Проверка платы жесткого диска

Обновлено: 07.07.2024

Плата контроллера жесткого диска или PCB – Printed Circuit Board находится на нижней части жесткого диска. Обычно она зеленого цвета, но встречаются диски с синими или красными платами. Основные функции печатной платы - подавать питание на жесткий диск, поддерживать скорость и вращение шпинделя и управлять всеми внутренними операциями через прошивку. По сути, плата контроллера - это мозг жесткого диска, от которого сильно зависят все компоненты.

Зачем менять плату на жестком диске?

Если жесткий диск после подачи питания не раскручивается, большая вероятность, что у него неисправна плата контроллера.
Плата может быть повреждена в результате скачка напряжения, короткого замыкания, физического воздействия на интерфейс и т.д.

Возможно, у пользователя нет поблизости сервиса восстановления данных, он не хочет доверять свою конфиденциальную информацию третьим лицам или не может в данный момент оплатить работу сторонних сервисов, поэтому он предпочитает заменить ее самостоятельно.

В любом случае мы рекомендует начинать диагностику неисправностей жесткого диска именно с установки заведомо исправной платы.

Как найти подходящие платы PCB жесткого диска?

При подборе печатной платы необходимо сверить, прежде всего, следующие параметры:

  • Western Digital – должен совпадать номер, который вытравлен на печатной плате, он начинается обычно с 2060- или 8000-, например 2060-701960-001.
  • Seagate - должен совпадать номер, который вытравлен на печатной плате, он начинается обычно с 100-, например, 100731589 REV A. Кроме того надо обязательно сверить соответствие маркировок главной микросхемы контроллера и микросхемы, управляющей питанием шпиндельного двигателя (например основной чип - B5502D0, чип VCM - UM04.)
  • Maxtor – совпадение маркировки главной микросхемы (самый большой чип на плате), например 040111300. Некоторые диски Maxtor являются аналогами дисков Seagate, поэтому их необходимо подбирать по правилам Seagate.
  • Hitachi, HGST – совпадение первой строки кода, который находится на маленькой наклейке на плате. Обычно он начинается на 0A- или 0J-, например 0A72947.
  • Samsung – совпадение номера платы, который выгравирован на печатной плате, начинается с BF41-, например BF41-00354B.
  • Fujitsu - совпадение номера платы, который выгравирован на печатной плате, он обычно начинается с CA -.

Процесс замены платы жесткого диска

Удалите печатные платы с обоих жестких дисков с помощью отвертки. Замените поврежденную печатную плату на новую. Обратите внимание, что некоторые платы на жестких дисках Seagate НЕЛЬЗЯ устанавливать без переноса ПЗУ (ROM).

Если после установки новой платы двигатель диска вращается, но диск не определяется, вам необходимо перенести микросхему ПЗУ с исходной платы на новую. Если на печатной плате нет совместимого чипа ПЗУ, это значит, что ПЗУ интегрировано в основную микросхему контроллера. В этом случае понадобится перепайка главной микросхемы.

Если у вас возникают сложности с переносом микросхем – сделайте несколько тестовых паек на других печатных платах. Также вы можете обратиться к нам и мы проведем профессиональный перенос микросхемы или содержимого ПЗУ на новую плату.

Что такое микросхема ПЗУ?

Микросхему ПЗУ (ROM, NV-RAM, BIOS) можно легко найти на печатной плате. Чип имеет 8 ножек, его маркировка начинается обычно с 25- например 25F512, 25F1024. Его легко найти, потому что на печатной плате не так много чипов с 8 ножками.
В большинстве случаев вы должны переносить микросхему ПЗУ перед заменой платы жесткого диска. Для этого у вас должна быть подготовлены определенное оборудование и инструменты.

Где купить плату контроллера (PCB) жесткого диска онлайн?

ВАЖНО: вы должны знать, что сбои жесткого диска не всегда вызваны с неисправностями PCB, замена печатной платы (PCB) не может гарантировать устранение всех проблем с жестким диском. Но в большинстве случаев диагностику неисправностей жесткого диска необходимо начинать именно с установки исправной платы.

Примеры:

1. Для жестких дисков Western Digital необходимо сверить маркировку на печатной плате:



Номер печатной платы 2060-771640-004 REV A



Маркировка главного чипа 88i9045-TFJ2, маркировка чипа управления питанием L7251

Для жестких дисков WD микросхема ПЗУ хранит прошивку жесткого диска (прошивка для жесткого диска похожа на операционную систему для компьютера), вам необходимо перенести чип ROM с оригинальной платы на новую, чтобы сделать ее совместимой с вашим диском.

На некоторых моделях жестких дисков WD плата не содержит независимого чипа ПЗУ, прошивка находится внутри основного чипа. Для таких дисков нужны специальные инструменты для чтения ПЗУ с оригинальной печатной платы и записи на новую плату или замены основного чипа.

2. Для жестких дисков Hitachi, HGST необходимо сверить маркировку на наклейке печатной платы:



Код верхней строки наклейки 0J14078



Маркировка главного чипа 0J11389

Для жестких дисков Hitachi, HGST прошивку жесткого диска хранит микросхема NV-RAM. Вам необходимо перенести чип NV-RAM с оригинальной платы на новую, чтобы сделать ее совместимой с вашим диском.

3. Для жестких дисков Seagate необходимо сверить номер платы, маркировку главной микросхемы и микросхемы, управляющей питанием шпиндельного двигателя.

Для жестких дисков Seagate также необходимо заменить чип ПЗУ на плате. На некоторых моделях плат нет чипа ПЗУ, прошивка хранится в основной микросхеме.



Номер печатной платы 100710248 REV C



Маркировка главного чипа B5502D0, маркировка чипа управления питанием UM04
Внимание! Данная статья описывает только общие случаи неисправности накопителя и не является прямым руководством к работе.

Прежде чем приступить к самостоятельной работе по ремонту жесткого диска, помните, что все манипуляции выполняются вами на свой страх и риск и могут привести к невозможности в дальнейшем восстановить информацию с диска.

Поэтому мы настоятельно рекомендуем воспользоваться нашей услугой Адаптация печатной платы или доставить свой накопитель на диагностику в нашу лабораторию по адресу: г.Москва м.Белорусская ул.1-я Брестская д.66, 2 этаж, офис 2.

При заказе услуг восстановления информации вы можете получить скидку в размере 15%, сообщив администратору при передаче накопителя код CIFRIO15.

Жёсткие диски, SSD, флешки, RAID-массивы, ленты. Изучение, восстановление данных, ремонт.

В предыдущем посте по данной теме был обозначен список последовательных шагов диагностики.

В этой части мы раскроем подробности следующих пунктов:

повреждены элементы электроники (проверка платы электроники); механические повреждения.

Что делать раньше: осматривать плату, или искать вмятины — это пусть каждый решает сам. Чтобы поставить диагноз нужно собрать данные о всех видимых неполадках: от повреждений на корпусе, до проблем с элементами электроники. Так что, в любом случае, плату следует открутить и осмотреть, даже если нашлись вмятины.

Пример применения описанной ниже диагностики можно найти в видеоролике для диска Seagate Momentus 5400.6

Проверка платы электроники

Симптомы: Наличие горелых или отсутствующих электронных компонентов на плате контроллера.

Чтобы определить данную неполадку , нужно о тделит ь плату контроллера от гермоблока. Осмотр еть со всех сторон на предмет электрических и механических повреждений (горелых и отсутствующих электронных компонентов на плате контроллера), а также окислившихся разъёмов платы контроллера.

Возможные неисправности:

Защитные диоды. На дисках, начиная где-то с 2003 года, рядом с разъемом питания расположены один (2.5 ” ) или два (3.5 ” ) крупных диода. Обычно, явно видно, что такой диод прогорел. При подаче питания на жесткий диск с неисправным защитным диодом блок питания будет уходить в защиту от короткого замыкания. На накопителях Seagate (рис.1.) используются диоды фирмы ST и называются «transient voltage suppressor» (сокращенно TVS) или «Transil». На накопителях WD (рис. 2 .) используются диоды фирмы Onsemi и называются «Zener Transient Voltage Suppressors». П овреждени е защитных диодов происходит из-за превышающих номинальное напряжени е импульсов из блока питания, по причине его неисправности .

Данная неисправность встречается редко.

Рис. 1. Защитные диоды на плате Seagate Barracuda.

Рис. 1. Защитные диоды на плате Seagate Barracuda.

Рис. 2. Защитные диоды на плате WD.

Рис. 2. Защитные диоды на плате WD.

Данная неисправность встречается часто.

Рис. 3. Крупный план двух контактов разъема подключения усилителя/коммутатора с признаками «расползания» оксида серебра (черные чешуйки).

Рис. 3. Крупный план двух контактов разъема подключения усилителя/коммутатора с признаками «расползания» оксида серебра (черные чешуйки).

Прогорела микросхема. Микросхема у которой поврежден пластиковый корпус гарантированно не работает. Причин таких повреждений несколько. Перечислим наиболее частые из них: перегрев во время работы, замыкание в местах пайки внешним воздействием или из-за влаги, брак при изготовлении микросхемы, повышенные или отрицательные броски напряжения от блока питания.

При обнаружении горелых электронных компонентов на плате контроллера подавать питание на накопитель в таком состоянии нельзя. Помимо высокой вероятности того, что накопитель не запуститься, есть вероятность нанести дополнительные повреждения внутренностям гермоблока.

В видео примере в начале поста рассмотрен этот случай.

Данная неисправность встречается часто.

Рис.4. Прогоревшая микросхема управления шпиндельного двигателя.

Рис.4. Прогоревшая микросхема управления шпиндельного двигателя.

Отсутствуют/отбиты детали.

Чаще всего эта ситуация возникает когда у диска детали расположены«наружу». Это диски Samsung, Maxtor, “ классические ” Seagate и т.п. Определить отбитую деталь можно по припою: он не плавно растекается (как происходит в случае незадействованного контакта), а торчит острыми краями вверх. На рисунке 5 отбиты 3 детали: два резистора и конденсатор. Иногда бывает, что при попытке что-то паять на плате «сдули» детали — такое повреждение можно определить только по сравнению с такой же исправной платой. Так же возможно повреждение ножек микросхем, когда они согнуты и замкнуты друг с другом или оторваны от корпуса. Данная проблема возможна только для старых дисков так как у новых выводы расположены под самой микросхемой.

При обнаружении отсутствующих электронных компонентов на плате контроллера подавать питание на накопитель в таком состоянии нельзя. Помимо высокой вероятности того, что накопитель не запуститься, есть вероятность нанести дополнительные повреждения внутренностям гермоблока.

Данная неисправность встречается очень редко.

Рис. 5. Отбитые детали на плате жесткого диска Maxtor.

Рис. 5. Отбитые детали на плате жесткого диска Maxtor.

Оторвали разъем. Проблемы с разъемом встречаются обычно у PATA и USB дисков. Как в случае PATA, так и в случае USB дисков внимание следует обратить на места подпайки разъема к плате. Чаще всего один или несколько контактов просто отрываются от платы.

На рисунке 6 показан вид на место подпайки контактов разъема USB 3.0 к плате. В данном случае, разъем полностью исправен.

Данная неисправность встречается часто.

Рис. 6. Пример установки USB 3.0 разъема для диска WD.

Рис. 6. Пример установки USB 3.0 разъема для диска WD.

Повреждены дорожки на печатной плате.

Следует обратить внимание (рис. 7) на наличие глубоких царапин на плате электроники.

Данная неисправность встречается очень редко.

Рис. 7. Царапина на плате электроники жесткого диска WD.

Рис. 7. Царапина на плате электроники жесткого диска WD.

Нарушение работы из-за прокладки между платой и гермоблоком.

Данная неисправность встречается редко у старых дисков.

Видимых повреждений нет, но при подаче питания диск не раскручивается.

В этой ситуации возможности определить неисправность по внешним признакам нет. Возможные действия по уточнению состояние платы будут рассмотрены в следующей части.

Дальнейшие действия:

З ащитн ые диод ы . Чаще всего достаточно просто отпаять замкнутый/сгоревший защитный диод и плата начнет работать. Плата жесткого диска без него работать будет.

Окисление разъемов. Потемневшие (окислившиеся) разъёмы осторожно зачистить до блеска, например, канцелярским ластиком.

Прог о р ела микросхем а . Следует заменить плату на совместимую исправную. В большинстве случаев потребуется перепайка flash- ПЗУ с неисправной платы на исправную. Ремонт платы с заменой микросхемы в подавляющем большинстве случаев не имеет смысла.

В идео на нашем канале, посвященные замене платы:

Отсутствую т /отбиты детали. Произвести замену платы на совместимую. В большинстве случаев потребуется перепайка flash- ПЗУ с неисправной платы на исправную.

Оторвали разъем. Чинить разъем или менять плату. Можно сразу на SATA.

По вреждены дорожки на печатной плате . Произвести замену платы на совместимую. В большинстве случаев потребуется перепайка flash- ПЗУ с неисправной платы на исправную.

Нарушение работы из-за п рокладк и между платой и гермоблоком . Убрать прокладку.

Д ополнительная информация:

Проверка наличия на гермоблоке накопителя следов механических воздействий

Под мех аническими в оздействиями понимается: царапин ы на корпусе гермоблока , вмятин ы, изгиб корпуса гермоблока и т.п.

Симптомы: Наличие на корпусе следов падений, ударов, других сильных механический воздействий. Конечно, н е все механические воздействия оставляют следы, но, обычно, если диск поврежден именно механически, то это будет заметно.

Возможные неисправности:

Вмятина от удара. У жестких дисков форм-фактора 2.5 дюйма бывают вмятые крышки. Пример приведен на рисунке 8. Так как у этих дисков плотность размещения деталей в гермоблоке выше, а усилий для повреждения нужно меньше, то сравнительно небольшие следы повреждений приводят к фатальным нарушениям в работе диска.

Рис. 8. Вмятина на жестком диске Seagate со стороны наклейки.

Рис. 8. Вмятина на жестком диске Seagate со стороны наклейки.

Согнутый корпус.

Определить изгиб корпуса можно приложив к исследуемому диску похожий исправный диск другой стороной так, чтобы все места креплений прилегали друг к другу. Если 3 места креплений касаются (рис. 9), а одно не касается, то диск согнут.

Рис. 9. Определение согнутого корпуса.

Рис. 9. Определение согнутого корпуса.

Дальнейшие действия:

Восстановление работоспособности в случае механических повреждений не всегда возможно. По статистике успехом (восстановленными данными), завершаются около 20% случаев и это при наличии всех доступных инструментов и гарантированно подходящих дисков-доноров.

01

Поломки плат жесткого диска можно условно разделить на электромеханические и логические. Про логические речь зайдет попозже, ну а безусловным лидером первых являются выгорающие защитные элементы в цепи питания, что обусловлено так называемым тиристорным эффектом БП, — ситуацией, когда при включении\выключении питания отпираются верхние и нижние ключи и происходит резкий рост тока потребления, что приводит к “пробою” защитных элементов жесткого диска, после чего те либо “звонятся” на КЗ, либо уходят “в обрыв”.

02

03

Проявляться такая неисправность может следующим образом:

  • При включении ПК с подключенным к нему “сгоревшим” HDD, компьютер не включается, либо совсем не реагируя на нажатие кнопки питания, либо кратковременно стартуя и тут же выключаясь. То же верно и при подключении к таком диску отдельно разъема питания от внешнего БП.
  • При подаче питания на жесткий диск, тот не проявляет никаких признаков разумной жизни. Не вращается шпиндельный двигатель, и если приложить к гермоблоку простое человеческое ухо, то не слышно никаких шумов, писков и т.п. А если такой диск подключить к АТА терминалу (функционал доступен в популярных диагностических продуктах mhdd и victoria) и подать питание, то регистры не будут активны.

Найти “слабое звено” не представляет труда. Даже если вы никогда не видели той или иной платы — все они устроены по сходным принципам и TVS-диоды, равно как и защитные SMD предохранители, будут гнездиться неподалёку от разъема питания. С помощью мультиметра можно прозвонить эти элементы и выявить неисправный.

04

TVS-защитные диоды: при попадании на них импульса больше заданного, спекают анод и катод и тёмная сторона силы уходит на массу.

TVS-защитные диоды: при попадании на них импульса больше заданного, спекают анод и катод и тёмная сторона силы уходит на массу.

Дальше, если речь идет о TVS-защитных диодах, то выявив “сгоревший” элемент его можно заменить. Лучше, и по-православному, — взять такой же, заведомо исправный. Но такая возможность есть не всегда. В нашей многолетней практике мы руководствуемся простым правилом для такого рода замены — взять произвольную плату от Seagate 3,5” 7200.7-12, WD 3,5” (любой SATA) или Samsung 3,5” SATA\IDE. Отыскать по нужной цепи (+5 или +12 V) внешне похожий, и менять на него.

В большинстве случаев диск будет работать и вовсе без этих элементов! Отпаяли, а если паяльника нет под рукой, то выкусили кусачками, короткое замыкание устранили и диск заработал. Но! Делать это настоятельно не рекомендуется, разве что информация на диске не важна и сам диск не очень нужен. Ибо без иммунитета на входе, когда винчестеру прилетит по проводкам подарочек в следующий раз, последствия могут оказаться плачевнее.

Проверяем не только защитные диоды около разъема питания (вверху) но и остальные элементы

Проверяем не только защитные диоды около разъема питания (вверху) но и остальные элементы

Вот пример платы от HDD Samsung, где пользователь решил самостоятельно устранить поломку, впаяв перемычку, и сжег процессор на PCB.

Вот пример платы от HDD Samsung, где пользователь решил самостоятельно устранить поломку, впаяв перемычку, и сжег процессор на PCB.

Отмечены защитные элементы на PCB HDD Toshiba

Отмечены защитные элементы на PCB HDD Toshiba

Следующая проблема — это выгорание так называемой “крутилки”, она же “крутилка-шевелилка” она же микросхема предусиления\коммутации. Вот примеры:

09

10

Выявить причину визуально никаких проблем не составляет. А если кому то не повезло со зрением, то такую поломку и по характерному запаху найти можно. Проблемка позаковыристее сгоревшего трансила. Для ее устранения в ряде случаев можно перепаять м\с взяв с диска-донора, но зачастую микруха выгорает поджигая вокруг себя проводники, сплавляя SMD-обвязку и т.п.

Програмный ремонт жёстких дисков HDD (Програмный (и не только) ремонт классических жёстких дисков HDD /Seagate /Samsung /IBM /Hitachi /HGST /Western Digital)

Програмный ремонт жёстких дисков HDD

Програмный (и не только) ремонт классических жёстких дисков HDD /Seagate /Samsung /IBM /Hitachi /HGST /Western Digital

Создать, что ли, отдельную тему по программному ремонту старых жёстких дисков?

Tronix, у меня ушло около двух лет на то, чтобы фильтровать на эту тему весь интернет, читать тысячестраничные форумы (иногда - закрытые - через кэш поисковика), выгребая из тонн флуда крупицы здравого смысла, поднимать из веб-архива мёртвые сайты, расшифровывать дремучий сленг, шариться по мутным сайтам и файлопомойкам, ночи напролёт чахнуть над непонятными мануалами. Если этот FAQ поможет людям сэкономить эту пару лет и сходу починить хотя бы несколько дисков - я буду считать, что я не зря старался.

И да, "классические" Барракуды можно привести в состояние "прям как с завода" (если головки в принципе живые, конечно) при абсолютно любых программных проблемах, хоть с совершенно пустой служебкой. Если, конечно, действовать по инструкции, которую и следует написать (черновик есть).

Вклад в сообщество

Програмный ремонт жёстких дисков HDD (Програмный (и не только) ремонт классических жёстких дисков HDD /Seagate /Samsung

Навигация по теме:
Seagate (и отдельно по F3)
Conner
Fujitsu
Quantum
Maxtor
Samsung
Western Digital
IBM, Hitachi
Прочие (Kalok, Teac, Toshiba и т.д.)

Последний раз редактировалось KALDYH 01.06.2019,20:16, всего редактировалось 4 раза.

Вклад в сообщество

Классификация по ремонтопригодности навскидку:
1. Диск не раскручивается - необходим ремонт платы электроники.
2. Диск не раскручивается, но время от времени издаёт писк - клин шпиндельного двигателя либо падение головок на пластины, как правило неремонтопригодно.
3. Диск раскручивается и начинает издавать громкий стук или неприятный шум и скрежет - головка не может считать сервоинформацию и удержаться на дорожке, за редким исключением неремонтопригодно.
4. Диск раскручивается, нормально распарковывается и останавливается, либо делает несколько негромко слышимых попыток позиционирования, либо просто не виден на интерфейсе без видимых/слышимых отклонений в поведении - повреждение служебной информации, можно пытаться отремонтировать. Иногда проблема бывает также в разъёме IDE.
5. Диск определяется, но имя диска искажено, каждая вторая буква испорчена - распространённая мелкая поломка, сломан или загнут один пин данных в разъёме IDE.
6. Диск определяется системой, но ёмкость равна нулю или отдаётся не своим именем (например, Maxtor ATHENA) - повреждена служебка, ремонтопригодно. Отдаваемое имя - технологическое имя семейства, содержится в ПЗУ.
7. Диск работает, но содержит бэды в умеренном количестве - можно попробовать их скрыть.
8. Диск работает, но содержит бэды, бэд-блоки расположены чередующимися группами по всей поверхности - отказ одной головки. В некоторых случаях ее можно отключить, получив исправную модель с меньшей ёмкостью.
9. К банке, не подумав, прикрутили неродную плату - что ж, сами виноваты.

Вклад в сообщество

KALDYH писал(а): 2. Диск не раскручивается, но время от времени издаёт писк - клин шпиндельного двигателя либо падение головок на пластины, как правило неремонтопригодно. Иногда спасти данные с такого диска можно, сначала надо раз 10 попытаться запустить в обычном режиме, далее если не выйдет, пытаться запустить подавая питание и одновременно совершая мощные щелбаны по крышке гермоблока. Попадаются полуубитые винчестеры, которые стартуют только в таком режиме. С них данные надо копировать сразу же, как только удастся раскрутить диск.
KALDYH писал(а): 5. Диск определяется, но имя диска искажено, каждая вторая буква испорчена - распространённая мелкая поломка, сломан или загнут один пин данных в разъёме IDE.

Добавлю, что иногда причиной бывает второе устройство на канале, не совместимое с подопытным винчестером.

И ещё касаемо копирования данных с проблемных жёстких дисков. Ни в коем случае не надо это делать Проводником. Он имеет свойство при ошибках диска виснуть намертво. Лучше это делать Total Commander, тот с минуту помучившись спрашивает "ошибка чтения, пробуем ещё или ну этот файл", пробовать второй раз пробовать считать обычно смысла нет, а драгоценное время пока винт совсем коньки не отбросил уменьшается.

Вклад в сообщество

Платы первых IDE жестких дисков несли на себе следующие основные компоненты:
1. Микроконтроллер - стандартный МК общего назначения, 8/16-разрядный: Motorola 68HC11, Intel 8052, 80196, Fujitsu MB89000.
2. ОЗУ микроконтроллера
3. ПЗУ
4. Контроллер интерфейса IDE, обычно производства Cirrus Logic или Adaptec
5. ОЗУ дискового кэша
6. Микросхема драйвера шпиндельного двигателя и привода актуатора (spindle and voice coil motor driver, SP&VCM, "крутилка-шевелилка"), иногда с внешними силовыми ключами.
7. Канал чтения-записи.
8. Микросхема коммутатора-предусилителя.
9. Элементы защиты.

Вот, собственно, и всё, что следует в общем знать о ремонте плат жёстких дисков. Далее, в разборе по производителям, расскажу о некоторых специфических для определенных серий поломках.

Вклад в сообщество

ATauenis писал(а): Попадаются полуубитые винчестеры, которые стартуют только в таком режиме. С них данные надо копировать сразу же, как только удастся раскрутить диск. Ага, я тоже встречал. Причина тут обычно другая - износ подшипников шпинделя.

Вклад в сообщество

Первые жёсткие диски, как известно обитателям этого форума, обходились вовсе без микроконтроллеров, только хард-логикой и аналоговыми схемами. Позже на платах появился микроконтроллер - первоначально только для управления позиционером и отработки старта-остановки, к обмену данными он отношения не имел. И только с введением интерфейса IDE микроконтроллер стал неотъемлемой частью жёсткого диска. Поначалу в его ведении была только обработка команд протокола ATA и позиционирование, позже к ним добавились буферизованный поиск и оптимизация перемещения коромысла, стратегия кэширования, логи SMART, трансляция и переназначение секторов и многие другие функции, для управления позиционером и всей сервосистемой появился отдельный сопроцессор, а для сепарации данных - DSP. Соответственно с этим вырастал и объём требуемых для его работы данных - у первых винчестеров почти всё умещалось в ПЗУ, у новейших в нём только начальный загрузчик. Все вместе эти данные, как исполняемый код, так и всевозможные таблицы, образуют служебную информацию ("служебку"). Хранится она на поверхности жёсткого диска, на специально выделенных для этого цилиндрах (у некоторых моделях - на внешних, где плотность записи ниже, с отрицательными номерами, у других - в середине диска, в специально выделенной служебной зоне с пониженной плотностью), обычно имеет основную копию только по одной (нулевой, самой нижней) голове (называемой служебной - в принципе, модифицировав микропрограмму, можно назначить служебной любую другую), по соседней голове хранится резервная копия. Служебка недоступна пользователю. Для доступа к служебной информации по интерфейсу необходимо ввести в регистры накопителя т.н. технологический ключ, или Super-On. Откуда его узнают? Реверс-инженеринг прошивок накопителей из пакетов обновлений прошивки, фирменных служебных утилит, утечки с заводов-производителей (обычно через китайцев).

Подробнее о структуре служебки отдельных накопителей можно почитать в документации на PC3000/HRT

Читайте также: