренняя проблема компьютера, эта помеха присутствует всегда, меняется только её уровень. Большой уровень и количество гармоник сетевого напряжения обусловлен искажённой формой синусоиды – обрезаны макушки полуволн. Ну, а в целом видно, что особой разницы в АЧХ между входным и выходным сигналом нет. Это говорит о достаточной, в данном случае, даже избыточной, широкополосности трансформаторов в звуковом диапазоне. Более высокочастотные сигналы, наведенные на сетевые провода, наверняка так же проходят со входа на выход, но уже не за счёт трансформации, а через ёмкостную связь между первичной и вторичной обмотками. Ферритовые кольца на выводах первичных обмоток начинают эффективно работать, скорее всего, с частот 5-10 МГц.

Попробовал поставить параллельно низковольтным обмоткам плёночные полипропиленовые конденсаторы С1 и С2 ёмкостью по 150 нФ (рис.7) и оценить их влияние.

На нижнем графике рисунка 8 видны некоторые изменения на частотах выше 10 кГц. Но этого слишком мало для того, чтобы называться «фильтром». Может быть, высокие частоты он и «давит», но все низкочастотные пока пропускает.

Поставил в высоковольтные цепи стандартные компьютерный сетевые LC фильтры, а в низковольтные цепи - дроссели L2 и L3 (рис.9 (резисторы делителей в схеме здесь и далее не показаны, но они всегда стоят на входе и выходе схем)). На нижнем графике рисунка 10 стал заметен более крутой спад на частотах выше 1,5 кГц.

Но также заметно небольшое увеличение уровней гармоник на частотах с 650 Гц по 1550 Гц. Возможно, что это связано с протеканием сильных токов через дроссели L2 и L3, намотанных на ферритовых кольцах, взятых из компьютерных блоков питания (рис.11). Кольца имеют размер 27х14х11 и выкрашены в жёлтый цвет. Обмотка состоит из 20 витков эмалированного провода диаметром 1,5 мм.

Но в целом, характеристики схемы устраивали, она была собрана и благополучно выполнила свою задачу.

А недавно решил собрать такой же развязывающий фильтр, но с акцентом на фильтрацию, и запитать через него старенький проигрыватель компактдисков. Подумал, что раз уже ПКД совсем «дремучий», то фильтр помешать ему не сможет.

Схема подверглась небольшой переделке (рис.12). Оказалось, что весь «акцент на фильтрацию» заключался в том, что было достаточно убрать дроссели, намотанные на компьютерных ферритовых кольцах, а на их место поставить один стандартный Д-165У. Судя по справочнику [1], такой же дроссель, но без буквы «У», намотан на железе ШЛМ25х25, имеет индуктивность 1,2 мГн при токе подмагничивания 18 А. Сопротивление обмотки 0, 0212 Ом. Ёмкости конденсаторов С5 и С6 были набраны из большого количества всевозможных МБГ, К73-11, К73-16 и К77-1. Конденсатор С5 совместно с L2 выполняет функцию фильтрации помех, создаваемых блоком питания нагрузки. Полипропиленовые конденсаторы C4 и C7 серии PPN оставлены в схеме, т.к. имеют малую индуктивность и должны хорошо гасить высокочастотные помехи.

Надо сказать, что ёмкости конденсаторов С5 и С6 в 30-40 мкФ уже хватает для нормальной фильтрации, но у меня было несколько лишних низковольтных конденсаторов и место для них в корпусе, что позволило не экономить и получить на выходе АЧХ, показанную на рисунке 14. Разница при применением конденсаторов ёмкостью 30 мкФ небольшая – около 2-3 dB на участке частот от 500 Гц до 2 кГц (скриншот, к сожалению, не сохранился).

Все приведённые выше спектры были сняты с подключенной в качестве нагрузки лампой накаливания мощностью 60 Вт. Видно, что на частоте 550 Гц гармоника подавлена почти на 10 dB, на частотах с 1050 Гц до 5 кГц – примерно на 20 dB. Выше по частоте уровни гармоник в сети настолько малы, что их можно не принимать во внимание. Но это не означает, что фильтр там не работает.

Теперь про АЧХ при подключении к фильтру CD проигрывателя «Вега-122С». Судя по информации на задней стенке, потребляемая им мощность равна 15 Вт. Блок питания трансформаторный. Напряжение, выдаваемое фильтром при подключенном ПКД, получается около 214-216 вольт в зависимости от режима работы.

Так как эта проверка проводилась в другой день, сначала посмотрим состояния сети без подключенного фильтра и нагрузки (рис.15). Видны некоторые отличия в сравнении с рисунком 14.

Далее, на рисунке 16, показан график при включенном напрямую в сеть ПКД в режиме «Воспроизведение». При том, что сеть 220 В имеет низкое внутреннее сопротивление, всё равно заметно небольшое увеличение уровней гармоник в районе 2-3 кГц. Откуда они берутся, будет показано ниже.

На рисунке 17 показан скриншот при подключении ПКД через фильтр.

Видно, что уровни гармоник на графике сетевого напряжения приблизились к состоянию сети без подключенного ПКД (рис.15). Появление же в выходном напряжении чётных гармоник и повышение уровня нечётных связано с работой диодных выпрямителей в блоке питания ПКД и увеличением внутреннего сопротивления источника питания для ПКД. Те самые, появившиеся на рисунке 16 гармоники, связаны с моментами подзаряда электролитических конденсаторов во время открывания и закрывания диодов выпрямителя.

Несколько уменьшить некоторые гармоники на выходе фильтра можно изменением ёмкости конденсатора С9 (нумерация по рисунку 12), но, так как он подключен параллельно высоковольтной обмотке Tr2 и первичной обмотке трансформатора нагрузки, то образует совместно с ними контур и на некоторых гармониках может входить в резонанс. При превышении конденсатором С9 ёмкости 5-10 мкФ резонанс возможен даже на основной частоте 50 Гц, что, соответственно, вызовет сильное увеличение выходного напряжения. Поэтому при использовании С9 ёмкостью более 0,1-0,2 мкФ и смене нагрузки фильтра может понадобиться проверка выходного напряжения и корректировка в случае превышения нормы.

После включения блока питания в сеть и установления на конденсаторе С1 напряжения 20 В через датчик тока R1 проходят импульсы, форма которых показана на рисунке 19. Они возникают во время открывания диодов моста. Диоды начинают открываться и пропускать через себя ток только тогда, когда уровень полуволны, идущей с трансформатора Tr1, превысит на 1,5 В (примерно) уровень потенциала, присутствующего на конденсатора С1. Конденсатор начинает подзаряжаться и через R1 начинает течь ток. На рисунке это передний (левый), более пологий фронт импульса. Крутой же спад импульса тока (правый) обусловлен тем, что диоды закрылись (и никакой ток через R1 не течёт) после того, как уровень полуволны, прошедшей точку экстремума, стал менее напряжения, накопленного конденсатором С1 плюс 1,5 В (примерно). Далее по времени, до того момента как опять начнётся подзарядка, конденсатор отдаёт накопленную энергию в нагрузку. Упоминаемые 1,5 В – это напряжение падения на двух диодах, стоящих в противоположных плечах моста. В основном оно зависит от марки диодов и от протекающего через них тока. Потому и пишу «примерно».

Итак, на рисунке 19 видны импульсы амплитудой около 110 мВ. Это говорит о том, что через R1 протекает ток 1,1 А. По первому правилу Кирхгофа получается, что 200 мА приходится на резистор нагрузки Rнагр, а 900 мА – на подзарядку конденсатора.

На рисунке 20 показаны падения напряжения на R1 при Rнагр = 300 Ом. Здесь суммарный ток около 500 мА, т.е. на резистор нагрузки приходится 67 мА и на конденсатор 433 мА.

Приведённые примеры расчёта справедливы в случае, когда между диодным мостом и фильтрующим (накопительным) конденсатором присутствует какая либо цепь с сопротивлением именно 0,1 Ом (например, тонкие провода). Если же это сопротивление меньше, то ток подзарядки конденсатора, соответственно, становится больше. А это значит, что присутствующие мощные и достаточно короткие импульсы тока во всех цепях вплоть до конденсатора С1 включительно (во вторичной обмотке трансформатора, во всех проводах, подходящих к диодам, в самих диодах), имеют широкий спектр продуктов искажений, обновляющихся с периодичностью 100 Гц. Этими продуктами и отличается нижняя АЧХ от верхней на рисунка 17. Также часть мусора, присутствующего в сети 220 В, проходит со вторичной обмотки трансформатора напрямую на конденсатор С1 в те моменты, когда диоды открыты.

Приведу два спектра, сигналы для которых сняты с резистора нагрузки, т.е. вход звуковой карты просто подключен к выводам Rнагр (рис.18). Первый спектр, на рисунке 21 – блок питания собран один в один по схеме, без доработок. Все соединительные провода - из многожильного провода от компьютерных БП с диаметром по меди около 1 мм и длиной от 50 до 150 мм. Резистор нагрузки подключен к С1. Второй, на рисунке 22 – этот же блок питания, но выполненный с соблюдением некоторых правил, т.е. со снабберами и с дополнительными демпфирующими конденсаторами по входу и выходу диодного моста, проводники до моста и после него проходят через ферритовые кольца (4 кольца по 10 витков). Эти проводники имеют максимально возможный диаметр (около 2,5 мм) и минимальную длину. Вместо одного конденсатора С1 «ROE Elko rauh IIA DIN 41250» ёмкостью 68000 мкФ 25 В стоит 10 штук дешёвых китайских «Jamicon» по 6800 мкФ 25 В (соединённых в параллель медными шинами 200х8х0,5 мм) и каждый зашунтирован плёночным К73-11а 1 мкФ и слюдяным КСО 10 нФ с максимально короткими выводами. Резистор нагрузки 100 Ом подключен в самом конце батареи конденсаторов. Датчик тока R1 присутствует в обеих схемах, диодный мост – PBL 405. И, похоже, что он попался с неодинаковыми диодами - судя по рисунку 19, при больших токах одна полуволна получатся меньшей амплитуды. Наверное, при его замене на «быстрые» или «ультрабыстрые» одиночные диоды можно было бы получить лучшие показания. Но всё равно результат во втором варианте, как говорится, виден невооружённым глазом – даже пятидесяти- и стогерцовые пульсации уменьшились. Повышенный общий уровень графика на рисунке 21 говорит о том, что в первом варианте исполнения присутствовал широкополосный шум, скорее всего, связанный с конденсатором «ROE». Он хоть и имеет ESR менее 0,05 Ом и ёмкость более 50000 мкФ (больше прибор не измеряет), но всё же он очень старый и редко использовался.

Внимание! Во время конструирования сетевого фильтра, а, тем более при экспериментах с ним, следует соблюдать осторожность и правила техники безопасности при работе с высокими напряжениями!

Литература:
1. Сидоров И.Н., Мукосеев В.В., Христинин А.А. «Малогабаритные трансформаторы и дроссели», Справочник, Москва, «Радио и связь», 1985г.


Всем Привет.
На днях меня попросил наш одноклубник изобрести какой-нибудь фильтр от помех для своей магнитолы.
С его слов, в динамиках прослушивались какие-то наводки, то ли от генератора, то ли ещё от чего-то.

Ну я долго не думая, решил сделать то что пришло на ум первым.
А именно самый распространённый фильтр CLC. (может кому тоже пригодится)
Он состоит из катушки (или двух катушек) индуктивности и на входе и выходе конденсаторы.

Вот что у меня получилось.


Ну а теперь поподробней для тех кому это интересно.

Сами катушки лучше всего сделать на ферритовых кольцах, можно на одном, но лучше на двух.
Для этого хорошо подойдут ферритовые кольца с магнитной проницаемостью не менее 2000МН, они как раз у меня были на работе.


Далее я взял провод и намотал его на кольцо. На каждое кольцо ушло примерно около 1 метра провода.


Так же и второе кольцо. Т.к. из-за электролитических конденсаторов наш фильтр будет полярным, для удобств сделаем разными цветами. А именно красным будет у нас (плюс).
Дабы одноклубник не перепутал полярность . ;))


Далее я взял два электролитических конденсатора, желательно большой ёмкостью.
Я посчитал что 4700мкф будет в самый раз.
Ну и за одно эти электролиты шунтируем кондесаторами малой ёмкости. Для избавления от ВЧ помех.
Для этого подойдут 0,1мкф . Для удобства взял SMD.


Припаиваем SMD кондесаторы (0,1мкф) параллельно выводам наших электролитов.


Вот все детали из которых будет выполнен LCL фильтр.


Его можно сделать как в корпусе, так и на печатной плате.
Но когда я спросил своего "заказчика", то он мне ответил — ему всё равно.
И тогда я решил всё сделать навесным монтажом и далее всё обернуть в клеевую термоусадку.



И всё это запихиваем в клеевую термоусадочную трубку.


Всё получилось как-то так.



Если кому не совсем понятно как соединены элементы, то вот схема.
вроде аккуратно нарисовал ;)


Надеюсь нашему одноклубнику он помог. Буду ждать от него комментарий ;))

Комментарии 18


Здравствуйте, подскажите сделал фильтр как у вас, помех стало намного меньше и тише, но все таки бывает запищит.Помехи именно по питанию так как слышно как растет тон свиста с увеличением оборотов двигателя.Но я фильтр поставил на провод постоянного питания, а не тот что от замка зажигания.Как думаете есть ли смысл переставить его на провод от замка зажигания? И ещё к проводу массы магнилоты подцеплены ещё провода массы кнопок на руле, может они как то могут влиять на помехи?


Попробуйте поэкспериментировать, может и поможет. По идее всё равно куда подключать, питание в автомобиле едино от аккумулятора с поддержкой генератора.
Вы для начала выясните откуда помехи идут,
Может у вас какой нибудь Китайский ксенон фонит своими блоками розжига?


Нет, ксенона нету и ничего такого нестандартного тоже


Попробуйте поэкспериментировать, может и поможет. По идее всё равно куда подключать, питание в автомобиле едино от аккумулятора с поддержкой генератора.
Вы для начала выясните откуда помехи идут,
Может у вас какой нибудь Китайский ксенон фонит своими блоками розжига?

Заметил что пока машина не прогрелась помогает от помех выключение вентилятора печки 😆как прогреется не помогает и это


Скажите пожалуйста, это получше будет всяких готовых вариантов на рынке, как тоже вымпел 301, а то про последний люди пишут что устраняет далеко не полностью помехи…


Добрый день, хорошее качество исполнения, просто и компактно. Подскажите, если поставить на "+" питания магнитолы, который идет напрямую от АКБ, данный фильтр в режиме простоя автомобиля не сильно будет садить аккумулятор?


А с чего он должен что-то потреблять?
Он по сути состоит из конденсатора.
А конденсатор это диэлектрик с возможностью накапливать энергию.


Я чайник в электронике, вижу замкнутую цепь, есть + и — которые замыкает конденсатор, вот и спросил, так то на оспаривание Вашей схемы не претендую, интересуюсь, хочу смастерить подобный фильтр


Конденсатор в переменном напряжении является неким сопротивлением,
А в постоянном напряжении это обычный диэлектрик.

На сегодняшний день практически в каждом доме есть предмет, который большинство из нас называет просто удлинителем. Хотя его корректное название звучит, как сетевой фильтр. Этот предмет позволяет нам подключить в розетку электропитания различного рода технику, которую по каким-то причинам мы не можем переместить ближе к источнику электричества, а родного кабеля устройства просто не хватает по длине. В этой статье попытаемся разобраться, как сделать простой сетевой фильтр своими руками.



Устройство

Если говорить об устройстве такой вещи, как сетевой фильтр, то следует сказать, что он может относиться к одной из 2 категорий:

  • стационарно-многоканальной;
  • встроенной.

В целом схема обычного сетевого фильтра, рассчитанного на напряжение в 220 В, будет стандартной и в зависимости от типа устройства может лишь чуть-чуть отличаться.



Если говорить о встроенных моделях, то их особенностью является то, что контактные платы таких фильтров будут часть внутреннего устройства электронного оборудования.

Такие платы имеет и другая техника, что относится к категории сложных. Такие платы обычно состоят из следующих компонентов:

  • конденсаторы добавочного типа;
  • индукционные катушки;
  • дроссель тороидального типа;
  • варистор;
  • предохранитель термического типа;
  • VHF-конденсатор.

Варистором является резистор, что имеет переменное сопротивление. Если нормативный порог напряжения в 280 вольт превышается, то его сопротивление снижается. Причем оно может снизиться не в один десяток раз. Варистор по своей сути представляет предохранитель от импульсного перенапряжения. А стационарные модели обычно отличаются тем, что имеют несколько розеток. Благодаря этому появляется возможность подключить через сетевой фильтр к электрической сети несколько моделей электрической техники.

Кроме того, все сетевые фильтры оснащены LC-фильтрами. Такие решения применяются для аудиотехники. То есть такой фильтр – помехоподавляющий, что для аудио и работы с ним будет крайне важно. Также сетевые фильтры иногда оснащаются термическими предохранителями, что позволяют предотвратить появление скачков напряжения. Иногда в ряде моделей используются одноразовые предохранители плавкого типа.

Как сделать?

Чтобы сделать максимально простой сетевой фильтр, потребуется иметь самую обычную переноску на несколько розеток со шнуром сетевого типа. Изделие делается очень просто. Для этого потребуется раскрыть корпус удлинителя, после чего осуществить припаивание сопротивления необходимого номинала в зависимости от модели удлинителя и катушки индуктивности. После этого обе ветки должны быть соединены при помощи конденсатора и сопротивления. А между розетками должен быть установлен специальный конденсатор – сетевой. Данный элемент, кстати, не является обязательным.

Его устанавливают в корпус устройства лишь тогда, когда в нем присутствует для этого достаточно пространства.

Также можно сделать модель сетевого фильтра с дросселем из пары обмоток. Такой прибор будет применяться для аппаратуры, что имеет высокую чувствительность. Например, для аудиотехники, что довольно сильно реагирует даже на малейшие помехи в электрической сети. В результате динамики выдают звук с искажениями, а также посторонними фоновыми шумами. А сетевой фильтр такого типа дает возможность решить данную проблему. Сборку устройства лучше будет делать в удобном корпусе на плате печатного типа. Она выполняется так:

  • для наматывания дросселя следует применять кольцо из феррита марки НМ, проницаемость которого находится в диапазоне 400-3000;
  • теперь его сердечник следует заизолировать при помощи ткани, после чего покрыть лаком;
  • для обмотки следует применить ПЭВ-кабель, диаметр которого будет зависеть от нагрузочной мощности, для начала подойдет вариант кабеля в диапазоне 0,25 – 0,35 миллиметров;
  • обмотку следует осуществлять одновременно 2 кабелями в разных направлениях, каждая катушка будет состоять из 12 витков;
  • при создании такого фильтра следует применять емкости, рабочее напряжение которых составляет где-то 400 Вольт.




Тут следует добавить, что дроссельные обмотки включены последовательно, что приводит к взаимопоглощению полей магнитного типа.

Когда ВЧ ток проходит через дроссель, то увеличивается его сопротивление, а благодаря конденсаторам осуществляется поглощение и закорачивание нежелательных импульсов. Теперь остается печатную плату установить в корпус, выполненный из металла. В случае если вы решили использовать корпус, выполненный из пластика, в него потребуется вставить металлические пластины, что даст возможность избежать возникновения лишних помех.

Также можно сделать специальный сетевой фильтр для питания радиоаппаратуры. Такие модели нужны для техники, что имеет импульсные блоки питания, которые являются крайне чувствительным к возникновению различного рода явлений в электросети. Например, такая аппаратура может пострадать, если в электросеть 0,4 кВ попадает молния. В данном случае схема будет практически стандартной, просто уровень подавления сетевых помех будет выше. Тут силовые линии будут должны быть выполнены из медного провода с изоляцией из поливинилхлорида сечением 1 квадратный миллиметр.

В данном случае можно применять обычные МЛТ-резисторы. Здесь также должны быть применены специальные конденсаторы.

Один должен быть рассчитан на напряжение постоянного типа емкостью 3 киловольта и иметь емкость около 0,01 мкФ, а второй с такой же емкостью, но рассчитанный на напряжение 250 В переменного тока. Также здесь будет присутствовать 2-обмоточный дроссель, что должен быть сделан на ферритовом сердечнике с проницаемостью 600 и диаметром 8 миллиметров и длиной около 7 сантиметров. Каждая обмотка должен иметь 12 витков, а остальные дроссели должны быть сделаны на броневых сердечниках, каждый из которых будет иметь по 30 витков кабеля. В качестве разрядника можно применить варистор на напряжение 910 В.




Меры предосторожности

Если говорить о мерах предосторожности, то для начала следует вспомнить о том, что самодельный сетевой фильтр, который вам хочется собрать из доступных деталей – это довольно-таки сложный технический прибор. И без знаний в области электроники, причем довольно обширных, правильно сделать его попросту невозможно. Кроме того, все работы по созданию или доработке уже существующего устройства должны вестись исключительно с соблюдением всех мер безопасности. Иначе высок риск поражения электрическим током, что может быть не только опасно, но и смертельно.

Тут следует помнить, что конденсаторы, применяющиеся для создания сетевых фильтров, рассчитаны на довольно высокое напряжение.

Это позволяет им производить накопление остаточного заряда. По этой причине получить удар током человек может даже после того, как устройство было полностью отключено от электрической сети. Поэтому при работе обязательно должно присутствовать параллельно включенное сопротивление. Еще одним важным моментом будет то, что перед работой с паяльником следует удостовериться в том, что все элементы сетевого фильтра находятся в исправном состоянии. Для этого следует использовать тестер, которым необходимо замерить основные характеристики и сравнить их с теми значениями, которые заявлены.

Последний важный момент, о котором не будет лишним сказать, состоит в том, что не следует допускать пересечения кабелей, особенно в местах, где потенциальный нагрев может быть очень большим. Например, речь идет об оголенных контактах, а также резисторах сетевого фильтра. Да и не будет лишним убедиться перед тем, как включать устройство в сеть, что не будет никаких замыканий. Это можно осуществить при помощи прозвонки тестером. Как можно убедиться, сделать сетевой фильтр своими руками возможно. Но для этого следует четко знать, какие действия вы осуществляете и иметь определенные знания в области электроники.

Как встроить сетевой фильтр в обычную переноску смотрите далее.

Фильтр для автомагнитолы сделать самому

Хотя мы уже живём в XXI веке, в то время когда наши космические корабли бороздят просторы вселенной, в нашем родном социуме до сих пор существует некая каста автовладельцев, в автомобилях которых отсутствует фильтр для питания автомагнитолы. Их не смущает ни низкое качество звука издаваемого из динамиков их акустической системы, ни хрипы, ни гудения и не гул двигателя.
Конечно же, все эти проблемы легко решаемы заменой старой автомагнитолы на более современную цифровую и многофункциональную имеющую процессорное управление, но, к сожалению, иногда и этот проверенный способ не помогает. Поэтому в данной статье вашему вниманию представлена инструкция о том, как своими руками выявить и устранить лишние шумы автомобильной акустики.

Причины шумов и способы их устранения

Так как цена вопроса с заменой автомагнитолы на новую нас не устраивает, то я предлагаю найти причину посторонних шумов своими руками, старым проверенным способом – методом исключения. И что бы увеличить шансы на скорейшее выявление и устранение виновника помех советую начинать от большего к меньшему, а именно от головного устройства к периферии.

Магнитола

Достаём автомагнитолу из посадочного места (кстати, фон может пропасть уже при демонтаже головного устройства) и затем:

  • Попробуем отключить антенный штекер. Фонит? Идём дальше…;
  • Любым подходящим проводом(см.Провода для автомагнитолы: какие они бывают), минуя все соединения и разъёмы, прокладываем плюс и минус на головное устройство напрямую от аккумуляторной батареи;

Если шумы пропали, то это значит, что главным действующим лицом этого спектакля является плохой контакт питания (кстати, так же одним из симптомов плохого контакта являются шумы, возникающие при увеличении/уменьшении громкости).
Оба питающих провода устройства в целях защиты акустической схемы автомобиля должны быть в обязательном порядке оборудованы плавкими вставками. При периодически возникающих посторонних шумах рекомендуется в схему питания автомагнитолы между положительной и отрицательной клеммой добавить конденсатор, который будет по существу работать как фильтр питания автомагнитолы, то есть сглаживать в цепи электропитания магнитолы колебания тока, стабилизировать её работу и исключать возможные звуковые помехи.

Совет! Как правило, положительная клемма обозначается как «А7» (жёлтый/красный провод), а отрицательная как «А8» (чёрный провод).

Кстати, данной доработкой мы убиваем двух зайцев – устраняем помехи и избавляемся ещё от одной проблемы, а именно от паузы, происходящей во время срабатывания стартера автомобиля, когда отключаются все потребители тока, и магнитола в том числе.
Итак, ставим больше ёмкостный конденсатор в цепь питания «головы», например 2200мкф – 16 вольт, в паре с диодом рассчитанным на тот же ток что и предохранитель автомагнитолы (например, к пяти амперному предохранителю подойдут как пятиамперные диоды КД 210 и КД 206, так и десятиамперные Д 214 и Д 215).

Внимание! Диод необходимо впаять именно на положительный провод, иначе при постановке автомобиля на сигнализацию необходимо будет выжидать некоторое время, пока не произойдёт разрядка конденсатора.

Всё это «дело» вываливаем на стол и спаиваем, как показано в схеме на фото:

Фильтр питания для автомагнитолы

Фильтр питания для автомагнитолы

Совет! Каждая автомагнитола имеет свою выдержку времени на загрузку носителя информации, а так же свои индивидуальные характеристики потребления тока. Поэтому возможно вам придётся самостоятельно подбирать для вашей автомагнитолы ёмкость конденсатора (чем больше ёмкость, тем дольше работа автомагнитолы в автономном режиме).

  • Если название фирмы производителя вашей автомагнитолы хоть немного похоже на бренд Pioneer, то можно попробовать проделать следующий фокус:

Попробовать пробросить «массу» на линейные выходы устройства, то есть на внешнюю «юбку» RCA – разъёма.

Видео как своими руками сделать фильтр для автомагнитол

Видео как своими руками сделать фильтр для автомагнитол

Дело в том, что при выходе из строя предохранителя линейных выходов именно на магнитолах данной марки устройство начинает ужасно «фонить» как на стоящем автомобиле, так и при работающем двигателе.

Внимание! Появление данной неисправности возможно при подключениях между блоками во время работы усилителя или же головного устройства, а так же при кратковременном коротком замыкании выходов усилителя.

Усилители звука

  • Проверяем на предмет хорошего контакта RCA – разъём усилителя, при необходимости пропаиваем их;
  • Прокладываем, вместо отключённого провода «REMOTE», помимо всех разъёмов положительный провод на устройство от аккумуляторной батареи (12 Вольт);
  • Попробуем изменить местоположение «усилка», лучше всего вообще вынести его за пределы салона автомобиля (бывает, что сам бензонасос создаёт ощутимый фон во время своей работы);
  • Корпус усилителя не должен соприкасаться с «массой» автомобиля;

Кабели межблоков

  • «Хвостики» экранов (не земля!) должны быть надёжно закреплены на корпусе усилителя, а хвостик межблока на корпусе головного устройства;
  • Отключаем межблоки от автомагнитолы и усилителя звука(см.Как подключить к автомагнитоле усилитель и сабвуфер: сам себе мастер) и «прозваниваем» их на предмет плохого контакта, его обрыва, а так же на предмет короткого замыкания с кузовом автомобиля;
  • Пробуем менять их местоположение, прислушиваемся к фону и перекладываем по воздуху, желательно вне салона машины.

Кроссоверы

Проверяем кроссоверы так же методом перемещения в другое место с одновременным прослушиванием фона.

Акустическая система с проводами

«Прозваниваем» каждый провод на предмет короткого замыкания с салоном автомобиля.

Другие возможные причины

  • Все точки заземления, во избежание возникновения эффекта «земляной петли» должны быть сведены в одной точке (объедините массу головного устройства с массой усилителей);
  • Устраните контакт абсолютно всех компонентов систем с кузовом/массой автомобиля;
  • Подчистите и подтяните клеммы аккумуляторной батареи (при контактном зажигании проверьте и прочистите контакты трамблёра);
  • Попробуйте временно поменять аккумуляторную батарею и элементы системы зажигания (свечи, высоковольтные провода, трамблёр).

Как вы уже поняли помехи можно «словить» от любого другого оборудования автомобиля будь то ксенон, парктроники, свечи и высоковольтные провода системы зажигания. То есть, все системы запитанные от бортовой системы автомобиля, так или иначе «фонят».
И чтобы исключить их влияние на качество воспроизводимого звука вам просто необходимо установить в электрическую схему подключения фильтр(см.Фильтр от помех для автомагнитолы: как изготовить) для питания автомагнитолы. Ну а так как и мы не лыком шиты, то простыми рекомендациями данная инструкция заканчиваться, как вы поняли не может, поэтому предлагаю вам сделать фильтр питания для автомагнитолы своими руками.

Самодельный фильтр питания

Предлагаю вашему вниманию два очень простых, но надёжных способа о том, как сделать самому фильтр питания для автомагнитолы. Главным преимуществом представленных самодельных девайсов является их цена и простота изготовления, которая ни в коей мере не избавляет вас от личной ответственности за возможные последствия подключений самодельных фильтров питания.

Способ первый

Данная схема представляет собой четыре конденсатора и катушку:

Фильтр для автомагнитолы сделать самому

Фильтр для автомагнитолы сделать самому

  • Ёмкости конденсаторов взяты на 4700 и 1000 мкф (обязательно шунтируем их по 0,1 мкф);
  • Катушка с индуктивностью в 100 микрогенри имеет обмотку на ферритовом кольце из эмальпровода с сечением в 0,9 .

Фильтр для автомагнитол

Фильтр для автомагнитол

Преимуществом данной схемы является то, что в ней каждый элемент играет роль своеобразного фильтра: электролитические ёмкости сглаживают различные помехи и пульсации, а шунтирующие «кондеры» устраняют высокочастотные наводки.

Совет! Токопроводящие дорожки на «печатке» желательно залудить толстым слоем.

Фильтр питания автомагнитолы

Фильтр питания автомагнитолы

Второй способ

Схема этого простого LC – фильтра также состоит из катушки с конденсаторами, правда с добавлением защиты от переполюсовки (диодом) и предохранителем.

Фильтр для питания автомагнитолы

Фильтр для питания автомагнитолы

Перед сборкой схемы нам необходимо изготовить дроссель, который состоять будет состоять так же из ферритового кольца и намотанной на него обмотки в виде 10…15 витков провода с сечением в 1…1,5 миллиметра (для удобства можно использовать три жилы провода с сечением в 0,5 миллиметров каждая).

Совет! Вместо ферритового кольца можно использовать кольцо из порошкового железа, которое применяется в компьютерных блоках питания (кольцо белого или желтого цвета).

Преимущество именно этой схемы состоит в том, что она работает с очень широким диапазоном номинальных значений включённых в неё компонентов. Ёмкость конденсаторов не критична и варьируется от 1000 до 4700 мкФ (чем больше, тем лучше), а также возможно использование электролитов с напряжениями от 16 до 100 Вольт (большее напряжение не имеет смысла).
На этом инструкция о том, как фильтр для автомагнитолы сделать самому подошла к концу, надеюсь, она вам пригодится и по праву займёт свою нишу в вашей личной копилке полезных советов.

Читайте также: