Питание на процессоре нет pgood

Обновлено: 07.07.2024

Неисправности комьютеров Как найти дефект в компьютере Сигналы BIOS и POST Прошивка BIOS компьютера Схемы компьютеров и их блоков

Какие типовые неисправности в компьютерах?

Профессиональные мастера как правило знают все типовые дефекты и виды их проявления. Тем не менее кратко перечислим проявления для тех кто впервые попал на страницы форума:

  • не включается (нет реакции на кнопку вкл.)
  • не включается (есть реакция на кнопку вкл.)
  • после включения выдает сигнал ошибки (пищит)
  • после включения сразу отключается
  • не загружается операционная система
  • периодически отключается в процессе работы
  • не функционирует какое-либо устройство

Как найти неисправный элемент?

В двух словах не возможно указать всю методику поиска неисправности. Во первых необходимо определить неисправный блок. Для этого требуется понимать аппаратное устройство ПК, взаимную связь его отдельных блоков(модулей) внутри системного блока либо внешних устройств:

  • Блок питания
  • Материнская плата
  • Процессор
  • Оперативная память
  • Жёсткий диск
  • Видеокарта
  • Звуковая карта
  • DVD-привод
  • Внешние устройства

Что такое сигналы BIOS и POST?

Большинство мастеров знают, что БИОС-ы cовременных компютеров производят самотестирование при включениии. Обнаруженные ошибки сигнализируют звуковым сигналом и через внутреннюю программу POST (англ. Power-On Self-Test) — самотестирование при включении.

Как перепрошить BIOS?

Существует три основных способа обновления БИОС материнской платы:

  1. внутренним ПО самого БИОС-а
  2. специальной утилитой из DOS или Windows
  3. прошить чип БИОС-а программатором

Где скачать схему компьютера?

На сайте уже размещены схемы и сервисные мануалы. Это схемы на блоки питания, материнские платы, различные интерфейсы, и прочие. Они находятся в самих темах и отдельных разделах:

Зачастую диагностика неисправности материнской платы ноутбука осложняется тем,что в схеме нет последовательности запуска (Power Up Sequence).

В данной статье возьму за пример схему от ноутбука Lenovo ThinkPad Edge 14 LD-Note Calpella Discrete.

Как видим в этой схеме отсутствует последовательность запуска,что значительно осложняет представление о том, в какой момент тот или иной сигнал/напряжение должно появится.В этом случае можно найти схему от ближайшей модели в которой есть интересующая нас последовательность запуска и опираясь на неё провести диагностику.

Для этого я возьму схему от Lenovo Thinkpad E40 LD-Note AMD DIS.
Итак,в схеме от LD-Note AMD DIS на странице 52 видим представленную в виде блок-схемы последовательность запуска.Давайте разберём что здесь к чему.

В красных кружках подписаны цифры от 1 до 30 что и является количеством шагов до полного запуска платы.
Я распишу каждый из данных шагов и представлю их на схеме от Lenovo ThinkPad Edge 14 LD-Note Calpella Discrete где у нас последовательность запуска отсутствет.


Первый шаг это входные напряжение блок питания(БП) и/или батарея(АКБ).1a и 1b это напряжение от которого будет запитана плата.В зависимости от подключенного источника питания Charger(контроллер заряда) открывает входные ключи,например если плата запитана от БП(1a),то Charger выберет 1AC и откроет входной ключ PQ75(Lenovo Thinkpad E40),на схеме Lenovo ThinkPad Edge 14 это PQ54,тем самым пропуская напряжение с БП на общую шину питания VIN.При питании только от батареи выбор Chargerа 1BAT и он открывает PQ74(Lenovo Thinkpad E40),на схеме Lenovo ThinkPad Edge 14 это PQ3,тем самым так же пропуская напряжение с АКБ на общую шину питания VIN.На рисунке 1 показан участок схемы где 19V с БП попадают на шину VIN.

Давайте разберёмся как это происходит.Сперва нужно разобраться с названиями ножек самого транзистора и его структуры.На большинство транзисторов в интернете есть документация.В нашем случае в схеме указано что это TPCA8109.На первой странице даташита на него,указано что это P-канальный транзистор.
Как известно P-канальные транзисторы открываются в том случае если на его затвор(GATE)подать отрицательное напряжение.
На рисунке 1.1 я обозначил где у него находится ключ(первая ножка),на самом транзисторе так же ключ обозначается точкой в углу.На этом же рисунке снизу указана распиновка ножек:
1,2,3 - SOURCE(Исток)
4 - GATE(Затвор)
5,6,7,8 - DRAIN(Сток)

Итак,мы разобрались с типом транзистора и его распиновкой.Теперь перейдём к схеме.

Сначала рассмотрим вариант при питании от БП и АКБ.
На рисунке 2 мы видим PQ54,(хотя в схеме он и находится в перевёрнутом виде,это не столь важно так как в открытом виде напряжение через себя он все равно пропускает).

Для того чтобы он открылся нужно что бы на затворе(GATE)появился 0(за счёт этого PQ54 откроется,чтобы там появился 0,транзистор PQ56 должен быть открыт,таким образом подтягивая напряжение на затворе к земле и открывая PQ54.PQ56 это N-канальный транзистор и открывается положительным напряжением на затворе,в данном случае это сигнал ACOK,когда он появится на затворе PQ56,тот в свою очередь откроется и подтянет к земле 19V на затворе PQ54,таким образом открывая его и пропуская 19V на плату.Сигнал ACOK выходит с Chargera и равен напряжению от 3 до 5 вольт.Транзистор PQ3 при этом должен быть закрыт,так как через него шина VIN запитывается от АКБ.Для того чтобы PQ3 был закрыт на его затворе должно быть напряжение БП 19V.Что бы оно там появилось транзистор PQ6 так же должен быть открыт.Таким образом он пропустит через себя напряжение БП,его выход подключен к затвору PQ3,таким образом на затворе PQ3 появляется напряжение БП не давая ему открыться.При питании только от БП всё должно происходить так же.
Итак,на этом этапе мы разобрались как напряжение с БП попадает на общую шину VIN.

Теперь давайте рассмотрим что происходит при питании только от АКБ.

На рисунке 3 мы видим PQ3,через него запитывается шина VIN при питании только от АКБ.

PQ54 при этом должен быть закрыт.При питании только от АКБ сигнал ACOK равен 0.Соответственно PQ56 будет закрыт.
Напряжению на затворе PQ3 в этот момент будет отсутствовать,так что он будет находится в открытом состоянии.За счет того что в данный момент PQ56 закрыт,напряжение с PQ3 попадает на затвор PQ54 и он находится в закрытом состоянии.
Теперь когда мы разобрались как питание попадает на общую шину VIN,можно перейти к следующему шагу.

Второй шаг последовательности запуска это VIN,аббривеатура расшифровывается как Voltage Input - входное напряжение.В принципе как формируется VIN мы уже рассмотрели так что переходим к шагу под номером три.

Третий шаг ACIN,аббривеатура расшифровывается как Alternating Current Input - подключен адаптер переменного тока.
На этом этапе Charger сообщает EC контроллеру о том что подключен или не подключен БП.
Если сигнал ACIN имеет низкий логический уровень,то это означает что БП не подключен,а если сигнал ACIN имеет высокий логический уровень,то это означает что подключен БП.

Четвертый шаг это формирование дежурных напряжений 5VPCU и 3VPCU,VPCU это Voltage Pulsed Current - Напряжение Импульсного Тока.За дежурные напряжения отвечает микросхема ISL6237IRZ-T,которая из напряжения VIN формирует +5VPCU и 3VPCU,давайте рассмотрим какие сигналы она должна получить для включения дежурных напряжений.
Во первых она должна быть запитана.Для этого на 6ю ножку микросхемы должно приходить напряжение VIN.Следующее что должно быть это сигнал включения линейного регулятора EN_LDO(4я ножка),этот вывод так же подключён к шине VIN,но через резистивный делитель и напряжение на самом контакте EN_LDO будет около 5ти вольт.После получения сигнала EN_LDO должен включиться линейный регулятор и на 7й ножке микросхемы должно появиться напряжение 5V_AL(5 Volt Always),из этих 5V_AL формируется сигнал 3V5V_EN(3V5V Enable) сигнал включения 5VPCU и 3VPCU.Так же здесь формируется напряжение +15V(+15V_ALWP) при помощи умножителя напряжения на диодах и конденсаторах делая из 5ти вольт 15ть.

На пятом этапе присходит запитка EC контроллера от 3VPCU.Тут добавить нечего.


этот же сигнал подключен к 125й ножке EC контроллера как видно на рисунке 5,

Седьмой шаг это сигнал S5_ON,(94я ножка EC контроллера показанная на рисунке 6),

появляется этот сигнал после нажатия кнопки включения и равен он напряжению 3.3V.Этот сигнал как видим в последовательности запуска от Lenovo Thinkpad E40 нужен для запуска +3VS5,+5VS5 и +1.1VS5.На плате Lenovo ThinkPad Edge 14 напряжение +1.1VS5 не относится к сигналу S5_ON.Поиск по схеме Lenovo ThinkPad Edge 14 по сигналу S5_ON привёл меня к следующим напряжениям 3V_S5,5V_S5.Здесь они называются не +3VS5,+5VS5(Lenovo Thinkpad E40),а 3V_S5,5V_S5(Lenovo ThinkPad Edge 14) и формируются они из уже имеющихся дежурных 5VPCU и 3VPCU.Больше ни к чему этот сигнал не идёт.Давайте разберёмся как появляются эти напряжения.
На рисунке 7 я обозначу что происходит когда сигнал S5_ON отсутствует,а на рисунке 8 когда он есть.
Как видим на рисунке 7

транзистор PQ42 закрыт так как на затворе у него 0V.Таким образом напряжение 5VPCU открывает транзистор PQ77,и подтягивает 15V к земле,за счёт этого на втором выводе резистора PR254 будет 0V как и на затворах PQ67,PQ83,а учитывая то что это N-канальные транзисторы они не откроются и напряжения 3V_S5,5V_S5 не сформируются.

Замена материнской платы ноутбука
Добрый день, форумчане Хотел бы обратиться с вопросом, касательно замены материнской платы для.

ASUS A3E Ищу схему материнской платы ноутбука
Необходима схема материнской платы ноутбука Asus A3E. Есть здесь, но за деньги. Может у кого.


Добрый день. Поделитесь, пожалуйста, схемой материнской платы ноутбука hp 15-p105er, модель платы DAY23AMB6C0 REV. C
Добрый день. Поделитесь, пожалуйста, схемой материнской платы ноутбука hp 15-p105er, модель платы.


Неизвестный компонент материнской платы ноутбука asus n53sv
Напишите название(маркировку) или скиньте четкое фото крупным планом данного компонента.

сигнал S5_ON есть и открывает транзистор PQ42 подтягивая к земле напряжение 5VPCU.Таким образом на втором выводе резистора PR112 будет 0V.За счёт этого и на затворе PQ77 будет 0V и он будет закрыт давая возможность напряжению 15V попасть на затворы Q67,PQ83,таким образом позволяя им открыться и сформировать напряжения 3V_S5,5V_S5.

Восьмым шагом собственно говоря было формирование 3V_S5,5V_S5,но так как мы это уже обсудили,то перейдём к шагу девять.


Итак,когда SUSON равен нулю,транзистор PQ38 будет закрыт,таким образом дежурные 5VPCU через резистор PR114 попадают на затвор PQ78 и он находится в открытом состоянии подтягивая 15V к земле,за счёт этого на втором выводе резистора PR257 имеем 0,как и на затворах PQ66 и PQ85 которые по понятным причинам будут находиться в закрытом состоянии.
На рисунке 10

сигнал SUSON есть и за счёт этого транзистор PQ38 открыт и подтягивает 5VPCU к земле,за счёт этого на втором выводе резистора PR114 будет 0 и этот же 0 будет на затворе PQ78 и он будет закрыт,при этом 15V смогут через резистор PR257 попасть на затворы PQ66 и PQ85 открывая их и формируя 5VSUS,3VSUS из уже ранее появившихся 5VPCU и 3VPCU.

Напряжение 1.5VSUS формируется по другому,за него отвечает микросхема UP6163AQAG с позиционным номером PU10.
1.5VSUS это напряжение оперативной памяти,на рисунке 11


показано как сигнал SUSON становится сигналом S5.Этот сигнал приходит на 11ю ножку PU10 и служит для запуска VDDQ и VTTREF напряжений.Когда появится S5 на 11й ножке PU10,то включится напряжение 1.5VSUS.Для запуска VTT нужен сигнал S3 который приходит на 10ю ножку PU10 и формируется из сигнала MAINON как видно на том же рисунке 11.Когда появится MAINON,то появится напряжение VTT(0.75VSMDDR_VTERM),это напряжение терминации и равняется оно половине напряжения оперативной памяти,так как напряжение оперативной памяти у нас 1.5V,то напряжение терминации составит 0.75V.
На рисунке 12

представлена таблица состояний и логические уровни сигналов S3 и S5 в том или ином состоянии,то есть в состоянии S4/S5 сигналы S3 и S5 будут иметь низкий логический уровень "0",или 0 вольт,и напряжений VDDQ,VTTREF и VTT не будет.В состоянии S3 сигнал S3 будет иметь низкий логический уровень "0",или 0 вольт,а сигнал S5 будет иметь высокий логический уровень "1" или 3.3 вольта,в таком состоянии напряжения VDDQ,VTTREF будут присутствовать,а напряжение VTT нет.В состоянии S0 сигналы S3 и S5 будут иметь высокий логический уровень "1" и все напряжения будут включены.Когда это произойдёт PU10 должна выдать сигнал PGOOD(Power Good) с 13й ножки,этот сигнал означает что с питанием формируемым данной микросхемой всё в порядке и напряжение этого сигнала должно составлять 3 вольта.

Четырнадцатый шаг это сигнал MAINON который выдаёт EC контроллер с 96й ножки и этот сигнал является сигналом на включение таких напряжений как 0.75VSMDDR_VTERM,+5V,+3V,+1.8V,+1.5V,+1.05V_VTT.
Разберёмся по порядку.
0.75VSMDDR_VTERM напряжение терминации мы уже рассмотрели,когда сигнал MAINON становится сигналом S3 и запускает напряжение 0.75VSMDDR_VTERM,так что будем смотреть как получаются +5V,+3V.
Здесь всё так же как и с другими уже сформировавшимися напряжениями при помощи сигнала SUSON,поэтому объясню на словах.
Когда сигнал MAINON попадёт на затвор PQ39 тот в свою очередь откроется и подтянет к земле 5VPCU,таким образом на затворе PQ76 появится 0 и он будет закрыт,давая возможность 15ти вольтам попасть на затворы PQ79 и PQ65 после чего появятся напряжения +3V,+5V.

Теперь посмотрим как появляется 1.8V.За это напряжение отвечает микросхема OZ8116LN с позиционным номером PU8.Для того что бы это напряжение появилось,PU8 должна быть запитана.Для этого на 2ю ножку данной микросхемы должно приходить напряжение VIN,а так же дежурные 5VPCU на 5ю и 16ю ножку.Если с этим всё в порядке,то на данном этапе на её 3ю ножку(ON/SKIP)поступит сигнал MAINON,который и даст данной микросхеме команду на запуск и она сформирует напряжение 1.8V,после чего она должна выдать сигнал PGD(Power Good)c 4й ножки.

Теперь посмотрим как появляется 1.5V.Здесь всё так же просто как и с уже рассмотреными ранее напряжениями.MAINON имея высокий логический уровень откроет транзистор PQ26 и просадит 5V на землю.За счёт этого на затворе PQ27 будет выставлен 0 и он будет закрыт,позволив напряжению 15V попасть к затвору PQ29 и таким образом откроет его для формирования +1.5V.

Теперь напряжение +1.05V_VTT.За него отвечает микросхема RT8204CGQW с позиционным номером PU6.Здесь всё так же как и с PU8.На 16ю ножку должно прийти питание VIN,на 2ю и 9ю питание 5VPCU и сигнал MAINON (15я ножка - EN/DEM),после чего данная микросхема запустится и сформирует +1.05V_VTT и если на этом этапе всё пройдёт нормально,то она так же как и предидущие микросхемы выдаст сигнал PGOOD с 4й ножки.


Пятнадцатым и шестнадцатым шагом было включение напряжений за которые отвечают сигналы SUSON и MAINON.
А именно:
SUSON - 5VSUS,3VSUS,1.5VSUS.
MAINON - 0.75VSMDDR_VTERM,+5V,+3V,+1.8V,+1.5V,+1.05V_VTT.
Это можно увидеть на рисунке 13 или на странице 2 схемы на Lenovo ThinkPad Edge 14.

Так же есть шаги 15а и 16а,это как и говорилось ранее сигналы Power Good которые в последующем становятся сигналами HWPG.Но об этом далее.

При запуске любого блока питания стандарта ATX схемой мониторинга формируется контрольный сигнал «Питание в норме» (Power Good или PWR_OK), равный +5 вольт (с разбросом от +2,4 до +5 В).

Требования к форме сигнала PG (PWR_OK):


Время задержки появления сигнала PWR_OK согласно стандарту ATX должно быть в пределах 0,1-0,5 секунд. Если сигнал PG подается слишком рано, может быть повреждена CMOS-память на материнке, что приведет к неисправности, из-за которой она впоследствии не сможет стартовать.

Блок питания при полной загрузке (full load) должен формировать выходные напряжения в пределах нормы, включая сигнал PG, даже при пропадании на время до 17ms (включительно) питающего переменного тока (эта задержка называется AC loss to PWR_OK hold-up time или Voltage Hold-up Time).

Время задержки появления сигнала T3 «Питание в норме» должно быть менее 500ms, в идеальном случае – менее 250ms, равно или больше 100ms:


На рисунке выше представлены временные диаграммы, согласно которым должны появляться питающие напряжения у блока питания стандарта ATX.

Нормы напряжений БП, обеспечивающие появление сигнала Power Good

Сигнал PG должен появляться тогда, когда напряжение на выходах БП по линиям +5V, +3.3 V и +12V соответствует норме.

Напряжения на этих выходах должны быть в пределах: от 4,75 до 5,25, от 3,14 до 3,47 и 11,4-12,6 вольт соответственно.

Кроме того, питающее устройство должно обеспечивать заявленный уровень тока/мощности (энергии) для конечных потребителей.

Требования к номиналам выходных постоянных напряжений (DC) в блоках питания ATX:


Как используется сигнал PG от блока питания в компьютере?

На материнскую плату сигнал Power Good (PG) подается через восьмой контакт 20 (24)-контактного разъема БП (серый):


Распиновка 24-пиновой колодки питания источника стандарта ATX:


При наличии сигнала PG на материнской плате запускается генерация тактовой частоты CPU. При этом отключается сигнал начальной установки процессора и начинается выполнение программы BIOS, записанной в ROM по адресу FFFF:0000.

Если сигнал PG отсутствует, микросхема блока тактового генератора материнской платы продолжает периодически подавать на процессор сигнал его начальной установки, тем самым не давая ему работать в штатном режиме.

Это приводит к периодическому запуску процессора и включению вентилятора, установленного на его кулере.

Пропадание сигнала PG может происходить не только из-за неисправности в блоке питания, но и из-за проблем на материнской плате, например, при пробое силовых ключей в цепи питания процессора, что приводит к короткому замыканию и срабатыванию защиты от перегрузки/КЗ в БП.

Сигнал Power Good должен пропадать при уходе контролируемых напряжений от нормы и при пропадании напряжения в питающей сети на время не более 17 мс.

Любой компьютерный БП должен сохранять свою работоспособность при напряжениях 90-135 или 180-265 вольт (номинальное переменное напряжение 115 и 230 вольт соответственно) при частоте от 47 до 63 Герц:


Первичная проверка работоспособности компьютерного блока питания

Простейшая проверка блока питания заключается в проведении следующих шагов на 20 (24)-пиновом разъеме питания:

  1. Перед тестированием желательно предварительно подсоединить нагрузку по линиям +5 VDC и +12 VDC на уровне порядка 15-20% от максимальной мощности БП (лампочку или готовый китайский тестер блоков питания).
  2. Подключить БП к сети переменного тока, а затем измерить напряжение +5 вольт Standby между девятым пином (фиолетовый провод 5VSB) и землей (любой черный провод, например, 24-й GND). Это напряжение должно быть в пределах плюс-минус 5% (от 4.75 до 5,25 вольт). По стандарту, цепь 5V SB должна обеспечивать рабочий ток не менее 2 ампер (это нужно для обеспечения работоспособности технологии Wake on LAN). Напряжение 5VSB вырабатывается блоком питания всегда, когда он подключен к сети, даже при, казалось бы, выключенном компьютере. Если измеренный вольтаж Standby отличается от нормы, нужно искать неисправность в цепи формирования дежурного напряжения блока питания.
  3. При наличии дежурки проверяют вольтаж на зеленом проводе (pin 16, сигнал PS_ON). Его уровень должен быть более 2 вольт до замыкания на корпус (имитация нажатия клавиши Power на корпусе компьютера) для включения БП и менее 0.8 вольт после замыкания PS_ON на землю (включения БП). При нажатии на кнопку включения (замыкании PS_ON на массу) более 4-х секунд БП должен выключаться.
  4. На включенном БП замеряют напряжение PWR_GOOD (серый провод, pin 8). Его номинал должен быть в пределах 2,4-5 вольт.
  5. При наличии сигнала PWR_GOOD проверяют рабочие напряжения с блока питания: +3,3 вольта (оранжевые провода, пины 1; 2; 12; 13), +5 вольт (красные провода, пины 4; 6; 21; 22; 23), +12 вольт (желтые провода, пины 10; 11) wires. После замыкания PS_ON на массу они должны быть в пределах 3,14- 3,47, 4,75-5,25, и 11,4-12,6 VDC.

Вам также может понравиться


О деградации памяти видеокарт при майнинге

Устранение типичной неисправности в цепи питания Sapphire Radeon RX400/500-й серий

В последнее время подрабатывал на дому выполнением ремонтов электроники. Ремонтируя как технику знакомых, так и выкупленную на местном форуме (Авито и Юле), с целью реализации. Занимался всем на что хватало опыта и знаний: от бытовой аудио-видео, до компьютерной техники.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Мосфеты цепи питания процессора

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Дросселя питания процессора

Для того чтобы электролитические конденсаторы установленные по цепям питания процессора и находящиеся рядом с радиатором процессора (кулером) не вздулись от перегрева, необходимо эффективно отводить выделяемое при работе процессора тепло, иначе говоря требуется эффективная система охлаждения. Но вернемся к сути ремонта.

Мосфет транзистор фото

Мосфет транзистор фото

Если система охлаждения не справляется, то помимо конденсаторов греются еще и установленные на плате мосфеты, транзисторы многофазной системы питания процессора. Количество фаз питания составляет от трех на бюджетных материнских платах, до 4-5 и более в более дорогих, топовых игровых материнках.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Что происходит, когда один из этих квадратиков, полевых транзисторов мосфетов, оказывается пробит? Многие пользователи ПК встречались наверное с подобной поломкой: нажимаешь кнопку включения на корпусе системного блока, кулера дергаются, пытаются начать вращаться и останавливаются, а при повторной попытке включить все повторяется снова.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Провод 4 пин питания процессора

Что это означает? Что в цепях питания процессора где-то короткое замыкание, а скорее всего пробит один из этих самых мосфетов. Как самым простым способом попробовать определить один из вариантов, ваш ли это случай, доступным даже школьнику практически не умеющему обращаться с мультиметром?

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Распиновка разъема 4 пин

Если при установленном процессоре отключить на материнской плате разъем дополнительного питания процессора 4 pin и посмотрев по цветам где у нас находится желтый провод +12 вольт, и черный, земля, или GND, и установив на мультиметре режим звуковой прозвонки прозвонить на данном разъеме материнской платы между желтым и черным проводами у нас зазвучит звуковой сигнал, это означает что пробит один или несколько мосфетов.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Монтаж транзистора на материнке

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Процессор, проводя измерения с помощью мультиметра на мосфетах нужно вынимать, так как он имеет низкое сопротивление, которое может ввести в заблуждение при измерениях. Так вот, выпаяв из схемы дроссель мы исключаем то самое влияющее всегда на правильность результатов измерений сопротивление всех, параллельно включенных радиодеталей. Сопротивление, как известно, всегда считается при параллельном соединении, по правилу “меньше меньшего”.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Схема питания процессора

Иначе говоря, общее сопротивление всех подключенных параллельно радиодеталей будет меньше, чем сопротивление детали имеющей самое меньшее сопротивление, стоящей в нашей цепи при параллельном соединении.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Итак, виновник КЗ (короткого замыкания) цепи питания найден, теперь нужно его устранить. Как это сделать, ведь паяльный фен есть в домашней мастерской не у всех начинающих радиолюбителей? Для начала нам потребуется демонтировать, выпаять с платы установленные обычно вплотную электролитические конденсаторы которые будут мешаться нам при демонтаже и к тому очень не любят перегрева.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Паяльник ЭПСН 40 ватт фото

После чего у них обычно резко сокращается срок службы. Сам демонтаж конденсаторов, если учитывать некоторые нюансы, легко выполняется при помощи любого паяльника мощностью 40-65 ватт. Желательно имеющего обработанное, заточенное в конус жало. Сам я имею паяльную станцию Lukey и паяльный фен, но пользуюсь для демонтажа конденсаторов обычным паяльником 40 ватт ЭПСН с жалом заточенным в острый конус.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Паяльный фен фото

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Диммер на шнур 220В

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

ПОС 61 припой с канифолью

Если с конденсаторами эта процедура не имеет никаких сложностей, за исключением одной фишки применяемой для того, чтобы снизить общую температура плавления бессвинцового припоя, имеющего, как известно, более высокую температуру плавления чем припой применяющийся для пайки электроники ПОС-61.

Так вот, мы берем трубчатый припой с флюсом ПОС-61, желательно диаметром не более 1-2 миллиметров, подносим его к контакту конденсатора с обратной стороны платы и прогревая, расплавив его, осаждаем припой на каждом из двух контактов конденсатора. С какой целью, мы производим эти действия?

  1. Цель первая: путем диффузии сплавов смешения бессвинцового припоя и ПОС-61, мы понижаем общую темперауру плавления образовавшегося сплава.
  2. Цель вторая: чтобы максимально эффективно передать тепло от жала паяльника к контакту, мы условно говоря, греем контакт небольшой капелькой припоя, передавая тепло при этом намного эффективнее.
  3. И наконец, цель третья: когда нам требуется очистить после демонтажа конденсатора отверстие в материнской плате для последующего монтажа, не важно при замене конденсатора или монтаже обратно, как в этом случае этого же конденсатора, мы облегчаем этот процесс проткнув отверстие в расплавленном припое предварительно снизив общую температуру сплава внутри нашего контакта.

Здесь нужно сделать еще одно отступление: для этой цели многие радиолюбители применяют различные подручные средства, кто-то деревянную зубочистку, кто-то заостренную спичку, кто-то иные предметы.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Алюминиевый конический пруток

С его помощью нам достаточно прогревая контакт вставить пруток поглубже в отверстие контакта. Причем данное действие следует проводить без фанатизма, всегда помня о том, что материнская плата это многослойная плата, а контакты внутри имеют металлизацию, иначе говоря металлическую фольгу, сорвав которую если вы недостаточно прогрели контакт или резко вставили предмет которым прочищали отверстие в контакте, вы можете привести материнскую плату или любое другое устройство имеющее подобную сложную конструкцию печатной платы в устройство, уже не подлежащее ремонту.

Итак, все трудности преодолены, конденсаторы успешно демонтированы, переходим наконец к замене наших мосфетов, то есть цели нашей статьи. Собственно любая процедура замены детали подразумевает собой три этапа: сначала демонтаж, затем подготовка платы к последующему монтажу, и наконец сам монтаж новой детали или ранее демонтированной с донорской платы этим или другим способом.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Ни в коем случае нельзя использовать паяльники с мощностью 40-65 ватт, особенно дедушкины в виде топора для монтажа мосфетов на плату (по крайней мере при отсутствии диммера с помощью которого мы сможем понизить температуру жала паяльника). В начале статьи было упоминание о варианте демонтажа мосфетов для начинающих не имеющих в мастерской паяльного фена, сейчас разберем этот вариант подробнее.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Сплав Вуда фото

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Причем со стороны Стока, среднего контакта имеющего большую площадь соприкосновения с платой, мы наносим значительно больше данного сплава. Цель данной операции? Также как и в случае с нанесением сплава ПОС-61, мы снижаем, причем на этот раз значительно существеннее, общую температуру плавления припоя, облегчая тем самым условия демонтажа.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Демонтаж микросхем без фена

Данная операция требует аккуратности от исполнителя для того чтобы при демонтаже не оторвать пятаки контактов с платы, поэтому если чувствуем что прогрели недостаточно, а греть требуется попеременно быстро меняя жало паяльника у этих трех контактов, немного покачивая пинцетом деталь, разумеется без фанатизма. Произведя данную операцию 3-5 раз уже будешь машинально чувствовать когда контакты детали достаточно прогреты, а когда еще нет.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Демонтаж с помощью оплетки

У данного способа демонтажа есть один минус, но при наличии опыта это не становится проблемой: перегрев при демонтаже мосфетов с плат доноров. В случае если же вы приобрели новый мосфет в радиомагазине и уверены в том, что демонтируете пробитый мосфет, перегрев становится не очень критичен. После демонтажа следует обязательно убедиться в том, пропало ли замыкание на контактах мосфета на плате, редко но к сожалению иногда случается и так, что наш якобы пробитый мосфет был ни при чем, а влияли драйвер или ШИМ контроллер на результаты измерений, которые и пришли в негодность. В данном случае без помощи паяльного фена будет не обойтись.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Корпус SO-8 микросхема

Лично демонтировал много раз данным способом микросхемы в корпусе SO-8, применяя на контактах с полигонами иногда паяльник мощностью 65 ватт и немного убавив его мощность диммером. Результат при аккуратности исполнителя практически 100% успешный. Для микросхем в SMD исполнении, имеющим большее количество ног, данный способ к сожалению бесполезен, потому что прогреть большее количество ножек без специальных насадок проблематично и очень высока вероятность оторвать пятаки контактов на плате.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Затем нужно дать раствору – флюсу настояться двое-трое суток до растворении канифоли в спирте, периодически многократно взбалтывая, не давая выпасть в осадок. Данный флюс наношу с помощью кисточки от лака для ногтей, соответственно налив получившийся флюс в очищенную от следов лака 646 растворителем бутылочку. Грязи на плате остается при использовании этого флюса в разы меньше, чем от всяких китайских флюсов, типа BAKU или RMA-223.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Делаем спиртоканифольный флюс

Ту же, которая все-таки останется, мы убираем с платы с помощью 646 растворителя и обычной кисточки для уроков труда. Данный способ по сравнению с удалением следов флюса даже с помощью 97% спирта имеет ряд преимуществ: быстро сохнет, лучше растворяет и оставляет меньше грязи. Рекомендую всем как отличное бюджетное решение.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

646 растворитель фото

Единственное замечу: будьте аккуратнее с пластмассовыми деталями, не наносите на графитовые контакты, типа как встречаются на платах пультов и потенциметров, и никогда не торопитесь, дайте хорошенько просохнуть плате, особенно если есть риск затекания растворителя под стоящие рядом SMD и тем более BGA микросхемы.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Графитовые контакты платы пульта

Читайте также: