Как сделать шунт для блока питания

Обновлено: 06.07.2024

В предыдущей статье мы рассматривали детальный расчёт шунтирующего резистора. В ней же, для удобства, приводили онлайн калькулятор. В который можно внести исходные данные и нажав, всего одну кнопку мгновенно получить результат.

shunt_resistor_creation_01.jpg

В этой статье мы расскажем, как экспериментальным методом (без расчёта) подобрать шунтирующий резистор. Какой применить материал, как конструктивно выполнить этот резистор.

Наглядным примером для этой публикации послужит стрелочный амперметр для тестового стенда генератора 80.3701. Измерительный прибор, для которого мы будем делать шунтирующий резистор, всё тот же амперметр М367 из предыдущей статьи, в которой мы рассматривали расчёт шунта.

shunting_resistor_02.jpg

shunting_resistor_04.jpg

Разобрав амперметр, внутри корпуса мы видим разделительный трансформатор и измерительную головку.

shunt_resistor_creation_03.jpg

Для экспериментальных целей стоит применить упрощённый метод подбора и изготовления резистора. Он заключается в том, что здесь можно использовать практически любой материал. Например: металлическую полосу, канцелярскую скрепку, пружину и так далее. Но для этого нужно соблюсти ряд правил:
- материал должен быть токопроводящим. Это может быть: сталь, латунь, бронза или медь. Но правильно использовать константан или манганин, это cплавы с высоким электрическим сопротивлением. Вообще они делятся на три группы. Первая для магазинов сопротивлений, различных эталонов, добавочных сопротивлений, шунтов. Вторая: для сопротивлений и реостатов и третья: для электронагревательных приборов и печей (нихром);
- сечение выбранного проводника должно быть выбрано с запасом, чтобы проходящий через него ток его не перегревал, и уж тем более, не приводил к плавлению и перегоранию.

Разберём подробнее, как нам доводилось ранее изготавливать шунты. Итак, в основном мы использовали обычную сталь, и нам вполне этого было достаточно. Какие могут быть варианты:
- полоса жести от толстостенной банки, шириной до одного сантиметра (см. рис. ниже позиция «A»). Для компактности изгибали волной. Использовали для измерений до трёх - пяти ампер;
- канцелярская скрепка. Изогнув в виде буквы П, использовали в среднем до трёх ампер;
- полоса жести от листа металла толщиной до 0,7 миллиметра, ширина до одного сантиметра (см. рис. ниже позиция «Б»). В полосе дополнительно делали неглубокие пропилы, это необходимо чтобы попытаться более точно настроить шунт. Использовали для амперметра до десяти - двадцати ампер;
- пружина. Этот вариант мы подробно рассмотрим ниже. В зависимости от сечения материала пружины, токи могут варьировать от одного ампера до пятидесяти.

Точки «В» и «Г» это те места, куда после юстировки припаивается один из проводов от измерительной головки.

shunt_resistor_creation_04.jpg

Для токов более пятидесяти ампер мы применяли уже заводские шунтирующие резисторы. Они представлены на фото ниже.

shunt_resistor_creation_11.jpg

Эти шунты имеют маркировку.

shunt_resistor_creation_12.jpg

Маркировка состоит из трёх параметров:
[I] номинальный рабочий ток – 100А,
[II] падение напряжение – 60мВ,
[III] класс точности – 0,5.

shunt_resistor_creation_13.jpg

Юстировка шунтирующего резистора выполняется путём стачивания части проводников (место указано стрелочками).

Нечто подобное мы выполняли, когда делали проточки в полосе. Полосу, как проводник, в заводских шунтах тоже применяют. Где-то есть такой резистор, найдём приведём как пример.

shunt_resistor_creation_14.jpg

Про заводские шунты стоит сделать отдельную статью и в ней развёрнуто, с дополнительными примерами про них написать.

Из всех вышеперечисленных вариантов, самым удобным в плане настройки, нам показался вариант из пружины. Его мы использовали чаще всего. Если соорудить небольшую конструкцию, то процесс калибровки прибора будет похож на работу с потенциометром. Но для этого приходиться повозиться.

Рассмотрим конструкцию нашего шунтирующего резистора более подробно. Немного упрощённый чертёж 3Д модели представлен ниже. Упрощения касается резьб на болте и первой стойке.

shunt_resistor_creation_06.jpg

В качестве шунтирующего резистора в рассматриваемом случае – пружина [1], она будет фиксироваться при помощи двух стоек [3] и [4]. Для этого в каждой стойке делаем отверстия по внешнему диаметру пружины. Концы пружины с обоих сторон аккуратно сгибаем в подобие кольца. Это будут контакты под винт. В одной из стоек, в верхней части, с торца сверлим отверстие и нарезаем в нём резьбу. В данное отверстие в последствии будет вкручен специальный винт [2]. На этом винте делаем не большую проточку в виде конуса или «пиптика».

shunt_resistor_creation_07.jpg

Этот «пиптик» будет контактировать с пружиной между витками. Другими словами, это будет токосъёмный болт. За счёт того, что он упирается между витков, вращая пружину можно с высокой точностью осуществлять калибровку амперметра, а по итогам работы его подтянуть, зафиксировав тем самым пружину.

shunt_resistor_creation_08.jpg

Для полного понимания нашей идеи, наложим на конструкцию эквивалентную схему.

shunt_resistor_creation_09.jpg

Конечно конструктивно шунт получается немного сложный в изготовлении, но всё это в дальнейшем окупается лёгкой и достаточно точной юстировкой прибора. После переделок прибора схема у нас получается следующая:

shunt_resistor_creation_10.jpg

На этом работу с шунтирующем резистором можно считать завешенной.

При изготовлении лабораторного блока питания или зарядного устройства для удобства использования их необходимо оборудовать амперметром. Как известно амперметр на заданный предел можно сделать практически из любого распространенного миллиамперметра лишь дополнив его соответствующим измерительным шунтом. Шунт промышленного изготовления имеет вид представленный на фотографии.

самодельный шунт

То есть на диэлектрической колодке закреплены две металлические пластины, которые служат контактами для включения шунта в цепь, в которые заделана вставка из высокоомной полосы. На пластине зачастую предусматривают отдельное подключение под винт для сильноточной линии, и подключения измерительной головки. Но не всегда можно найти готовый шунт, что-бы получить необходимый предел измерений, да и не всегда используются измерительные головки со стандартными значениями полного тока отклонения. В таком случае измерительный шунт на нужный предел можно изготовить самостоятельно, например из медной проволоки подходящего диаметра. После того как вы по методике представленной для расчёта шунта подобрали нужную длину провода и добавочный резистор можно конечно скрутить провод спиралькой и все.

Спиральный шунт из проволоки

Ведь бывают ситуации, когда длина провода получается довольно большой и спиралька получается не такая уж и компактная тогда шунт лучше изготовить из высокоомного материала. Когда мне понадобилось сделать амперметр для блока питания шунт из медной проволоки как раз и получился достаточно объемным. За основа шунта я взял кусок вот такого резистора:

Высокоомный шунт

Так как материал имеет высокое удельное сопротивление трудно подобрать нужную длину закручивая на проволоке петлю под винт, поэтому я решил заделать концы по принципу промышленного шунта. Из медной шинки отрезал два небольших прямоугольных куска, просверлил в них отверстия для силовых проводов, а для подключения измерительной головки приклепал контактные лепестки.

Изготовление шунта своими руками

Для заделки высокоомной проволоки просверлил с торца, саму проволоку залудил с активным флюсом и запаял, для надежного контакта также залудил контактную площадку.

Готовый низкоомный мощный шунт

Окончательную подгонку шунта можно произвести путем подпиливания проволоки до получения нужного сопротивления, если оно меньше, или опять же добавлением резистора последовательно с измерительной головкой, если больше. Статью прислал Igor P.

Амперметр – прибор, замеряющий силу проходящего в электрической цепи тока, который часто бывает немалым. По закону Ома, чтобы пропустить больший ток, амперметр должен иметь как можно меньшее сопротивление. Решение – включение параллельно прибору шунта, обеспечивающего такое низкое значение сопротивления.

Зачем нужен шунт?

Шунт – это полосковая линия (усиленная дорожка на плате) или отрезок провода с достаточно толстым сечением, низкоомная (менее 1 Ом) катушка или резистор с мощностью от 10 Вт. Он используется, когда, например, амперметр, рассчитанный на ток в 10 А, не может замерить, скажем, 50-амперный ток, потребляемый включёнными в электроцепь источника питания устройствами. На жаргоне электриков это явление называется «на шкале не хватает ампер». А точнее – диапазон замеров по току на этом же амперметре не охватывает такие высокие токи.



Расчёт сопротивления шунта

Кроме закона Ома для участка цепи – её разрыва, в который включён амперметр, – в расчёт берётся и формула Кирхгофа. Общий ток, протекающий в месте включения прибора, равен сумме токов, проходящих через сам амперметр и его шунт.

Сопротивление амперметра в разы больше внешнего шунта. Ток, проходящий по внешнему шунту, в эти же несколько раз больше, чем на самом амперметре.

В случае с цифровым прибором, где вместо измерительной головки используется датчик тока и аналого-цифровой преобразователь, распределение токов, составляющих общий ток цепи, не меняется.



Схема включения устройства

Амперметр включается последовательно в разрыв цепи. Последний может находиться в любом её месте. Сам прибор показывает, сколько ампер в час потребляет эта цепь. Внешний шунт также включается последовательно в цепь, но в тот же самый разрыв, получается, параллельно самому амперметру.

Что можно использовать?

В идеале используют отрезок провода или проволоки из металла или сплава, незначительно меняющего своё электрическое сопротивление при нагреве. А нагреваться шунт будет обязательно – хотя бы до нескольких десятков градусов, так как по нему протекает ток в единицы и десятки ампер. Специалисты рекомендуют использовать сплав манганина. Манганиновая проволока (или лента) считается наиболее устойчивым электротехническим элементом: её температурный коэффициент сопротивления в 200 раз меньше, чем у меди, и в 300 раз ниже по сравнению с железом. Использование медных и стальных шунтов способно нести ощутимую погрешность при значительных токах, вызывающих их нагрев.

Но для приблизительной оценки иногда используют распрямлённую канцелярскую скрепку или отрезок провода.



Если речь идёт о внушительной силе тока от сотен до тысяч ампер – например, при старте двигателя «КамАЗа», где создаётся пусковой ток в 500 и более ампер для раскручивания стартером вала двигателя, – простой шунт здесь попросту расплавится. Необходимо использовать токовые клещи – они являются более мощной версией шунта. Аналогично поступают в электроустановках и распределителях с высоким напряжением, где общий ток потребителей довольно высок.



Что требуется?

Для изготовления шунта, кроме проволоки, проводов, диэлектрика и крепежа, потребуются следующие приборы.

  • Готовый миллиамперметр. Можно использовать и гальванометр – измерительную головку без внутренних шунтов, резисторов и так далее.
  • Лабораторный блок питания, выдающий требуемый ампераж. Можно воспользоваться и автомобильным аккумулятором, в цепь с которым последовательно включена, например, фара на 100/90 Вт на основе лампы накаливания. Если такой фары нет, можно подключить отрезок нихромовой электроспирали или мощный керамический резистор на десятки ватт. Ни в коем случае не подключайте шунт с прибором «накоротко», без нагрузки.
  • При работе с бытовой осветительной сетью – выпрямительный диодный мост (или одиночные высоковольтные диоды) и дополнительный защитный автомат на 16 А, плавкие предохранители на несколько ампер.

Напряжение подаётся только после правильной сборки цепи.





Шунт своими руками

Спирально сматывать проволоку (или эмальпровод) не рекомендуется – индуктивность получившейся катушки уменьшит точность амперметра. Катушечное шунтирование имеет недостаток – гашение скачков тока, особенно в случае дросселированной (с сердечником) катушки. Если отрезок проволоки слишком длинный, расположите его в виде волнистой «змейки».

В качестве диэлектрика подойдёт любой изолятор – от керамического до текстолитового. К тому же скрученный в виде катушки провод может перегреть диэлектрик, не выдерживающий повышенной – более 150 градусов – температуры. А к перегреву устойчивы лишь керамика и закалённое стекло.

  • Сначала вырезается диэлектрическая пластина, в которой сверлятся отверстия под болты с шайбами и гайками. Материал – текстолит, гетинакс, дерево или композитные материалы.
  • Для существенной изоляции тепла проволоки от несущей пластины на болты устанавливаются керамические колечки. После них ставятся шайбы, зажимающие проволоку.
  • Для предотвращения самопроизвольного раскручивания и выпадения проволоки и проводов перед гайками проставляются гроверные шайбы.
  • Наконец, вставляются провода и концы проволоки между шайбами, а гайки затягиваются.

Полученная деталь подключается параллельно амперметру или гальванометру.




Переградуировка прибора

Новую градуировку обновлённого стрелочного амперметра под новый шунт нужно произвести следующим образом.

  1. Снимите переднюю часть корпуса (смотровое окно прибора) вместе со стеклом.
  2. Подключите одну из лампочек известного номинала последовательно с амперметром к батарее или сетевому адаптеру питания. Так, на лампочках накаливания указывается ток в амперах и напряжение в вольтах. Если вы подключаете светодиодную панель или фару, на которой, например, указано напряжение 12 В и мощность в 24 Вт – вашим рабочим током будет 2 А (мощность, делённая на напряжение источника питания).
  3. Отметьте, на какой угол отклонилась стрелка прибора, точкой с числом (в данном случае это 2).
  4. Идеальный вариант – включите параллельно друг с другом одинаковые лампочки или фары, увеличивая их число каждый раз на одну. Так можно «прометить» всю шкалу амперметра. Этот способ хорош для переменного тока – шкала амперметра получается нелинейной за счёт влияния частоты тока и падения части напряжения на диодах. Разметка «на глаз» или с использованием транспортира (или по уже имеющейся «линейке» прибора), как часто делают при постоянном токе, не подойдёт. Лучше перестраховаться и сделать точнее.
  5. Закончив разметку, соберите прибор и проверьте, надёжно ли держится крепление шунта, хорош ли электрический контакт между ним и амперметром. Если габариты амперметра позволяют, шунт часто заливают эпоксидным клеем, а затем получившийся элемент (в виде бруска) приклеивают к задней стенке измерительной головки.

Амперметр с новым шунтом готов к работе. Можно подключить щупы или токовые клещи.



С несколькими шунтами

Из амперметра получится и самодельный килоамперметр. Так, из 100-амперного прибора легко сделать амперметр на 2 кА. Более высокие значения на практике вряд ли понадобятся. Если у вас в наличии имеется прибор с одноамперным диапазоном измерений, сделайте несколько коммутируемых шунтов. Незачем переразмечать шкалу – достаточно подобрать шунты на 5, 10, 50, 100 и более ампер. Они помещаются в один внешний корпус вместе с выходными клеммами (для щупов) и многопозиционным переключателем, рассчитанным на такие значения тока.

Режимы помечаются маркером «x5», «x10» и так далее. Когда режим один, а амперметр переделан из одно- в десятиамперный, то слева от буквы «А» надпишите «x10» меньшим шрифтом.

При изготовлении многорежимного амперметра провода, соединяющие переключатель с шунтами и прибором, должны быть максимально короткими. Излишне длинные провода, подключённые к готовому шунту, имеющему точное сопротивление, и уже проградуированному прибору, приведут к заметной погрешности измерений – они включаются последовательно с шунтом и прибором, имеют своё, пусть и очень малое, сопротивление. Переключатель низкого качества со значительно окисленными контактами приведёт к тому, что прибор попросту начнёт «врать» – его токоведущие части и замыкающий подпружиненный шарик также вносят паразитное сопротивление.

Заводские амперметры проходят тщательную поверку, едва сойдя с конвейера. Недочёты учитываются при выпуске приборостроительным заводом следующей партии амперметров. Амперметры, имеющие значительную погрешность, бракуются и направляются на переработку.



О том, как произвести расчет шунта для амперметра, смотрите далее.

Простой шунт для сварочного аппарата или сильно-токового зарядного устройства. Шпилька не греется, применяя разные шпильки можно добиться разных показаний прибора, на разные токи.


Лига электриков

3.1K постов 20K подписчика

Правила сообщества

Запрещён оффтоп, нарушение основных правил пикабу

Поздравляю с очередным открытием закона Ома!

Есть еще термостабильность, а тут ни в пизду, ни в красную армию! Как показометр-пойдет, а как измеритель, или регулятор- увы и ах.

Можешь еще и их использоваьб

Иллюстрация к комментарию

А почему б не использовать трансформатор тока? Я вот купил себе такой китайский показометр на 100Ампер для 220в, но наверняка есть и более простые модели, чисто с амперами.

Иллюстрация к комментарию

Удобство только в том, что есть резьба по всей длине и очень просто настраивается и калибруется простым перемещением пары гаек. Но это пластилиновое железо китайского метизпрома не лучший вариант. Как правило, чем тверже и "калёней" сталь (сплав), тем выше его удельное сопротивление. Отлично подходят для этого пружинная проволока и стальная арматура. Изначально шунт делается с превышениеим показаний тока, т.е. меньшего сопротивления, а потом прям в работе и контроле на амперметре прошлифовывается болгаркой с обдирочным кругом или наждачкой.

Так же можно согнуть змейкой стальную полосу 20х1мм, т.н. "пристрелочную", ее дюбелями пистолетом удобно к стенам прибивать. Ее калибровать еще проще - делаются поперечные надпилы болгаркой до нужного значения сопротивления. Плюс полосы еще в том, что у нее наибольшая площадь охлаждения и шунты из нее более термостойкие.

Арматуру использовывали, ещё при царе Сталине

Об амперах, вольтах (мысли)

Об амперах, вольтах (мысли) Электрический ток, Ампер, Вольты, Длиннопост, Мысли

Не буду вдаваться в дебри физики и объясню простым языком

Воздействие тока на организм комплексное и брать в расчет только один его параметр не имеет смысла. Классическим вариантом смертельного тока является переменный с частотой 50-60 Герц, напряжением выше 36 Вольт и силой тока от 0.1 Ампера. При понижении напряжения, ток может просто не потечь через организм, который как известно имеет свое собственное сопротивление, при увеличении напряжения, но небольшой силе тока, электрический удар также может обойтись без последствий. Постоянный ток менее опасен чем ток переменный, зато при повышении частоты переменного тока его опасное воздействие снижается и токами высокой частоты пользуются даже в медицине. Считается, что убивает Ампер, но и остальные физики в сторонке не остаются.

Воздействие электрического тока на каждого человека индивидуально. Но общепринято считать, что смертельной может быть сила тока, выраженная в Амперах. Для наступления смерти достаточно 0,1 Ампер, при напряжении тока 36 Вольт.

А для отдельных индивидов, как в этом комментарии:

Об амперах, вольтах (мысли) Электрический ток, Ампер, Вольты, Длиннопост, Мысли

Есть различные способы расчета, а для ленивых даже в таблицы свели

Об амперах, вольтах (мысли) Электрический ток, Ампер, Вольты, Длиннопост, Мысли

P.s:
а Вам хоть раз было интересно узнать почему не убивают электрошокеры?

В сети нашел много чего интересного:

Компания "Taser" заявляет, что для некоторых модели выпускаемых шокеров имеют следующие параметры:
-ток импульсный,
-каждый импульс общей длиной порядка 120 микросекунд,
-частота следования импульсов - 20 раз в секунду,
-частота тока внутри импульса - 10 килогерц,
-сила тока на первом периоде импульса - до 3 Ампер, далее - очень быстро затухает.

Чтобы это означало?

-импульсы слишком короткие, чтобы вызвать смертельные изменения,
-частота - слишком высока, чтобы создать высокую плотность тока через внутренние органы (очевидно, подобрана, чтобы поражать только двигательные мышцы на поверхности тела),
-импульсы непостоянные, а затухающие

Плюс, электроды шокера никогда не оказываются приложены к разным концам тела. Потому, если не стараться специально вмешаться в конструкцию, убить им - достаточно сложно.

Читайте также: