Постоянная и оперативная память основные виды зу ее составляющие

Обновлено: 04.07.2024

Широко используются и более крупные производные единицы объема памяти: Килобайт, Мегабайт, Гигабайт, а также, в последнее время, Терабайт и Петабайт.

Современные компьютеры имеют много разнообразных запоминающих устройств, которые сильно отличаются между собой по назначению, временным характеристикам, объёму хранимой информации и стоимости хранения одинакового объёма информации. Различают два основных вида памяти — внутреннюю и внешнюю.

В состав внутренней памяти входят оперативная память, кэш-память и специальная память.

Оперативная память (ОЗУ, англ. RAM, Random Access Memory — память с произвольным доступом) — это быстрое запоминающее устройство не очень большого объёма, непосредственно связанное с процессором и предназначенное для записи, считывания и хранения выполняемых программ и данных, обрабатываемых этими программами.

Оперативная память используется только для временного хранения данных и программ, так как, когда машина выключается, все, что находилось в ОЗУ, пропадает. Доступ к элементам оперативной памяти прямой — это означает, что каждый байт памяти имеет свой индивидуальный адрес.

Объем ОЗУ обычно составляет от 32 до 512 Мбайт. Для несложных административных задач бывает достаточно и 32 Мбайт ОЗУ, но сложные задачи компьютерного дизайна могут потребовать от 512 Мбайт до 2 Гбайт ОЗУ.

Модули памяти характеризуются такими параметрами, как объем —(16, 32, 64, 128, 256 или 512 Мбайт), число микросхем, паспортная частота(100 или 133 МГц), время доступа к данным (6 или 7 наносекунд) и число контактов (72, 168 или 184). В 2001 г. начинается выпуск модулей памяти на 1 Гбайт и опытных образцов модулей на 2 Гбайта

Кэш (англ. cache), или сверхоперативная память — очень быстрое ЗУ небольшого объёма, которое используется при обмене данными между микропроцессором и оперативной памятью для компенсации разницы в скорости обработки информации процессором и несколько менее быстродействующей оперативной памятью.

Кэш-памятью управляет специальное устройство — контроллер, который, анализируя выполняемую программу, пытается предвидеть, какие данные и команды вероятнее всего понадобятся в ближайшее время процессору, и подкачивает их в кэш-память. При этом возможны как "попадания", так и "промахи". В случае попадания, то есть, если в кэш подкачаны нужные данные, извлечение их из памяти происходит без задержки. Если же требуемая информация в кэше отсутствует, то процессор считывает её непосредственно из оперативной памяти. Соотношение числа попаданий и промахов определяет эффективность кэширования.

Современные микропроцессоры имеют встроенную кэш-память, так называемый кэш первого уровня размером 8, 16 или 32 Кбайт. Кроме того, на системной плате компьютера может быть установлен кэш второго уровня ёмкостью 256, 512 Кбайт и выше.

К устройствам специальной памяти относятся постоянная память (ROM), перепрограммируемая постоянная память (Flash Memory), память CMOS RAM, питаемая от батарейки, видеопамять и некоторые другие виды памяти.

Постоянная память (ПЗУ, англ. ROM, Read Only Memory — память только для чтения) — энергонезависимая память, используется для хранения данных, которые никогда не потребуют изменения. Содержание памяти специальным образом "зашивается" в устройстве при его изготовлении для постоянного хранения. Из ПЗУ можно только читать.

Перепрограммируемая постоянная память (Flash Memory) — энергонезависимая память, допускающая многократную перезапись своего содержимого с дискеты.

Прежде всего в постоянную память записывают программу управления работой самого процессора. В ПЗУ находятся программы управления дисплеем, клавиатурой, принтером, внешней памятью, программы запуска и остановки компьютера, тестирования устройств.

Важнейшая микросхема постоянной или Flash-памяти — модуль BIOS. Роль BIOS двоякая: с одной стороны это неотъемлемый элемент аппаратуры, а с другой стороны — важный модуль любой операционной системы.

BIOS (Basic Input/Output System — базовая система ввода-вывода) — совокупность программ, предназначенных для автоматического тестирования устройств после включения питания компьютера и загрузки операционной системы в оперативную память.

Разновидность постоянного ЗУ — CMOS RAM.

CMOS RAM — это память с невысоким быстродействием и минимальным энергопотреблением от батарейки. Используется для хранения информации о конфигурации и составе оборудования компьютера, а также о режимах его работы.

Для хранения графической информации используется видеопамять.

Видеопамять (VRAM) — разновидность оперативного ЗУ, в котором хранятся закодированные изображения. Это ЗУ организовано так, что его содержимое доступно сразу двум устройствам — процессору и дисплею. Поэтому изображение на экране меняется одновременно с обновлением видеоданных в памяти.

Классификация запоминающих устройств и систем памяти позволяет выделить общие и характерные особенности их организации, систематизировать базовые принципы и методы, положенные в основу их реализации и использования.

Устройства памяти подразделяются по двум основным критериям: по функциональному назначению (роли или месту в иерархии памяти) и принципу организации.

Классификация ЗУ по функциональному назначению (иерархия запоминающих устройств)

Память ЭВМ почти всегда является "узким местом", ограничивающим производительность компьютера. Поэтому в ее организации используется ряд приемов, улучшающих временные характеристики памяти и, следовательно, повышающих производительность ЭВМ в целом.

Память вычислительной машины представляет собой иерархию запоминающих устройств (внутренние регистры процессора, различные типы сверхоперативной и оперативной памяти, диски, ленты), отличающихся средним временем доступа и стоимостью хранения данных в расчете на один бит. Пользователю хотелось бы иметь и недорогую и быструю память. Кэш-память представляет некоторое компромиссное решение этой проблемы.

Кэш-память - это способ организации совместного функционирования двух типов запоминающих устройств, отличающихся временем доступа и стоимостью хранения данных, который позволяет уменьшить среднее время доступа к данным за счет динамического копирования в "быстрое" ЗУ наиболее часто используемой информации из медленного ЗУ.

Кэш-памятью часто называют не только способ организации работы двух типов запоминающих устройств, но и одно из устройств - "быстрое" ЗУ. Оно стоит дороже и, как правило, имеет сравнительно небольшой объем.

Верхнее место в иерархии памяти занимают регистровые ЗУ, которые входят в состав процессора и часто рассматриваются не как самостоятельный блок ЗУ, а просто как набор регистров процессора. Такие ЗУ в большинстве случаев реализованы на том же кристалле, что и процессор, и предназначены для хранения небольшого количества информации (до нескольких десятков слов, а в RISC-архитектурах – до сотни), которая обрабатывается в текущий момент времени или часто используется процессором. Это позволяет сократить время выполнения программы за счет использования команд типа регистр-регистр и уменьшить частоту обменов информацией с более медленными ЗУ ЭВМ. Обращение к этим ЗУ производится непосредственно по командам процессора.

Следующую позицию в иерархии занимают буферные ЗУ (кэш-память). Их назначение состоит в сокращении времени передачи информации между процессором и более медленными уровнями памяти компьютера. Буферная память может устанавливаться на различных уровнях, но здесь речь идет именно об указанном ее местоположении.

Еще одним (внутренним) уровнем памяти являются служебные ЗУ. Они могут иметь различное назначение. Одним из примеров таких устройств являются ЗУ микропрограмм выполнения команд процессора, а также различных служебных операций (например, хранение таблиц адресов данных в кэше процессора). Специфика назначения предполагает недоступность их командам процессора.

Следующим уровнем иерархии памяти является оперативная память. Оперативное ЗУ (ОЗУ) является основным запоминающим устройством ЭВМ, в котором хранятся выполняемые в настоящий момент процессором программы и обрабатываемые данные, резидентные программы, модули операционной системы и т.п. Информация, находящаяся в ОЗУ, непосредственно доступна командам процессора, при условии соблюдения требований защиты.

Еще одним уровнем иерархии ЗУ может являться дополнительная память, которую иногда называли расширенной или массовой. Эта ступень использовалась для наращивания емкости оперативной памяти до величины, соответствующей адресному пространству с помощью подключения более дешевого и емкого, чем ОЗУ, но более медленного запоминающего устройства.

В состав памяти ЭВМ входят также ЗУ, принадлежащие отдельным функциональным блокам компьютера. Формально эти устройства непосредственно не обслуживают основные потоки данных и команд, проходящие через процессор. Их назначение обычно сводится к буферизации данных, извлекаемых из каких-либо устройств и поступающих в них. Типичные примеры такой памяти – видеопамять графического адаптера и буферная память контроллеров жестких дисков и других внешних запоминающих устройств. Емкости и быстродействие этих видов памяти зависят от конкретного функционального назначения обслуживаемых ими устройств. Для видеопамяти, например, объем может достигать величин, сравнимых с оперативными ЗУ, а быстродействие – даже превосходить быстродействие последних.

Следующей ступенью памяти, являются жесткие диски. В этих ЗУ хранится практически вся информация, начиная от операционной системы и основных прикладных программ и кончая редко используемыми пакетами и справочными данными. Эти ЗУ обладают большей емкостью, чем остальные виды памяти и используются для постоянного хранения данных.

Все остальные запоминающие устройства можно объединить с точки зрения функционального назначения в одну общую группу, охарактеризовав ее как группу внешних ЗУ. Под словом “внешние” следует подразумевать то, что информация, хранимая в этих ЗУ, в общем случае расположена на носителях не являющихся частью собственно ЭВМ. Это дискеты, флеш-накопители, CD, DVD, BD-диски и др.

Особенности организации ЗУ определяются, в первую очередь, используемыми технологиями, логикой их функционирования, а также некоторыми другими факторами. Эти особенности и соответствующие разновидности ЗУ перечисляются ниже.

По функциональным возможностям ЗУ можно разделять:

простые, допускающие только хранение информации;

многофункциональные, которые позволяют не только хранить, но и перерабатывать хранимую информацию без участия процессора непосредственно в самих ЗУ.

По возможности изменения информации различают ЗУ:

постоянные (или с однократной записью – CD-ROM, ПЗУ);

односторонние (с перезаписью или перепрограммируемые – CD-RW);

двусторонние (имеют близкие значения времен чтения и записи – HDD).

По способу доступа различают ЗУ:

с адресным доступом (произвольный, последовательный);

с ассоциативным доступом (по ключу).

По организации носителя различают ЗУ:

с неподвижным носителем (SDD, flash);

с подвижным носителем (HDD).

По способу подключения к системе ЗУ делятся на:

По количеству блоков, образующих модуль или ступень памяти, можно различать:

многоблочные ЗУ (позволяют обрабатывать данные параллельно).

Состав, устройство и принцип действия основной памяти

Комплекс технических средств, реализующих функцию памяти, называется запоминающим устройством (ЗУ). ЗУ необходимы для размещения в них команд и данных. Они обеспечивают центральному процессору доступ к программам и информации.

Запоминающие устройства делятся на:

основную память (ОП),

сверхоперативную память (СОЗУ) – устаревшее название кэш и/или регистровой памяти

внешние запоминающие устройства (ВЗУ).

Основная память включает в себя два типа устройств: оперативное запоминающее устройство (ОЗУ или RAM - Random Access Memory) и постоянное запоминающее устройство (ПЗУ или ROM - Read Only Memory).

ОЗУ предназначено для хранения переменной информации. Оно допускает изменение своего содержимого в ходе выполнения процессором вычислительных операций с данными и может работать в режимах записи, чтения, хранения.

ПЗУ содержит информацию, которая не должна изменяться в ходе выполнения процессором вычислительных операций, например стандартные программы и константы. Эта информация заносится в ПЗУ перед установкой микросхемы в ЭВМ. Основными операциями, которые может выполнять ПЗУ, являются чтение и хранение.

Функциональные возможности ОЗУ шире, чем ПЗУ Но ПЗУ сохраняет информацию при отключении питания (т.е. является энергонезависимой памятью) и может иметь более высокое быстродействие, так как ограниченность функциональных возможностей ПЗУ и его специализация на чтении и хранении позволяют сократить время выполнения реализуемых им операций считывания.

В современных ЭВМ микросхемы памяти (ОП и СОЗУ) изготавливают из кремния по полупроводниковой технологии с высокой степенью интеграции элементов на кристалле (микросхемы памяти относятся к так называемым “регулярным” схемам, что позволяет сделать установку элементов памяти в кристалле (чипе) настолько плотной, что размеры элементов памяти становятся сопоставимыми с размерами отдельных атомов).

Основной составной частью микросхемы является массив элементов памяти (ЭП), объединенных в матрицу накопителя.

Каждый элемент памяти может хранить 1 бит информации и имеет свой адрес. ЗУ, позволяющие обращаться по адресу к любому ЭП в произвольном порядке, называются запоминающими устройствами с произвольным доступом.

При матричной организации памяти реализуется координатный принцип адресации ЭП, в связи с чем адрес делится на две части (две координаты) - Х и Y. На пересечении этих координат находится элемент памяти, чья информация должна быть прочитана или изменена.

ОЗУ связано с остальным микропроцессорным комплектом ЭВМ через системную магистраль (рис.1).

Рис. 1. Структурная схема ОЗУ

По шине управления передается сигнал, определяющий, какую операцию необходимо выполнить.

По шине данных передается информация, записываемая в память или считываемая из нее.

По шине адреса передается адрес участвующих в обмене элементов памяти (поскольку данные передаются машинными словами, а один ЭП может воспринять только один бит информации, блок элементов памяти состоит из n матриц ЭП, где n -количество разрядов в машинном слове). Максимальная емкость памяти определяется количеством линий в шине адреса системной магистрали.

Микросхемы памяти могут строиться на статических (SRAM) и динамических (DRAM) ЭП. В качестве статического ЭП чаще всего выступает статический триггер. В качестве динамического ЭП может использоваться электрический конденсатор, сформированный внутри кремниевого кристалла.

Статические ЭП способны сохранять свое состояние (0 или 1) неограниченно долго (при включенном питании). Динамические ЭП с течением времени записанную в них информацию теряют (например, из-за саморазряда конденсатора), поэтому они нуждаются в периодическом восстановлении записанной в них информации - в регенерации.

Микросхемы элементов памяти динамических ОЗУ отличаются от аналогичных ЭП статических ОЗУ меньшим числом компонентов в одном элементе памяти, в связи с чем имеют меньшие размеры и могут быть более плотно упакованы в кристалле. Однако из-за необходимости регенерации информации динамические ОЗУ имеют более сложные схемы управления.

Основными характеристиками ОЗУ являются объем и быстродействие.

На производительность ЭВМ влияет не только время доступа, но и такие параметры (связанные с ОЗУ), как тактовая частота и разрядность шины данных системной магистрали. Если тактовая частота недостаточно высока, то ОЗУ простаивает в ожидании обращения. При тактовой частоте, превышающей возможности ОЗУ, в ожидании будет находиться системная магистраль, через которую поступил запрос в ОЗУ.

ПЗУ (энергонезависимая память)

Микросхемы ПЗУ также построены по принципу матричной структуры накопителя. Функции элементов памяти в них выполняют перемычки в виде проводников, полупроводниковых диодов или транзисторов. В такой матрице наличие перемычки может означать “1”, а ее отсутствие - “О”. Занесение формации в микросхему ПЗУ называется еепрограммированием, а устройство, с помощью которого заносится информация, - программатором. Программирование ПЗУ заключается в устранении (прожигании) перемычек по тем адресам, где должен храниться “О”. Обычно схемы ПЗУ допускают только одно программирование, но специальные микросхемы - репрограммируемые ПЗУ (РПЗУ) - допускают их многократное стирание и занесение новой информации. Этот вид микросхем также относится к энергонезависимым, т.е. может длительное время сохранять информацию при выключенном питании (стирание микросхемы происходит либо за счет подачи специального стирающего напряжения, либо за счет воздействия на кристалл ультрафиолетового излучения, для этого в корпусе микросхемы оставляется прозрачное окно).

Сверхоперативные ЗУ(в настоящее время это кэш-память) используются для хранения небольших объемов информации и имеют значительно меньшее время (в 2 - 10 раз) считывания/записи, чем основная память. СОЗУ (или кэш) обычно строятся на регистрах и регистровых структурах.

Регистр представляет собой электронное устройство, способное хранить занесенное в него число неограниченно долго (при включенном питании). Наибольшее распространение получили регистры на статических триггерах.

По назначению регистры делятся на регистры хранения и регистры сдвига. Информация в регистры может заноситься и считываться либо параллельно, сразу всеми разрядами, либо последовательно, через один из крайних разрядов с последующим сдвигом занесенной информации.

Сдвиг записанной в регистр информации может производиться вправо или влево. Если регистр допускает сдвиг информации в любом направлении, он называется реверсивным.

Регистры могут быть объединены в единую структуру. Возможности такой структуры определяются способом доступа и адресации регистров.

Если к любому регистру можно обратиться для записи/чтения по его адресу, такая регистровая структура образует СОЗУ с произвольным доступом.

Безадресные регистровые структуры могут образовывать два вида устройств памяти: магазинного типа и память с выборкой по содержанию (ассоциативные ЗУ).

Память магазинного типа образуется из последовательно соединенных регистров (рис. 2).

Если запись в регистровую структуру (рис.2,а) производится через один регистр, а считывание - через другой, то такая память является аналогом магазинной памяти и работает по принципу “первым вошел - первым вышел” (FIFO - first input, first output).

Если же запись и чтение осуществляются через один и тот же регистр (рис. 2,б), такое устройство называется стековой памятью, работающей по принципу “первым вошел — последним вышел” (FILO - first input, last output). При записи числа в стековую память сначала содержимое стека сдвигается в сторону последнего, К-го регистра (если стек был полностью заполнен, то число из К-го регистра теряется), а затем число заносится в вершину стека -регистр 1. Чтение осуществляется тоже через вершину стека, после того как число из вершины прочитано, стек сдвигается в сторону регистра 1.

Рис.2. Регистровая структура магазинного типа: а - типа FIFO; б - типа FILO

Стековая память получила широкое распространение. Для ее реализации в ЭВМ разработаны специальные микросхемы. Но часто работа стековой памяти эмулируется в основной памяти ЭВМ: с помощью программ операционной системы выделяется часть памяти под стек (в IBM PC для этой цели выделяется 64 Кбайта). Специальный регистр микропроцессора (указатель стека) постоянно хранит адрес ячейки ОП, выполняющей функции вершины стека. Чтение числа всегда производится из вершины стека, после чего указатель стека изменяется и указывает на очередную ячейку стековой памяти (т.е. фактически стек остается неподвижным, а перемещается вершина стека). При записи числа в стек сначала номер ячейки в указателе стека модифицируется так, чтобы он указывал на очередную свободную ячейку, после чего производится запись числа по этому адресу. Такая работа указателя стека позволяет реализовать принцип “первым вошел - последним вышел”. В стек может быть загружен в определенной последовательности ряд данных, которые впоследствии считываются из стека уже в обратном порядке, на этом свойстве построена система арифметических преобразований информации, известная под названием “логика Лукашевича”.

Память с выборкой по содержанию является безадресной. Обращение к ней осуществляется по специальной маске, которая содержит поисковый образ. Информация считывается из памяти, если часть ее соответствует поисковому образу, зафиксированному в маске. Например, если в такую память записана информация, содержащая данные о месте жительства (включая город), и необходимо найти сведения о жителях определенного города, то название этого города помещается в маску и дается команда чтение - из памяти выбираются все записи, относящиеся к заданному городу.

В микропроцессорах ассоциативные ЗУ используются в составе кэш-памяти для хранения адресной части команд и операндов исполняемой программы. При этом нет необходимости обращаться к ОП за следующей командой или требуемым операндом: достаточно поместить в маску необходимый адрес, если искомая информация имеется в СОЗУ, то она будет сразу выдана. Обращение к ОП будет необходимо лишь при отсутствии требуемой информации в СОЗУ. За счет такого использования СОЗУ сокращается число обращений к ОП, а это позволяет экономить время, так как обращение к СОЗУ требует в 2 - 10 раз меньше времени, чем обращение к ОП.

Рис. 3. Возможный состав системы памяти ЭВМ

Кэш 1-го уровня – 8 Кслов, ( не более 128 Кб ) 1-2 такта

Кэш 2-го уровня – 256 Кслов, (от 128 Кбайт до 1−12 Мбайт) 3-5 тактов

Кэш 3-го уровня – 1 Мслов, (более 24 Мбайт) 6-11 тактов

Основная память – 4 Гслов, 12-55 тактов

Внешняя память – к*Тслов, от 10 6 слов

Буферные ЗУ:Их назначение состоит в сокращении времени передачи информации между процессором и более медленными уровнями памяти компьютера. Буферная память может устанавливаться на различных уровнях. Ранее такие буферные ЗУ в отечественной литературе называлисверхоперативными (СОЗУ), сейчас это название практически полностью вытеснил термин "кэш-память" или простокэш.

Принцип использования буферной памяти во всех случаях сводится к одному и тому же. Буфер представляет собой более быстрое (а значит, и более дорогое), но менее емкое ЗУ, чем то, для ускорения работы которого он предназначен. При этом в буфере размещается только та часть информации из более медленного ЗУ, которая используется в настоящий момент.

Конструктивно кэш уровня L1 входит в состав процессора (поэтому его иногда называют внутренним). Кэш уровня L2 либо также входит в микросхему процессора, либо может быть реализован в виде отдельной памяти. Как правило, на параметры быстродействия процессора большее влияние оказывают характеристики кэш-памяти первого уровня.

Время обращения к кэш-памяти, которая обычно работает на частоте процессора, составляет от десятых долей до единиц наносекунд, т.е. не превышает длительности одного цикла процессора.

Обмен информацией между кэш-памятью и более медленными ЗУ для улучшения временных характеристик выполняется блоками, а не байтами или словами.Управляют этим обменом аппаратные средства процессора и операционная система, и вмешательство прикладной программы не требуется. Причем непосредственно командам процессора кэш-память недоступна, т.е. программа не может явно указать чтение или запись в кэш-памяти, которая является для нее, как иногда говорят, “прозрачной” (прямой перевод используемого в англоязычной литературе словаtransparent).

Кэш (cache) - это память быстрого доступа, расположенная непосредственно в процессоре (в старых ЦП в виде микросхемы). Эта характеристика не так важна, как тактовая частота, но все же будет не приятно если кэш будет маленьким. В нем храниться информация с наибольшей вероятностью запроса. Доступ к этой информации будет воспроизведен мгновенно, этим cache отличается от оперативной памяти.

Память с записью-считыванием– тип памяти, дающей возможность пользователю помимо считывания данных производить их исходную запись, стирание или обновление. К этому виду отнесена оперативная память.

Программы и данные во время непосредственного сеанса хранятся в основной памяти или оперативной памяти компьютера. Оперативная память состоит из ячеек памяти одной одинаковой длины. Каждая ячейка памяти включает элементы памяти, состояние каждого из которых соответствует одной двоичной цифре о или 1, т.е. одному биту. Совокупность нулей и единиц, хранящихся в элементах одной ячейки, представляет собой содержимое этой ячейки. При этом стандартный размер ячейки равен 8 битам и образует один байт информации. Байт является наименьшей адресуемой единицей оперативной памяти. Для идентификации ячеек в оперативной памяти каждой из них присваивается адрес, представляющий собой номер ячейки. Ячейки нумеруются числами из последовательного натурального ряда чисел.

Запись в память данных осуществляется подачей на шину адреса сигналов, соответствующих адресам ячеек, в которые помещаются данные из шины записи. При чтении данных из памяти по шине адреса передаются адреса читаемых ячеек, а сами данные из ячеек передаются по шине чтения.

Основное отличие оперативной памяти (RAM) от постоянной (ROM) состоит в возможности оперативного изменения содержимого всех ячеек памяти с помощью дополнительного управляющего сигнала записи WR. Каждая ячейка оперативной (статической) памяти представляет собой, по сути, регистр из триггерных ячеек, в который может быть записана информация и из которого можно информацию читать. Выбор того или иного регистра (той или иной ячейки памяти) производится с помощью кода адреса памяти. Поэтому при выключении питания вся информация из оперативной памяти пропадает (стирается), а при включении питания информация в оперативной памяти может быть произвольной.

Оперативная память бывает двух основных видов: с раздельными шинами входных и выходных данных и с двунаправленной шиной.

В постоянной памяти хранятся стандартные программы, записанные в микросхему памяти на заводе-изготовителе и не требующие изменений. ROM позволяет только считывать хранящиеся в ней данные. Информация в ROM сохраняется при выключении компьютера.

Когда-то в постоянной памяти простых компьютеров находился еще и интерпретатор языка BASIC, позволявший программировать на компьютере не загружаясь с внешних носителей информации.

Выделяют также и программируемую постоянную память, программируемое ПЗУ, ППЗУ -постоянная память или ПЗУ, в которых возможна запись или смена данных путем воздействия на носитель информации электрическими, магнитными и/или электромагнитными (в том числе ультрафиолетовыми или другими) полями под управлением специальной программы. Различают ППЗУ с однократной записью и стираемые ППЗУ (EPROM, Erasable PROM), в том числе: электрически программируемое ПЗУ; электрически стираемое программируемое ПЗУ, ЭСПЗУ. К стираемым ППЗУ относятся микросхемы флэш-памяти, отличающиеся высокой скоростью доступа и возможностью быстрого стирания данных.

В последние два десятилетия массовое производство персональных компьютеров и стремительный рост Интернета существенно ускорили становление информационного общества в развитых странах мира.

Внутренняя память компьютера делится на оперативную и постоянную. В отличие от внешней, которая представлена подключаемыми устройствами HDD, USB-флеш, SD-картами, оптическими дисками, она является одним из основных элементов системы, обеспечивающих ее работу. Устройства такого типа размещаются непосредственно на материнской плате и не требуют обращения к ним пользователя. Посмотрим, чем отличается оперативная память от постоянной.

Оперативная память (RAM) – энергозависимая изменяемая память с произвольным доступом, в которой хранятся данные, обрабатываемые процессором в конкретный момент времени. Реализуется в виде оперативных запоминающих устройств и часто называется просто ОЗУ.

1

Постоянная память (ROM) – энергонезависимая память, хранящая неизменяемые данные. Реализуется в виде распаянных на плате микросхем, которые называются постоянными запоминающими устройствами.

2

ПЗУ часто путают с накопителями, на которые записывают файлы пользователи. На самом деле эта память им недоступна: в ROM записаны BIOS и другие микропрограммы, предназначенные для управления взаимодействием аппаратных элементов, а в мобильных устройствах – еще и операционная система. Технически к ПЗУ также относятся и CD-ROM, магнитные ленты, перфокарты и прочие носители с единожды размещенной информацией, однако частью системы внутренней памяти компьютера они, конечно, не являются.

Сравнение

Представьте себе, что пишете, к примеру, доклад. Чтобы прочитать статью, вы встаете, подходите к шкафу, берете книгу или журнал, несете ее за стол, ищете информацию, закрываете, несете ее обратно, ставите на полку. И так раз за разом. Медленно и неудобно, особенно если шкаф в другой комнате. А если сесть за большой свободный рабочий стол? Вот здесь у вас лежат три журнала, открытые на нужных страницах, вот здесь – том энциклопедии, там методичка, а на мониторе – браузер со ссылками на литературу. Все доступно, только руку протяни и прочитай. Точно так же в оперативной памяти хранятся файлы запущенных программ и открытых документов. По сравнению с накопителями, даже самыми перспективными, ОЗУ гораздо быстрее, время обращения измеряется в наносекундах.

Оперативная память используется в операциях компьютера после его запуска и загрузки ОС. Из ПЗУ данные считываются преимущественно во время старта системы, а приложения к ним не обращаются. Запись информации в постоянную память может быть либо фабричной (собственно ROM), либо однократно программируемой (PROM, в быту манипуляция именуется «прошивкой»).

Основное техническое отличие оперативной памяти от постоянной – энергозависимость. С отключением питания ОЗУ полностью очищается от данных, сколько бы их ни было и какими бы важными они ни казались. Каждый хотя бы раз попадал в ситуацию, когда в процессе работы за компьютером внезапно отключался свет, и тогда изменения в документе, открытые странички в браузере, проигрывающееся видео не сохранялись. Это происходит потому, что до записи новой редакции во внешнюю память она хранится в памяти оперативной, которая, будучи обесточенной, обнуляется.

Постоянная память энергонезависима. Полное отключение энергии никак не влияет на ее содержимое, поэтому программы, запускаемые из ПЗУ (BIOS, POST, ОС) требуют лишь однократной записи.

Если сравнивать, к примеру, процесс набора текста в редакторе и заливку прошивки или обновления в смартфон, заметно, в чем разница между оперативной и постоянной памятью. Символы появляются на экране сразу (задействована RAM), а во втором случае потребуется несколько минут, а иногда и часы (пишется в ROM).

В современных системах используются твердотельные динамические ОЗУ (DRAM), выполненные в виде планок с распаянными на них микрочипами и контактами. Их можно извлекать и менять на другие, допустим, большего объема. ПЗУ размещаются непосредственно на плате, замене подлежат только в целях ремонта. Оперативная память может хранить до 64 Гб информации в одном модуле, вместительность одного чипа постоянной существенно меньше – несколько Мб.

Запоминающие устройства (ЗУ) ЭВМ – это совокупность устройств, обеспечивающих хранение и передачу данных. Основные операции, выполняемые запоминающими устройствами, – запись и считывание информации, в совокупности называют обращением к памяти.

Запоминающие устройства (ЗУ) служат для хранения информации и обмена ею с другими цифровыми устройствами. Память компьютера дискретна, она состоит изотдельных ячеек. Наименьший запоминающий элемент (ЗЭ) памяти — бит — двоичный разряд. В нем хранится двоичный код (0 или 1). Восемь последовательных двоичных разрядов составляют байт. Максимальное количество байтов, которое может быть одновременно обработано командой процессора, машинное слово или запоминающая ячейка (ЗЯ), длина которого определяется разрядностью процессора

Объем памяти компьютера измеряется в байтах и их производных: килобайтах (1 Кб = 1024 б), мегабайтах (1Мб = 1024 Кб), гигабайтах (1Гб = = 1024 Мб) и т. д.

Основные характеристики запоминающих устройств:

< p>Память компьютера имеет многоуровневый характер. Такое сочетание запоминающих систем называется иерархией памяти компьютера.

В наиболее развитой иерархии памяти ЭВМ можно выделить следующие уровни:

1) регистровые ЗУ, находящиеся в составе процессора или других устройств (т.е. внутренние для этих блоков), благодаря которым уменьшается число обращений к другим уровням памяти, реализованным вне процессора и требующим большего времени для операций обмена информацией;

3) основная память (оперативная, постоянная, полупостоянная), работающая в режиме непосредственного обмена с процессором и по возможности согласованная с ним по быстродействию. Исполняемый в текущий момент фрагмент программы обязательно находится в основной памяти;

4) специализированные виды памяти, характерные для некоторых специфических архитектур (многопортовые, ассоциативные, видеопамять и др.);

5) внешняя память, хранящая большие объемы информации. Эта память обычно реализуется на основе устройств с подвижным носителем информации (магнитные и оптические диски, магнитные ленты и др.).

Память компьютера по способу организации и использования можно разделить на внутреннюю и внешнюю.

2.3.2. Внутренняя память (ОЗУ, ПЗУ, кэш), ее назначение и принцип работы

Внутренняя память компьютера включает в себя оперативную память, постоянную память, кэш-память.

Оперативная память (оперативное запоминающее устройство — ОЗУ или Random Access Memory — RAM) — энергозависимое, быстродействующее запоминающее устройство, предназначенное для хранения информации (программ и данных), непосредственно участвующей в вычислительном процессе на текущем этапе функционирования ПК. ОЗУ — энергозависимая память: при отключении напряжения питания информация, хранящаяся в ней, теряется.

Постоянная память (постоянное запоминающее устройство — ПЗУ или Read Only Memory — ROM) используется для хранения неизменяемой информации: загрузочные программы ОС, программы тестирования устройств компьютера и некоторых драйверов базовой системы ввода-вывода (BIOS -Basic Input-Output System) и др. Из ПЗУ можно только считывать информацию.

Существуют также перепрограммируемые ПЗУ (ППЗУ), в которых информация может перезаписываться несколько раз в процессе эксплуатации. ППЗУ применяются в тех случаях, когда необходима модификация программы или функций самой системы.

Кэш-память — высокоскоростная память сравнительно большой емкости, которая является буфером между оперативной памятью и микропроцессором и позволяющая увеличить скорость выполнения операций. В кэш-памяти хранятся данные, которые микропроцессор получил и будет использовать в ближайшие такты своей работы. Современные микропроцессоры, начиная от МП 80486, имеют свою встроенную кэш-память (или кэш-память 1-го уровня). Кэш-память 2-го уровня размещается на материнской плате вне микропроцессора и хранит данные и результаты, обрабатываемые процессором в текущий момент времени.

2.3.3. Внешние запоминающие устройства, назначение и принцип работы

Внешняя память компьютера предназначена для долговременного хранения информации. Внешние ЗУ также называют накопителем.

Накопители бывают внешними (собственный корпус и источник питания), встроенными в корпус компьютера, со сменными и несменными носителями, с носителями разной формы (диски, ленты). Накопители имеют разные характеристики: максимально возможный объем хранимой информации, время доступа.

Накопители на магнитных лентах называются стримерами. В современных стримерах используются специальные кассеты (картриджи) с магнитной лентой. Стримеры имеют разные стандарты, определяющие интерфейс с компьютером, формат магнитной ленты, методы кодирования и сжатия.

Жесткие несменные диски называются винчестерами. Они представляют собой систему, состоящую из механического привода головок чтения-записи, нескольких носителей и контроллера, обеспечивающего работу всего устройства. Магнитная головка (несколько магнитных головок в специальном позиционере) является одной из наиболее важных частей устройства. Носитель информации состоит из нескольких дисков, каждый из которых имеет две рабочие поверхности. При записи информации используются магнитные свойства слоя, нанесенного на поверхность.

Магнитооптические диски имеют различную емкость от 128 Мбайт до 640 Мбайт. Запись производится после нагревания лазером магнитного слоя до определенной температуры. Надежность хранения информации обеспечивается тем, что при обычной температуре информация не подвержена действию внешних магнитных полей.

Устройства CD-ROM используют носители емкостью до 650 Мбайт, представляющие собой диски со светоотражающим слоем на одной стороне, где хранится информация. На диск нанесена дорожка-спираль от центра к краю диска, состоящая из отражающих и не отражающих свет точек; считывание производится лазерным лучом.

Накопители CD-R позволяют лишь однократно записывать информацию на диски. Луч лазера прожигает пленку на поверхности диска, меняя его отражающую способность. Перезапись при этом невозможна. Такие диски считываются на любом приводе CD-ROM.

Накопители CD-RW позволяют делать многократную запись на диск. Здесь используются свойство рабочего слоя переходить под воздействием лазерного луча в кристаллическое или аморфное состояние, имеющие разную отражательную способность.

Накопители DVD предназначены для хранения видео, аудио, высокого качества, компьютерной информации большого объема. Плотность записи выше, чем у обычных CD-ROM.+

Накопители DVD-RAM позволяют записывать и перезаписывать информацию.

Накопители на сменных жестких дисках используют технологию винчестеров. Параметры таких устройств приближаются к параметрам устройств с жесткими несъемными дисками.

Флэш-память. Модули или карты флэш-памяти устанавливаются прямо в разъемы материнской платы. Флэш-память обладает рядом преимуществ в использовании: высокая надежность и ударопрочность, малое энергопотребление. Одним из основных преимуществ флэш-памяти является ее компактность, поэтому она удобна для хранения и переноса данных.

Статьи к прочтению:

Микросхемы памяти, общие сведения


Похожие статьи:

Читайте также: