Подключение тдкс к импульсному блоку питания

Обновлено: 06.07.2024

В продолжение темы Электронные трансформаторы на сайте ПАЯЛЬНИК начинается серия статей, в которых будут тестироваться как Электронные Трансформаторы, так и Импульсные Блоки Питания, купленные администрацией сайта на площадке AliExpress специально для этих целей.

Под «Электронными Трансформаторами» подразумеваются устройства с переменным напряжением на входе и переменным напряжением на выходе, а под «Импульсными Блоками Питания» - с переменным напряжением на входе и постоянным стабилизированным напряжением (или током) на выходе.

Сначала все устройства кратковременно (10…30 минут) проверялись на максимальных заявленных токах, потом некоторым преобразователям нагрузка уменьшалась, так как они сильно нагревались, и затем проводились дальнейшие эксперименты.

Нагрузкой в основном были резисторы ПЭВ-15. ПЭВ-50, набранные до нужного сопротивления или галогенные лампы разной мощности. Ток контролировался по падению напряжения на резисторе 0,1 Ом. Графики снимались с помощью программы SpectraPLUS и звуковой карты с открытыми входами.

Первый импульсный блок питания - бескорпусный AC/DC 220/24, 3 Вт

Внешний вид показан на рисунке 1, а плата более подробно - на рисунке 2. Под трансформатором видна цифробуквенная маркировка «B02B» и «20180403». Возможно, что последнее – это дата изготовления печатной платы.



Принципиальная схема показана на рис.3 (ёмкость керамических конденсаторов неизвестна, но примерное их значение можно определить по другим подобным схемам). Микросхема преобразователь – OB2512NJP. Частота преобразования – около 35 кГц. Какие-либо элементы защиты и фильтрации в высоковольтной части отсутствуют – скорее всего, подразумевается установка модуля в плату, где они уже присутствуют.


Преобразователь был нагружен на нагрузку, обеспечивающую ток 0,12 А (2,88 Вт) и проработал с ней около 3-х часов. Трансформатор Tr1 нагрелся примерно до 40-45 градусов. При изменении напряжения питания в пределах от 180 В до 240 В выходное напряжение менялось в пределах +/- 35 мВ (рис.4). Уровень ВЧ пульсаций в выходном напряжении зависит от тока нагрузки и при 0,12 А превышает 250 мВ.


При нагрузке 3 Вт и напряжении питания 240 В в выходном напряжении появлялись пульсации 100 Гц – видимо, преобразователь начинал «уходить в защиту».

На наклейке написано 12 В и 5 A . Внешний вид показан на рисунке 5, вид на внутренности и обратная сторона печатной платы на рисунке 6. Плата имеет маркировку «NxPs60W-V02A».



Вид на детали более подробно на рисунках 7, 8 и 9.




При вынимании печатной платы из корпуса оказалось, что силовой транзистор KF5N60F приклеен к алюминиевой стенке корпуса на силиконовый герметик (тот, что с характерным уксусным запахом). Герметик нанесён неровно и таким толстым слоем (рис.10), что прижимная пластина не смогла обеспечить нормальный прижим транзистора к стенке корпуса.


Второй транзистор (CS5N60F, рис.11) «был посажен» на обычную белую термопасту и намного лучше прижат к алюминиевой стенке.


Схема этого блока питания показана на рисунке 12. Необычные маркировочные обозначения деталей (E, MOS, DO) оставлены «родные». Интересно включение полевого транзистора DO в качестве выпрямительного диода во вторичной цепи преобразователя.


При токе в нагрузке 5 А и при изменении сетевого напряжения от 180 В до 240 В выходное напряжение 12,3 В было очень стабильно, мультиметр ВР-11А изменений не видел, т.е. они не более нескольких милливольт (рис.13). На рисунке 14 показано, в каких пределах менялось выходное напряжение при изменении сопротивления подстроечного резистора VR – от 11,41 В до 13,14 В. Пульсации на выходе при токе в нагрузке 5 А не более 200 мВ, их частота следования около 63 кГц.



Глядя на транзисторы, видно, что такой способ их прижима неправилен из-за того, что алюминиевая стенка корпуса имеет толщину всего 1,2 мм и прогибается под головкой винта, что приводит к искривлению плоскости стенки. Решить эту проблему можно, подложив под головку винта большую толстую пластину (рис.15). Для дополнительного охлаждения транзисторов пластину можно заменить радиатором – «выпрямительный» транзистор CS5N60 при токе 5 А нагревается достаточно быстро (наклейку в этом случае следует убрать).


Далее - бескорпусный блок питания AC/DC 220/24, 1 A

Внешний вид – на рисунке 16. Маркировка печатной платы - «GMY-001F». Имеет заявленные выходные параметры 24 В и 1 А (24 Вт). Схема приведена на рисунке 17.



При изменении входного напряжения, мультиметр изменений в выходном +24,13 В не заметил (рис.18).


Уровень пульсаций не превышает 100 мВ при токе в нагрузке 0,7 А (рис.19) и менее 50 мВ при токе 1 А. И при этом пульсации носят низкочастотный характер – анализатор спектра определил их как колоколообразные полосы с центральными частотами 750 Гц при токе 0,7 А и 600 Гц при 1 А.


Ещё один блок питания - AC/DC 220/24, 1,5 A

Внешне похож на предыдущий, но имеет другую схемотехнику и, соответственно, маркировку печатной платы - «XPJ-030» (рис.20, 21, 22). На АЛИ выставлена фотография с маркировкой «GMY-030». Заявленные параметры - 24 В и 1,5 А (36 Вт). Схема приведена на рисунке 23. Даташит на микросхему ШИМ контроллера (с нанесёнными надписями «63J04a» и «909») найти не удалось, но по выводам и схемотехническому включения она очень похожа на FAN6862.





При токе в нагрузке 1,5 А и изменении питающего напряжения от 180 В до 240 В, в выходном напряжении +24,3 В мультиметр никаких изменений не видит (рис.24). ВЧ пульсации не более 20 милливольт. После двух часов работы преобразователь сильно нагрелся.


Два электронных трансформатора «YAM» AC/AC 220/12

Первый - модель «YMET80C» (рис.25) с выходным переменным напряжением 12 В и заявленной на этикетке мощность 80 Вт (ток 6,7 А). Маркировка печатной платы «JM-792A». Схема на рисунке 26.



Второй преобразователь - модель «YLET60C» (рис.27). Те же 12 В «переменки» на выходе, но указана меньшая мощность - 60 Вт (ток 5 А). В пластиковом корпусе отсутствуют какие-либо отверстия для вентиляции и при кажущейся внешней аккуратности, на печатной плате были обнаружены брызги припоя и повреждённая изоляция вторичной обмотки трансформатора. На фотографии со стороны дорожек видны капля, замыкающая коллектор Т2 с правым выводом R2 и «длинная сопля» между его же эмиттером и тем же правым выводом R2. Маркировка печатной платы «JM-797». Схема – на рисунке 28.



Оба преобразователя при первых включениях не заработали. У «YMET80C» был сколот край корпуса динистора (возможно, что это я «зацепил» его пинцетом, когда выпаивал соседние резисторы, но изгибов выводов не было – стоял ровно и на некотором расстоянии от платы), а в «YLET60C», скорее всего, были установлены транзисторы без защитных диодов и они оба «ушли в обрыв». После замены транзисторов и установки диодов (как на рис.26), «YLET60C» запустился и проработав около получаса с током в нагрузке 5 А сильно нагрелся. Далее ток был уменьшен до 4,5 А и был снят график стабильности выходного переменного напряжения и просмотрена его форма (рис.29). Видно, что никакой стабильности нет, так как нет никаких цепей стабилизации, и видно, что выходное напряжение состоит из 100-герцовых пачек, заполненных импульсами частотой около 70 кГц (сигнал в звуковую карту брался через случайный делитель и для сдвига спектра пропущен через смеситель, поэтому шкала вольт не соответствует действительности и, возможно, что и разница в амплитудах полуволн с этим связана).


После перестановки рабочего динистора в «YMET80C», тот тоже заработал. Частота преобразования около 55 кГц, выходное напряжение зависит от тока нагрузки и находится в пределах 11,5 В…12,5 В и имеет такой же вид, как и у «YLET60C». Этот преобразователь тоже сильно греется. Даже не верится, что в корпусах без охлаждения они долго проработают при указанных на них мощностях. Возможно, что в данных случаях указана или кратковременная мощность, или максимально возможная потребляемая от сети 220 В.

На платах старых телевизоров и мониторов,на основе кинескопа-электронно-лучевой трубки,находится трансформатор ТДКС-трансформатор диодно-каскадный строчный.

ТДКС-компонент блока строчной развертки,служит для формирования высокого напряжения для питания второго анода кинескопа,питания накала кинескопа,формирования ускоряющего и фокусирующего напряжения,питания видеоусилителей,формирует импульсы обратного хода строчной развертки для работы схемы гашения,питание тюнера.

На основе этого трансформатора можно собрать источник высокого напряжения буквально из нескольких деталей.

На корпусе есть два потенциометра-focus и screen,с их помощью регулируется ускоряющее и фокусирующее напряжение.Выводы с красной изоляцией-высоковольтные выводы(screen, focus и второй анод кинескопа).

Нумерация выводов против часовой стрелки,выводов в основном 10.Внутри ТДКС находятся высоковольтные диоды умножителя,их я доставал с помощью нагрева на костре и об этом есть статья.

Примерные напряжения на выводах:

-U второго анода-25 и более кВ,все зависит от размера кинескопа,ч/б или цветной кинескоп

-ускоряющее напряжение 300-800В

-напряжение видеоусилителя-200В,тюнера-30В и напряжение нити накала кинескопа 6.3В

В советских телевизорах и мониторах на кинескопе тоже есть строчный трансформатор,но он без умножителя,умножитель находится рядом на плате.Трансформатор этот ТВС-трансформатор высоковольтный строчный.

Трансформатор выполнен с ферритовым П-образным сердечником без зазора,с магнитной проницаемостью примерно 2000НМС1 и 3000НМС1.Такие сердечники изготовляют на основе марганец-цинковых ферритов и имеют малые значения магнитных потерь в сильных магнитных полях на частотах,на которых работает трансформатор строчной развертки-15625Гц и выше,повышенные значения магнитной индукции при высокой t и подмагничивании.

Теперь пора проверить умножитель трансформатора.Проверка не проверит полностью ТДКС,но для схем высоковольтного генератора вполне пойдет.

Импульсные источники питания (ИИП) заполонили мир. Кажется, что они применяются везде, полностью вытеснив традиционные. На самом деле, этот вопрос неоднозначный.

В обзоре речь пойдет именно об импульсных блоках питания (ИИП) – преобразователях переменного сетевого напряжения в постоянное. Следует отличать такие устройства от импульсных стабилизаторов (стабилизируют входное постоянное напряжение) и преобразователей DC/AC или AC/AC (например, 12VDC/220 VAC, преобразующих напряжение автомобильной бортсети в 220 вольт), хотя в этих устройствах применяются похожие принципы.

Отличия импульсного блока питания от обычного трансформаторного

Описание работы и устройство импульсного блока питания

Схема трансформаторного стабилизированного источника питания.

Традиционный «трансформаторный» блок питания строится по схеме: трансформатор - выпрямитель с фильтром - стабилизатор выходного напряжения (может отсутствовать). Схема несложна и отработана годами, но у нее есть существенный недостаток – при увеличении мощности опережающими темпами растут габариты и вес.

В первую очередь растут размеры и масса трансформатора. Для повышения тока надо увеличивать сечение обмоток, но главный вклад в массогабаритные характеристики вносит сердечник. Не вдаваясь в физические подробности, можно отметить, что эту проблему можно обойти, увеличив частоту, на которой происходит трансформация. Чем выше частота, тем меньшим сердечником можно обойтись. Не зря в авиации и кораблестроении используются электросети на частоту 400 Гц. Многие элементы получаются гораздо легче и компактнее. Но в быту негде взять повышенную частоту. 50 Гц в розетке – все, что доступно потребителю. Поэтому блоки питания на большие токи строят по другому принципу. В них переменное напряжение сети выпрямляется, а затем из него «нарезаются» импульсы более высокой (до нескольких десятков килогерц) частоты. За счет этого трансформатор получается маленьким и легким без потери мощности. Это главное, чем отличается любой импульсный блок питания от обычного.

Еще один источник повышенных размеров и габаритов – стабилизатор. В традиционных БП применяются линейные стабилизаторы. Они требуют повышенного входного напряжения, а разница между входом и выходом, умноженная на ток нагрузки, бесполезно рассеивается. Это ведет к дополнительному увеличению массы трансформатора, который должен обеспечивать необходимый бесполезный запас по мощности, а также требует больших и тяжелых теплоотводящих радиаторов. В ИИП это делается по другому принципу. Напряжение стабилизируется методом изменения ширины импульсов. Это позволяет повысить КПД и не требует отвода излишнего тепла в таком количестве.

В видео-сравнение линейного и импульсного блоков питания.

К недостаткам импульсников можно отнести усложненную схемотехнику и повышенные требования к надежности элементов. Эти минусы сходят на нет с ростом мощности. Считается, что для выходных токов до 2..3 ампер подходят трансформаторные блоки с линейными стабилизаторами, а чем выше нагрузка, тем ярче начинают проявляться преимущества ИИП. При токах от 10 А обычно о трансформаторных БП речь уже не идет.

Среди минусов импульсных источников также надо упомянуть генерацию помех в питающую сеть и «замусоренность» выходного напряжения высокочастотными составляющими.

Какие бывают виды и где применяются

Разделить импульсники можно по разным признакам. По выходному напряжению они делятся на:

  • однополярные с одним уровнем напряжения;
  • ондополярные с несколькими уровнями напряжения;
  • двухполярные.

Эти типы можно комбинировать как угодно – принципиальных ограничений нет. Можно создать блок питания, например, с несколькими однополярными напряжениями (+5 В, +24 В) и с двуполярным (±12 В), или с двумя двуполярными выходами (±12 В, ±5 В). Все зависит от области применения.

Более интересной является информация о типе стабилизации. Здесь ИИП можно разделить на категории:

  1. Нестабилизированные источники. У них выходное напряжение зависит от нагрузки. Могут быть применены для питания оконечных устройств аудиоаппаратуры (усилители и т.п.).
  2. Стабилизированные источники. У таких устройств от нагрузки могут не зависеть напряжение, ток или и то, и другое. Источники со стабилизированным напряжением используются, например, в качестве БП для компьютеров и серверов, или для заряжания кислотно-свинцовых аккумуляторов. Стабилизированный ток подойдет для зарядных устройств для других типов АКБ.
  3. Регулируемые источники. У них уровень выходного напряжения и тока можно выставлять в определенных пределах в зависимости от потребности. Такие устройства используются в качестве лабораторных источников питания.


Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Описать все области использования импульсников невозможно. Они применяются там, где надо получить большой ток от легкого и компактного источника.

Также можно разделить ИИП по схемотехнике:

  • с импульсным трансформатором;
  • с накопительной индуктивностью.

В схемотехнику можно углубляться и дальше и классифицировать БП по другим критериям, но это принципиального значения не имеет.

Структурная схема и описание работы основных узлов ИБП

Структурная схема импульсника сложнее, чем у трансформаторного источника. Для понимания принципа работы импульсного блока питания в целом, надо разобрать функционирование каждого узла в отдельности.

Описание работы и устройство импульсного блока питания

Описание работы и устройство импульсного блока питания

Плавкий 5-амперный предохранитель перегорает при превышении номинального тока при аварийной ситуации в БП. Для защиты от повышения напряжения предусмотрен варистор V1. В штатном режиме он не влияет на работу устройства. При скачке в сети от открывается, его сопротивление резко увеличивается, ток через варистор возрастает. Это вызывает перегорание предохранителя.

Терморезистор с отрицательным коэффициентом сопротивления THR1 сначала имеет большое сопротивление и ограничивает ток, идущий на зарядку конденсаторов фильтра высоковольтного выпрямителя. Потом термистор прогревается проходящим через него током, его сопротивление падает, но к тому моменту емкости уже будут заряжены. Конденсаторы CX1, C11, C12, CY3 и синфазный дроссель FL1 защищают сеть от синфазных и дифференциальных помех.

Высоковольтный выпрямитель и фильтр

Высоковольтный выпрямитель обычно строится по традиционной мостовой двухполупериодной схеме и особенностей не имеет. Если в преобразователе применяется полумостовая схема, то фильтр выполняется из двух емкостей, включенных последовательно – так формируется средняя точка с напряжением, равным половине питания.

Описание работы и устройство импульсного блока питания

Участок схемы импульсника с высоковольтным выпрямителем D1-D4 и с емкостным делителем напряжения C1-C2.

Иногда параллельно конденсаторам ставят резисторы. Они нужны для разряда емкостей после выключения питания.

Инвертор

Преобразование постоянного напряжения в импульсное происходит с помощью инвертора на полупроводниковых ключах (часто на транзисторах). Открываясь и закрываясь, ключи подают в обмотку импульсы напряжения. Таким методом получается своеобразное переменное напряжение (однополярное), которое может быть трансформировано в напряжение другого уровня обычным способом.

Описание работы и устройство импульсного блока питания

Самая простая схема преобразователя постоянного напряжения в импульсное – однотактная. Для ее реализации нужен минимум элементов. Недостаток такого узла – при росте мощности резко растут габариты и масса трансформатора. Связано это с принципом действия такого преобразователя. Он работает в два цикла – во время первого транзистор открыт, энергия запасается в индуктивности первичной обмотки. Во время второго запасенная энергия отдается в нагрузку. Чем больше мощность, тем больше должна быть индуктивность, тем больше должно быть витков в первичной обмотке (соответственно, увеличивается количество витков во вторичных обмотках).

От этого недостатка свободна двухтактная схема со средней точкой (пушпульная). Первичная обмотка трансформатора разделена на две секции, которые через ключи поочередно подключаются к минусовой шине. На рисунке красной стрелкой показано направление тока для одного цикла, а красной – для другого. Минусом является необходимость иметь удвоенное количество витков в первичке, а также наличие выбросов в момент коммутации. Их амплитуда может достигать двойного значения от напряжения питания, поэтому надо применять транзисторы с соответствующими параметрами. Сфера применения такой схемы – низковольтные преобразователи.

Выбросы отсутствуют, если инвертор выполнен по мостовой схеме. Из четырех транзисторов составлен мост, в диагональ которого включена первичная обмотка трансформатора. Транзисторы открываются попарно:

  • первый цикл – верхний левый и нижний правый;
  • второй цикл – нижний левый и верхний правый.

Обмотка подключается к плюсу питания то одним выводом, то другим. Минусом является применение 4 транзисторов вместо двух.

Компромиссным вариантом считается применение полумостовой схемы. Здесь коммутируется один конец первичной обмотки, а второй подключен к делителю из двух емкостей. В этой схеме также отсутствуют выбросы напряжения, но применено всего два транзистора. Недостаток такого решения – к первичной обмотке прикладывается только половина питающего напряжения. Вторая проблема – при создании мощных источников емкость конденсаторов делителя растет, и их стоимость становится нецелесообразной.

Если ИИП построен по схеме с регулировкой параметров методом широтно-импульсной модуляции (ШИМ), то в большинстве случаев ключи приводятся в действие не напрямую от микросхемы ШИМ, а через промежуточный узел – драйвер. Связано это с повышенными требованиями к прямоугольности управляющих сигналов.

Описание работы и устройство импульсного блока питания

Фрагмент схемы промышленного импульсного источника – полумостовой инвертор на транзисторах Q1, Q2 управляется через промежуточный узел на транзисторах Q8, Q9 и трансформаторе T1.

В схемах всех преобразователей используются как полевые, так и биполярные транзисторы, а также IGBT, сочетающие свойства обоих типов.

Выпрямитель

Трансформированное во вторичные обмотки напряжение надо выпрямить. Если требуется выходное напряжение выше +12 вольт, можно применять обычные мостовые схемы (как и в высоковольтной части).

Описание работы и устройство импульсного блока питания

Схема импульсного блока питания с выходным напряжением до 30 вольт и мостовым двухполупериодным выпрямителем.

Если напряжение низкое, то выгодно применять двухполупериодные схемы со средней точкой. Их преимущество в том, что падение напряжение происходит только на одном диоде для каждого полупериода. Это позволяет сократить количество витков в обмотке. Для этой же цели используют диоды Шоттки и сборки на них. Недостаток такого решения – более сложная конструкция вторичной обмотки.

Описание работы и устройство импульсного блока питания

Схема выпрямителя со средней точкой и прохождение по ней тока.

Фильтр

Выпрямленное напряжение надо отфильтровать. Для этой цели применяются как традиционные емкости, так и индуктивности. Для используемых частот преобразования дроссели получаются небольшими, легкими, но работают эффективно.

Описание работы и устройство импульсного блока питания

Схема выходных фильтрующих цепей каналов импульсного компьютерного блока питания.

Цепи обратной связи

Цепи обратной связи служат для стабилизации и регулировки выходного напряжения, а также для ограничения тока. Если источник нестабилизированный, у него эти цепи отсутствуют. У устройств со стабилизацией тока или напряжения эти цепи выполняются на постоянных элементах (иногда с возможностью подстройки). У регулируемых источников (лабораторных и т.п.) в обратную связь включены органы управления для оперативной регулировки параметров.

У компьютерного БП дополнительно имеется схема управления и формирования служебных сигналов (Power_good, Stand By и т.д.).

Как устроен ШИМ контроллер

В стабилизированных и регулируемых источниках питания напряжение на выходе поддерживается методом широтно-импульсной модуляции (ШИМ). Суть метода в том, что первичная обмотка питается импульсами неизменной амплитуды и частоты. Для регулировки напряжения в зависимости от нагрузки или выбранного уровня изменяется ширина импульса. Трансформированные во вторичную обмотку импульсы затем выпрямляются и усредняются на выходном конденсаторе фильтра. Чем больше ширина импульса, тем выше усредненное напряжение. Если в результате увеличения тока нагрузки напряжение на выходе просело, ШИМ-контроллер сравнивает выходное напряжение с заданным и дает команду увеличить ширину импульсов. Если напряжение увеличилось, ширина импульсов уменьшается. Среднее напряжение также уменьшается.

Описание работы и устройство импульсного блока питания

Принцип регулирования выходного напряжения методом широтно-импульсной модуляции.

Культовой микросхемой для построения импульсных источников считается TL494. На ее примере можно разобрать принцип действия
шим контроллера блока питания.

Описание работы и устройство импульсного блока питания

Назначение выводов микросхемы указано в таблице.

НазначениеОбозначениеНомер выводаНомер выводаОбозначениеНазначение
Прямой вход усилителя ошибки 1IN1116IN2Прямой вход усилителя ошибки 1
Инверсный вход усилителя ошибки 1­IN1215IN2Инверсный вход усилителя ошибки 1
Выход обратной связиFB314VrefВыход опорного напряжения
Управление временем задержкиDTC413ОТСВыбор режима работы
Частотозадающий конденсаторC512VCCНапряжение питания
Частотозадающий резисторR611С2Коллектор 2-го транзистора
Общий проводGND710E1Эмиттер 1-го транзистора
Коллектор 1-го транзистораC189E2Эмиттер 2 -го транзистора

Описание работы и устройство импульсного блока питания

Частоту генератора задают элементы, подключаемые к выводам 5 и 6. Напряжением на выводе 4 ограничивают ширину выходного импульса. Это необходимо для исключения «перехлеста» открытия транзисторов чтобы избежать ситуации, когда оба ключа оказываются открыты. Через этот вывод также можно организовать мягкий пуск БП. Вывод 13 служит для перевода микросхемы в однотактный режим. Если его подключить к общему проводу, импульсы на выводах обоих ключей станут одинаковыми. На выводе 14 постоянно присутствует образцовое напряжение, равное +5 вольтам. Оно может быть использовано в любых схемотехнических целях.

Выводы 1 и 2 служат прямым и инверсным выводами усилителя ошибки. Если напряжение на выводе 1 превышает напряжение на 2 ноге, то ширина выходных импульсов будет уменьшаться пропорционально разнице на этих выводах. Если напряжение на 2 выводе выше, чем на 1, то на выходе импульсы будут отсутствовать. Также работает второй усилитель ошибки (выводы 16 и 15). Выходы обоих усилителей соединены по схеме ИЛИ и подключены к ноге 3. Первый усилитель обычно используют для регулирования напряжения, второй – для регулирования тока.

Описание работы и устройство импульсного блока питания

В качестве примера можно рассмотреть схему лабораторного источника на данной микросхеме. Здесь применены практически все технические решения, описанные выше. Регулируемая обратная связь, выполненная на операционных усилителях OP1..OP4, позволяет настраивать уровень выходного напряжения и ограничивать ток. Для создания импульсного напряжения используется полумостовой инвертор на биполярных транзисторах, подключенных к микросхеме посредством драйвера.

Для наглядности рекомендуем серию тематических видеороликов.

Также при создании ИИП применяются и другие микросхемы-регуляторы ШИМ. Они могут отличаться от TL494 по функционалу и назначению выводов, но в них используются те же принципы. Разобраться в их работе не составит труда.


Такой тип источников питания ещё называют лабораторными, и не зря!Он подойдет не только для питания различных устройств, но и как универсальное зарядное устройство для абсолютно любых аккумуляторов.


Как мне кажется блок питания мега простой и отлично подойдет для начинающего радиолюбителя.Блок питания может быть построен на различные диапазоны напряжения и тока все зависит от конкретных задач.Сегодня мы рассмотрим блок питания на самый популярный диапазон 0-30 вольт/0-10 амер. Выбор такого диапазона также обусловлен применением китайского вольтамперметра с диапазоном по току до 10а.


Условно блок питания можно разделить на 3 части:

1 Внутренний источник питания.

Представляет из себя любой компактный источник напряжение 12 вольт и током не менее 300 мА.Предназначен для питания шим контроллера, вентилятора охлаждения и вольтамперметра.Можно использовать абсолютно любой адаптер на 12 вольт. Рассказывать как собрать такой в этой статье не буду, будем использовать готовый AC-DC преобразователь с китая вот такого типа:


2 Модуль управления.

Представляет из себя микросхему TL494 c небольшим драйвером на 4-х транзисторах:


Благодаря использованию встроенных операционных усилителей обвязка TL494 получается очень простая, такое включение широко распространено у радиолюбителей.Резистором R4 задаём желаемое максимальное напряжение, R2- ток.R11 и R12 для удобства могут быть многооборотные, но я использую обычные.
При использовании ЛУТ плату управления я как правило собираю на отдельной платке:



3 Силовая часть.
Основную часть компонентов можно использовать из старого компьютерного блока питания, главное чтобы он был соответствующей топологии.



Дроссель L1 мотается на ферритовом кольце из того же компьютерного бп, предварительно сматываем с него все обмотки и наматываем медный провод длинной 1.5-2м сечением 2мм, это позволит уложится в указанные параметры(это для тех у кого нечем промерять индуктивность).
Также в большинстве нормальных компьютерных бп есть второй дроссель на ферритовом стержне, его в большинстве случаев можно оставить как есть в качестве L2.
Силовой трансформатор тоже можно использовать как есть, но тогда выходное напряжение будет около 20 вольт.Для 30 вольт вторичную обмотку придется перемотать.
Когда мне нужно снять большие токи я предпочитаю использовать ферритовые кольца.
Расчет для нашего блока питания 30 вольт 10 ампер.Трансформатор-донор из компьютерного бп оказался 39/20/12:


Все основные компоненты размещаются на пп стандартных размеров под корпус компьютерного блока питания:


Кстати после сборки платы управления и намотки трансформатора GDT их можно проверить даже если у вас нет осциллографа.


При отсутствии ошибок при монтаже и исправных компонентах схема практически не нуждается в настройке.
Для управления вентилятором я как правило использую схему управление по температуре на lm317


или термостаты KCD 9700.Иногда и то и другое сразу.

Лицевая панель нарисована в frontdesigner 3.0 и распечатана на самоклеящейся фотобумаге, затем заламинирована самоклеящаяся пленкой для учебников и книг(есть в любом офис маге).


Вот и корпус будущего бп уже практически готов:



Добавлю ещё версию модуля управления попроще и помощнее, но слегка по дороже

Читайте также: