Назначение процессора осуществлять подключение периферийных устройств к магистрали

Обновлено: 07.07.2024

2. Архитектурой компьютера называется:
а) техническое описание деталей устройств компьютера
б) описание устройства и принципов работы компьютера, достаточное для понимания пользователя +
в) описание программного обеспечения для работы компьютера

3. Компьютер:
а) универсальное устройство для записи и чтения информации
б) электронное устройство для обработки информации
в) универсальное, электронное устройство для хранения, обработки и передачи информации +

4. Что такое микропроцессор:
а) устройство для хранения той информации, которая часто используется в работе
б) интегральная микросхема, которая выполняет поступающие на её вход команды (например, вычисление) и управляет работой машины +
в) устройство для вывода алфавитно-цифровых данных

5. Что является назначением процессора:
а) выполнять арифметико-логические операции
б) подключать периферийные устройства к магистрали
в) выполнять команды одной программы в данный момент +

6. С помощью чего возможно подключение отдельных периферийных устройств компьютера к магистрали на физическом уровне:
а) утилиты
б) контроллера +
в) драйвера

7. Для обмена информацией между компьютерами предназначена:
а) сетевая карта +
б) интерфейс
в) жесткий диск

8. К южному мосту подключаются устройства внешней памяти по этой шине:
а) LIP
б) SATA +
в) COM

10. Если отключить это, персональный компьютер перестанет функционировать:
а) мышь
б) оперативную память +
в) дисковод

11. Создавать локальную сеть, соединяя компьютеры между собой и выходить в интернет, позволяет:
а) флешка
б) сетевая карта
в) модем +

12. Чипсетом называется:
а) универсальное, электронное, программно-управляемое устройство для хранения, обработки и передачи информации
б) набор микросхем материнской платы для обеспечения работы процессора с памятью и внешними устройствами +
в) универсальное устройство для передачи информации

13. Укажите верное описание для материнской платы:
а) сложная многослойная печатная плата, на которой устанавливаются основные компоненты персонального компьютера +
б) быстрая, полупроводниковая, энергонезависимая память
в) плата, обеспечивающая компьютер

14. К магистрали, представляющей из себя 3 различные шины, подключается:
а) ОЗУ
б) жесткий диск
в) процессор и оперативная память +

15. Принципы, сформулированные этим человеком, легли в основу построения большинства компьютеров:
а) Джон фон Нейман +
б) Отто фон Бисмарк
в) Джон фон Ньюман

16. Какое название носит блок, который содержит системы автономного и сетевого питания компьютера:
а) источник памяти
б) источник питания +
в) источник функционирования

17. Пикселем называется:
а) точка изображения +
б) несколько точек, соединенных в пучок
в) электрон

20. Какое устройство осуществляет задание ритма при передаче информационных сигналов в компьютере:
а) тактовый генератор +
б) тактовая частота
в) ОЗУ

21. Драйвер периферийного устройства, для правильной работы данного устройства должен:
а) быть выведен на печать
б) находиться в оперативной памяти
в) находиться на жестком диске +

22. Для чего нужна оперативная память:
а) для запуска программы
б) для хранения исполняемой в данный момент времени программы и данных, с которыми она непосредственно работает +
в) для долговременного хранения информации

23. От чего зависит скорость обработки информации в компьютере:
а) жесткого диска
б) тактовой частоты
в) ОЗУ +

24. Единицей измерения ёмкости памяти является:
а) Кбайт +
б) такт
в) ГГц

25. Для чего предназначены периферийные устройства:
а) для выполнения арифметико-логических операций
б) для улучшения дизайна компьютера
в) для обмена информацией между компьютером и пользователем +

26. Для чего нужна внешняя память:
а) для хранения часто изменяющейся информации в процессе решения задачи
б) для долговременного хранения информации после выключения компьютера +
в) для обработки текущей информации

27. Частота регенерации монитора измеряется в:
а) герцах +
б) секундах
в) вольтах

28. Плоттер:
а) широкоформатный сканер
б) широкоформатный принтер +
в) цветной принтер

29. Что такое разрешение монитора:
а) количество пикселей по вертикали и по горизонтали +
б) количество пикселей по горизонтали
в) количество пикселей по вертикали

30. ОЗУ-это память:
а) в которой хранится информация, присутствие которой постоянно необходимо для работы компьютера
б) в которой хранится информация независимо от того работает компьютер или нет
в) в которой хранится исполняемая в данный момент времени программа и данные, с которыми она непосредственно работает +

a. целенаправленное и эффективное использования информации во всех областях человеческой деятельности, достигаемое за счет массового применения современных информационных и коммуникационных технологий;

b. увеличение количества избыточной информации, циркулирующей в обществе;

c. массовое использование компьютеров в жизни общества;

d. введение изучения информатики во все учебные заведения страны.

3. Причиной перевода информационных ресурсов человечества на электронные носители является:

a. необоснованная политика правительств наиболее развитых стран;

b. объективная потребность в увеличении скорости обработки информации, рост стоимости бумаги вследствие экологического кризиса;

c. погоня за сверхприбылями организаций, осуществляющих свою деятельность в сфере информационных технологий;

d. политика производителей компьютеров с целью подавления конкурентов.

4. Архитектура компьютера - это

a) техническое описание деталей устройств компьютера

b) описание устройств для ввода-вывода информации

c) описание программного обеспечения для работы компьютера

5. Современную организацию ЭВМ предложил:

a. Джон фон Нейман;

d. Норберт Винер.

6. Под термином «поколения ЭВМ» понимают:

a. все счетные машины;

b. все типы и модели ЭВМ, построенные на одних и тех же научных и технических принципах;

c. совокупность машин, предназначенных для обработки, хранения и передачи информации;

d. модели ЭВМ, созданные одним и тем же человеком.

7. Назначение процессора в персональном компьютере:

a. обрабатывать одну программу в данный момент времени;

b. управлять ходом вычислительного процесса и выполнять арифметические и логические действия;

c. осуществлять подключение периферийных устройств к магистрали;

d. руководить работой вычислительной машины с помощью электрических импульсов.

8. Принтеры бывают:

a) матричные, лазерные, струйные

b) монохромные, цветные, черно-белые

c) настольные, портативные

a. программа, необходимая для подключения к компьютеру устройств ввода-вывода;

b. специальный блок, через который осуществляется подключение периферийного устройства к магистрали;

c. программа, переводящая языки программирования в машинные коды;

d. кабель, состоящий из множества проводов

10. МОДЕМ – это устройство:

a. для хранения информации;

b. для обработки информации в данный момент времени;

c. для передачи информации по телефонным каналам связи;

d. для вывода информации на печать.

11. Периферийные устройства выполняют функцию…..

a. хранение информации;

b. обработку информации;

c. ввод и выдачу информации;

d. управление работой ЭВМ по заданной программе.

12. Во время исполнения прикладная программа хранится…

a. в видеопамяти

c. в оперативной памяти

d. на жестком диске

13. Операционные системы представляют собой программные продукты, входящие в состав…

1. Структурно-функциональная схема компьютера включает в себя:
а) процессор, внутренняя память, внешняя память, устройства ввода и вывода+
б) арифметическо-логическое устройство, устройство управления, монитор
в) микропроцессор, ВЗУ, ОЗУ, ПЗУ, клавиатура, монитор, принтер, мышь
г) системный блок, монитор, ОЗУ, клавиатура, мышь, принтер

2. Hardware-это:
а) система обеспечивающая создание новых программ
б) аппаратная часть компьютера +
в) самая популярная система для компьютеров IBM PC

3. Software-это:
а) только программы для подключения к компьютеру новых устройств
б) программа вспомогательного назначения
в) программное обеспечение компьютера +

4. Задание ритма при передаче информационных сигналов в компьютере осуществляет:
а) тактовый генератор +
б) тактовая частота
в) ОЗУ

5. Для правильной работы периферийного устройства драйвер этого устройства должен:
а) быть выведен на печать
б) находиться в оперативной памяти
в) находиться на жестком диске +

6. Оперативная память необходима для:
а) запуска программы
б) хранения исполняемой в данный момент времени программы и данных, с которыми она непосредственно работает +
в) долговременного хранения информации

7. Скорость обработки информации в компьютере зависит от:
а) жесткого диска
б) тактовой частоты
в) ОЗУ +

8. Укажите единицу измерения ёмкости памяти:
а) Кбайт +
б) такт
в) ГГц

9. Периферийные устройства предназначены для:
а) выполнения арифметико-логических операций
б) улучшения дизайна компьютера
в) обмена информацией между компьютером и пользователем +

10. Внешняя память необходима:
а) хранения часто изменяющейся информации в процессе решения задачи
б) для долговременного хранения информации после выключения компьютера +
в) для обработки текущей информации

11. В чем измеряется частота регенерации монитора:
а) герцах +
б) секундах
в) вольтах

12. Что такое плоттер:
а) широкоформатный сканер
б) широкоформатный принтер +
в) цветной принтер

13. Разрешение монитора-это:
а) количество пикселей по вертикали и по горизонтали +
б) количество пикселей по горизонтали
в) количество пикселей по вертикали

14. ОЗУ-это память, в которой хранится:
а) информация, присутствие которой постоянно необходимо для работы компьютера
б) хранится информация независимо от того работает компьютер или нет
в) исполняемая в данный момент времени программа и данные, с которыми она непосредственно работает +

15. Какую функцию выполняют периферийные устройства:
а) ввод-вывод информации +
б) обработку информации
в) хранение информации

16. Что такое архитектура компьютера:
а) техническое описание деталей устройств компьютера
б) описание устройства и принципов работы компьютера,достаточное для понимания пользователя +
в) описание программного обеспечения для работы компьютера

17. Что такое компьютер:
а) универсальное устройство для записи и чтения информации
б) электронное устройство для обработки информации
в) универсальное, электронное устройство для хранения, обработки и передачи информации +

18. Микропроцессор-это:
а) устройство для хранения той информации, которая часто используется в работе
б) интегральная микросхема, которая выполняет поступающие на её вход команды (например, вычисление) и управляет работой машины +
в) устройство для вывода алфавитно-цифровых данных

19. Назначение процессора:
а) выполнять арифметико-логические операции
б) подключать периферийные устройства к магистрали
в) выполнять команды одной программы в данный момент +

20. Подключение отдельных периферийных устройств компьютера к магистрали на физическом уровне возможно с помощью:
а) утилиты
б) контроллера +
в) драйвера

21. Какое устройство служит для обмена информацией между компьютерами:
а) сетевая карта +
б) интерфейс
в) жесткий диск

22. По какой шине к южному мосту подключаются устройства внешней памяти:
а) LIP
б) SATA +
в) COM

24. Персональный компьютер не будет функционировать, если отключить:
а) мышь
б) оперативную память +
в) дисковод

25. Какое устройство позволяет создавать локальную сеть, соединяя компьютеры между собой и выходить в интернет:
а) флешка
б) сетевая карта
в) модем +

26. Что такое чипсет:
а) универсальное, электронное, программно-управляемое устройство для хранения, обработки и передачи информации
б) набор микросхем материнской платы для обеспечения работы процессора с памятью и внешними устройствами +
в) универсальное устройство для передачи информации

27. Материнская плата-это:
а) сложная многослойная печатная плата на которой устанавливаются основные компоненты персонального компьютера +
б) быстрая, полупроводниковая, энергонезависимая память
в) плата, обеспечивающая компьютер

28. Что подключается к магистрали, которая представляет собой три различные шины:
а) ОЗУ
б) жесткий диск
в) процессор и оперативная память +

29. В основу построения большинства компьютеров положены принципы, сформулированные:
а) фон Нейманом +
б) фон Бисмарком
в) фон Ньюманом

30. Блок, содержащий системы автономного и сетевого питания компьютера:
а) источник памяти
б) источник питания +
в) источник функционирования

31. Пиксель-это:
а) точка изображения +
б) несколько точек, соединенных в пучок
в) электрон

Рассмотрим теперь, как взаимодействуют на магистрали основные устройства микропроцессорной системы : процессор , память (оперативная и постоянная), устройства ввода/вывода.

2.4.1. Функции процессора

Процессор (рис. 2.16) обычно представляет собой отдельную микросхему или же часть микросхемы (в случае микроконтроллера ). В прежние годы процессор иногда выполнялся на комплектах из нескольких микросхем, но сейчас от такого подхода уже практически отказались. Микросхема процессора обязательно имеет выводы трех шин: шины адреса , шины данных и шины управления. Иногда некоторые сигналы и шины мультиплексируются, чтобы уменьшить количество выводов микросхемы процессора.

Важнейшие характеристики процессора — это количество разрядов его шины данных , количество разрядов его шины адреса и количество управляющих сигналов в шине управления . Разрядность шины данных определяет скорость работы системы. Разрядность шины адреса определяет допустимую сложность системы. Количество линий управления определяет разнообразие режимов обмена и эффективность обмена процессора с другими устройствами системы.

Кроме выводов для сигналов трех основных шин процессор всегда имеет вывод (или два вывода) для подключения внешнего тактового сигнала или кварцевого резонатора ( CLK ), так как процессор всегда представляет собой тактируемое устройство. Чем больше тактовая частота процессора, тем он быстрее работает, то есть тем быстрее выполняет команды. Впрочем, быстродействие процессора определяется не только тактовой частотой, но и особенностями его структуры. Современные процессоры выполняют большинство команд за один такт и имеют средства для параллельного выполнения нескольких команд. Тактовая частота процессора не связана прямо и жестко со скоростью обмена по магистрали, так как скорость обмена по магистрали ограничена задержками распространения сигналов и искажениями сигналов на магистрали. То есть тактовая частота процессора определяет только его внутреннее быстродействие, а не внешнее. Иногда тактовая частота процессора имеет нижний и верхний пределы. При превышении верхнего предела частоты возможно перегревание процессора, а также сбои, причем, что самое неприятное, возникающие не всегда и нерегулярно. Так что с изменением этой частоты надо быть очень осторожным.

Еще один важный сигнал, который имеется в каждом процессоре, — это сигнал начального сброса RESET. При включении питания, при аварийной ситуации или зависании процессора подача этого сигнала приводит к инициализации процессора, заставляет его приступить к выполнению программы начального запуска. Аварийная ситуация может быть вызвана помехами по цепям питания и "земли", сбоями в работе памяти, внешними ионизирующими излучениями и еще множеством причин. В результате процессор может потерять контроль над выполняемой программой и остановиться в каком-то адресе. Для выхода из этого состояния как раз и используется сигнал начального сброса. Этот же вход начального сброса может использоваться для оповещения процессора о том, что напряжение питания стало ниже установленного предела. В таком случае процессор переходит к выполнению программы сохранения важных данных. По сути, этот вход представляет собой особую разновидность радиального прерывания .

Иногда у микросхемы процессора имеется еще один-два входа радиальных прерываний для обработки особых ситуаций (например, для прерывания от внешнего таймера).

Шина питания современного процессора обычно имеет одно напряжение питания (+5В или +3,3В) и общий провод ("землю"). Первые процессоры нередко требовали нескольких напряжений питания. В некоторых процессорах предусмотрен режим пониженного энергопотребления . Вообще, современные микросхемы процессоров, особенно с высокими тактовыми частотами, потребляют довольно большую мощность. В результате для поддержания нормальной рабочей температуры корпуса на них нередко приходится устанавливать радиаторы, вентиляторы или даже специальные микрохолодильники.

Для подключения процессора к магистрали используются буферные микросхемы, обеспечивающие, если необходимо, демультиплексирование сигналов и электрическое буферирование сигналов магистрали. Иногда протоколы обмена по системной магистрали и по шинам процессора не совпадают между собой, тогда буферные микросхемы еще и согласуют эти протоколы друг с другом. Иногда в микропроцессорной системе используется несколько магистралей (системных и локальных), тогда для каждой из магистралей применяется свой буферный узел. Такая структура характерна, например, для персональных компьютеров.

После включения питания процессор переходит в первый адрес программы начального пуска и выполняет эту программу. Данная программа предварительно записана в постоянную (энергонезависимую) память. После завершения программы начального пуска процессор начинает выполнять основную программу, находящуюся в постоянной или оперативной памяти, для чего выбирает по очереди все команды. От этой программы процессор могут отвлекать внешние прерывания или запросы на ПДП . Команды из памяти процессор выбирает с помощью циклов чтения по магистрали. При необходимости процессор записывает данные в память или в устройства ввода/вывода с помощью циклов записи или же читает данные из памяти или из устройств ввода/вывода с помощью циклов чтения.

Таким образом, основные функции любого процессора следующие:

  • выборка (чтение) выполняемых команд;
  • ввод (чтение) данных из памяти или устройства ввода/вывода;
  • вывод (запись) данных в память или в устройства ввода/вывода;
  • обработка данных (операндов), в том числе арифметические операции над ними;
  • адресация памяти, то есть задание адреса памяти, с которым будет производиться обмен;
  • обработка прерываний и режима прямого доступа.

Упрощенно структуру микропроцессора можно представить в следующем виде (рис. 2.17).

Основные функции показанных узлов следующие.

Схема управления выборкой команд выполняет чтение команд из памяти и их дешифрацию. В первых микропроцессорах было невозможно одновременное выполнение предыдущей команды и выборка следующей команды, так как процессор не мог совмещать эти операции. Но уже в 16-разрядных процессорах появляется так называемый конвейер (очередь) команд, позволяющий выбирать несколько следующих команд, пока выполняется предыдущая. Два процесса идут параллельно, что ускоряет работу процессора. Конвейер представляет собой небольшую внутреннюю память процессора, в которую при малейшей возможности (при освобождении внешней шины) записывается несколько команд, следующих за исполняемой. Читаются эти команды процессором в том же порядке, что и записываются в конвейер (это память типа FIFO, First In — First Out, первый вошел — первый вышел). Правда, если выполняемая команда предполагает переход не на следующую ячейку памяти, а на удаленную (с меньшим или большим адресом), конвейер не помогает, и его приходится сбрасывать. Но такие команды встречаются в программах сравнительно редко.

Развитием идеи конвейера стало использование внутренней кэш-памяти процессора, которая заполняется командами, пока процессор занят выполнением предыдущих команд. Чем больше объем кэш-памяти, тем меньше вероятность того, что ее содержимое придется сбросить при команде перехода. Понятно, что обрабатывать команды, находящиеся во внутренней памяти, процессор может гораздо быстрее, чем те, которые расположены во внешней памяти. В кэш-памяти могут храниться и данные, которые обрабатываются в данный момент, это также ускоряет работу. Для большего ускорения выборки команд в современных процессорах применяют совмещение выборки и дешифрации, одновременную дешифрацию нескольких команд, несколько параллельных конвейеров команд, предсказание команд переходов и некоторые другие методы.

Арифметико-логическое устройство (или АЛУ , ALU ) предназначено для обработки информации в соответствии с полученной процессором командой. Примерами обработки могут служить логические операции (типа логического "И", "ИЛИ", "Исключающего ИЛИ" и т.д.) то есть побитные операции над операндами, а также арифметические операции (типа сложения, вычитания, умножения, деления и т.д.). Над какими кодами производится операция, куда помещается ее результат — определяется выполняемой командой. Если команда сводится всего лишь к пересылке данных без их обработки, то АЛУ не участвует в ее выполнении.

Быстродействие АЛУ во многом определяет производительность процессора. Причем важна не только частота тактового сигнала , которым тактируется АЛУ , но и количество тактов, необходимое для выполнения той или иной команды. Для повышения производительности разработчики стремятся довести время выполнения команды до одного такта, а также обеспечить работу АЛУ на возможно более высокой частоте. Один из путей решения этой задачи состоит в уменьшении количества выполняемых АЛУ команд, создание процессоров с уменьшенным набором команд (так называемые RISC -процессоры). Другой путь повышения производительности процессора — использование нескольких параллельно работающих АЛУ .

Что касается операций над числами с плавающей точкой и других специальных сложных операций, то в системах на базе первых процессоров их реализовали последовательностью более простых команд, специальными подпрограммами, однако затем были разработаны специальные вычислители — математические сопроцессоры , которые заменяли основной процессор на время выполнения таких команд. В современных микропроцессорах математические сопроцессоры входят в структуру как составная часть.

Регистры процессора представляют собой по сути ячейки очень быстрой памяти и служат для временного хранения различных кодов: данных, адресов, служебных кодов. Операции с этими кодами выполняются предельно быстро, поэтому, в общем случае, чем больше внутренних регистров , тем лучше. Кроме того, на быстродействие процессора сильно влияет разрядность регистров . Именно разрядность регистров и АЛУ называется внутренней разрядностью процессора, которая может не совпадать с внешней разрядностью.

По отношению к назначению внутренних регистров существует два основных подхода. Первого придерживается, например, компания Intel, которая каждому регистру отводит строго определенную функцию. С одной стороны, это упрощает организацию процессора и уменьшает время выполнения команды, но с другой — снижает гибкость, а иногда и замедляет работу программы. Например, некоторые арифметические операции и обмен с устройствами ввода/вывода проводятся только через один регистр — аккумулятор, в результате чего при выполнении некоторых процедур может потребоваться несколько дополнительных пересылок между регистрами . Второй подход состоит в том, чтобы все (или почти все) регистры сделать равноправными, как , например, в 16-разрядных процессорах Т-11 фирмы DEC. При этом достигается высокая гибкость, но необходимо усложнение структуры процессора. Существуют и промежуточные решения, в частности, в процессоре MC68000 фирмы Motorola половина регистров использовалась для данных, и они были взаимозаменяемы, а другая половина — для адресов, и они также взаимозаменяемы.

Регистр признаков ( регистр состояния) занимает особое место, хотя он также является внутренним регистром процессора. Содержащаяся в нем информация — это не данные, не адрес, а слово состояния процессора ( ССП , PSW — Processor Status Word). Каждый бит этого слова (флаг) содержит информацию о результате предыдущей команды. Например, есть бит нулевого результата, который устанавливается в том случае, когда результат выполнения предыдущей команды — нуль, и очищается в том случае, когда результат выполнения команды отличен от нуля. Эти биты (флаги) используются командами условных переходов , например, командой перехода в случае нулевого результата. В этом же регистре иногда содержатся флаги управления, определяющие режим выполнения некоторых команд.

Схема управления прерываниями обрабатывает поступающий на процессор запрос прерывания , определяет адрес начала программы обработки прерывания (адрес вектора прерывания), обеспечивает переход к этой программе после выполнения текущей команды и сохранения в памяти (в стеке ) текущего состояния регистров процессора. По окончании программы обработки прерывания процессор возвращается к прерванной программе с восстановленными из памяти (из стека ) значениями внутренних регистров . Подробнее о стеке будет рассказано в следующем разделе.

Схема управления прямым доступом к памяти служит для временного отключения процессора от внешних шин и приостановки работы процессора на время предоставления прямого доступа запросившему его устройству.

Логика управления организует взаимодействие всех узлов процессора, перенаправляет данные, синхронизирует работу процессора с внешними сигналами, а также реализует процедуры ввода и вывода информации.

Таким образом, в ходе работы процессора схема выборки команд выбирает последовательно команды из памяти, затем эти команды выполняются, причем в случае необходимости обработки данных подключается АЛУ . На входы АЛУ могут подаваться обрабатываемые данные из памяти или из внутренних регистров . Во внутренних регистрах хранятся также коды адресов обрабатываемых данных, расположенных в памяти. Результат обработки в АЛУ изменяет состояние регистра признаков и записывается во внутренний регистр или в память (как источник, так и приемник данных указывается в составе кода команды). При необходимости информация может переписываться из памяти (или из устройства ввода/вывода) во внутренний регистр или из внутреннего регистра в память (или в устройство ввода/вывода).

Внутренние регистры любого микропроцессора обязательно выполняют две служебные функции:

  • определяют адрес в памяти, где находится выполняемая в данный момент команда (функция счетчика команд или указателя команд );
  • определяют текущий адрес стека (функция указателя стека ).

В разных процессорах для каждой из этих функций может отводиться один или два внутренних регистра . Эти два указателя отличаются от других не только своим специфическим, служебным, системным назначением, но и особым способом изменения содержимого. Их содержимое программы могут менять только в случае крайней необходимости, так как любая ошибка при этом грозит нарушением работы компьютера, зависанием и порчей содержимого памяти.

Содержимое указателя ( счетчика) команд изменяется следующим образом. В начале работы системы (при включении питания) в него заносится раз и навсегда установленное значение. Это первый адрес программы начального запуска. Затем после выборки из памяти каждой следующей команды значение указателя команд автоматически увеличивается (инкрементируется) на единицу (или на два в зависимости от формата команд и типа процессора). То есть следующая команда будет выбираться из следующего по порядку адреса памяти. При выполнении команд перехода, нарушающих последовательный перебор адресов памяти, в указатель команд принудительно записывается новое значение — новый адрес в памяти, начиная с которого адреса команд опять же будут перебираться последовательно. Такая же смена содержимого указателя команд производится при вызове подпрограммы и возврате из нее или при начале обработки прерывания и после его окончания.

Читайте также: