Распиновка процессора amd athlon 64 x2

Обновлено: 08.07.2024

ОЗУ Socket 754, 3 слота: лучше 3х1Гб или 2х2Гб + 512Мб ?
Здравствуйте! Добрые ФОрумчане )) У меня материнка в ней 3 слота ОЗУ Socket 754 Сказано что.

Невозможно создать Socket: Socket sock = new Socket(someHostString,somePortInt);
Народ! Помогите пожалуйста. Вся красота губится на exception что выскакивает в момент создания.

вставте если работает значит повезло
если нет, то его стоимость 200р на радиорынках может у кого брелки еще остались вставте если работает значит повезло
если нет, то его стоимость 200р на радиорынках может у кого брелки еще остались Он то работает, но еще до того как достать процессор не было картинки, надо было раз по 10 включать, выключать что бы она была. Сейчас тоже самое. Монитор проверял, в исправном состоянии, кабель тоже в порядке, оперативка рабочая. Может ли это быть связанно с батарейкой? Darios, нет, батарейка не при делах. Обычно, если технику надо "разогревать", чтобы она работала, то вина во вздутых конденсаторах. Скорее всего, проблема с блоком питания (не хватает мощности для запитывания видеокарты). Видео встроенное, на материнке беременных кондеров не наблюдалось, чуть позже попробую поставить другой бп, отпишу результат. БП в порядке, оператива и проц тоже. Значит остается материнка. Скорее всего дело именно в ней.

Посоветуйте i5-7600 (Socket 1151) или i7-6800 (Socket 2011-3)
Посоветуйте, что взять i7-7700 (Socket 1151) или i7-6800 (Socket 2011-3) материнки на Z270 и на.

Assembler linux. Socket recv and socket send invalid arguments
Пишу шеллкод. Он ожидает подключения с 2222 порта, сам подключается на 1111 порт, выделяет память.

Совместимость AMd athlon 2 x2 245 socket am3 к материнке ht2000 k8m890m-m socket am2
Подойдет ли проц AMd athlon 2 x2 245 socket am3 к материнке ht2000 k8m890m-m socket am2

Nodejs net socket server and android socket client
Добрый день Форумчане нужно помощь гуру! Решил с другом написать сервер на ноде с использование.

Мы думали, что в рамках тестирования устаревших платформ придется ограничиться всего двумя статьями, посвященными процессорам под Socket AM2, куда не вошли очень многие интересные с исследовательской точки зрения модели, однако действительность оказалась к нам чуть более благосклонной – удалось добыть еще четыре Athlon 64. Причем очень хорошо заполняющие пробелы предыдущих тестирований, так что сегодня мы ими и займемся. Подключив к участию также и Sempron 3200+ из первой статьи, но не устраивая межплатформенных соревнований. Причина – проста и понятна: особо не с кем сравнивать. Как мы уже убедились сверху все семейство Athlon 64 X2 (за исключением, может быть, топового 6400+) «перекрывают» такие процессоры, как А4-3400 или даже специфичный и нишевый Celeron G530T, ну а среднему классу и супротив Celeron G460 сложно устоять. А вот как там дела в среднем и нижнем классе обстоят (точнее, обстояли) внутри – как раз и любопытно взглянуть. Чем мы и займемся.

Конфигурация тестовых стендов

В списке двухъядерных моделей будут три процессора, два из которых носят одинаковое название – увы, но таковы издержки «старых» систем наименования по частоте или рейтингу производительности: дуплеты, триплеты и более того тогда сыпались как из рога изобилия. Причем 4200+ (равно как и 3800+, 4600+, 5000+. продолжить самостоятельно) еще в какой-то степени повезло – «тезки» имели одинаковые частоты и емкость L2. Почему вообще образовались пары? Сначала Athlon 64 X2 использовали 90 нм кристалл Windsor, а потом перешли на 65 нм Brisbane. Получился такой вот своеобразный бардак, в другой подлинейке подросший. Дело в том, что Windsor мог иметь как 1 МиБ кэш-памяти, так и 2 МиБ (512К/1024К на ядро, соответственно), а Brisbane – только меньшее из этих значений. В результате Athlon 64 X2 4000+/4400+/4800+ и далее были совсем разными. Например, 90 нм 4400+ (тоже участник нашего тестирования) это 2,2 ГГц и 2х1024 L2, а 65 нм 4400+ – 2,3 ГГц и 2х512. Неразбериху усугубляло и то, что массовые Windsor были как обычными (TDP 89 Вт), так и энергоэффективными (TDP 65 Вт), а Brisbane – только вторыми. В общем, в ассортименте AMD было три массовых Athlon 64 X2 4200+ и еще один встраиваемый процессор с таким же названием (на деле – тот же АМ2, тот же Brisbane, но 35 Вт)! А как их можно было различить? Только по маркировке, причем полной – начало было сходным, т.е. ADO4200 – два процессора: надо еще и «хвостик» для ясности читать.

Как мы уже писали ранее, с поддержкой оперативной памяти процессорами под АМ2 есть свои тонкости. Одноядерные модели официально ограничены DDR2-667, но на практике не имеют ничего против установки частоты 800 МГц. Это положительный момент, но есть и отрицательный – делители могут быть только целочисленными, так что «истинные» 800 получаются только в процессорах, частота которых нацело делится на 400. Во всех остальных случаях все несколько хуже – для процессоров с частотой 1,8 ГГц реальный режим работы памяти вообще DDR2-720, а при 2,2 ГГц получаем DDR2-732. Понятно, что с учетом слабости (с точки зрения современности) самих ядер (или, даже, ядрышек :)) это особой роли не играет, но помнить о таком поведении «старичков» стоит.

Тестирование

Интерактивная работа в трёхмерных пакетах

Мы долго разрывались в сомнениях – это одно- или двухпоточные тесты, так что полная определенность в вопросе крайне приятна :) Все-таки первое, причем еще и наблюдается проблема с миграцией процесса по ядрам, свойственная многоядерным процессорам без общей кэш-памяти. А последняя здесь важна – как видим, Athlon быстрее равночастотного Sempron аж на 20%, да и дальнейшее увеличение L2 тоже почти 10% прибавляет. На первый взгляд это кажется несущественным на фоне прироста от увеличения тактовой частоты, но не забываем, что 3000+ и 3500+ разделяет целых 400 МГц. Соответственно, возникает вопрос – каким образом AMD планировала скомпенсировать уменьшение емкости кэш-памяти в Athlon 64 X2 4400+ на Brisbane увеличением частоты всего на 100 МГц, если этот кристалл при прочих равных еще и чуть медленнее, чем Windsor? Впрочем, делать выводы по первой группе тестов, конечно, несколько опрометчиво, так что подождем.

Финальный рендеринг трёхмерных сцен

Несмотря на резко изменившийся характер нагрузки, Brisbane по-прежнему при прочих равных немного медленнее Windsor. Но более интересно не это, а практически линейная масштабируемость приложений по ядрам. Даже сверхлинейная, что тоже вполне объяснимо – у одноядерного процессора есть одно ядро на все-все-все, а не только потоки прикладной программы, а двух- и более уже может «изыскать» дополнительные ресурсы для служебных процессов с меньшим ущербом для основной работы. Хотя по тоже вполне понятным причинам абсолютные показатели старичков уже далеко не впечатляют: Celeron G465 (современный, с Hyper-Threading, но физически одноядерный и низкочастотный), к примеру, набирает 35 баллов в этой группе тестов, т.е. на уровне Athlon 64 X2 3800+ и лишь на 10% меньше, чем 4200+.

Упаковка и распаковка

Прирост от многоядерности всего 20%, хотя уж два-то ядра умеют использовать два теста из четырех. Но недостатком Athlon с точки зрения этих программ является отсутствие общей кэш-памяти, так что ничего удивительного нет. Даже если ее количество удвоить – 4400+ обгоняет 3500+ в 1,3 раза, а аналогичное соотношение для двух- и одноядерных Celeron равно 1,47. Развернутые комментарии излишни: Pentium D были еще хуже с точки зрения практической реализации, но и на примере Athlon 64 X2 тоже хорошо заметна порочность пути создания многоядерных процессоров путем механического объединения нескольких ядер в одном корпусе. Безусловно, это лучше, чем ничего, но хуже, чем изначально многоядерный дизайн как в тех же Phenom или, хотя бы, Core Duo, за последнее время ставший стандартом де-факто в отрасли.

Кодирование аудио

Линейная масштабируемость и невосприимчивость к емкости кэш-памяти – это мы знали и раньше. Так что относительно новым стал очередной проигрыш Brisbane. Это уже становится однообразным :)

Компиляция

Масштабируемость почти линейная, поскольку здесь уже важна кэш-память, зато можно проследить – насколько она важна. Только не стоит забывать об эксклюзивной ее архитектуре. С учетом этого видим, что переход от 192 КБ (суммарно) Sempron 3200+ к 640 КБ Athlon 64 3000+ дает почти 30% прироста быстродействия. А вот дальнейшее ее увеличение с 640 до 1152 КБ добавляет 10% – в какой-то степени тоже близко к линейной масштабируемости.

Математические и инженерные расчёты

Пара потоков и здесь небесполезна, пусть и в меньшей степени, чем в предыдущих двух группах. Ее значение даже повыше, чем у кэш-памяти или тактовой частоты. Но ничего нового в этом, конечно, нет.

Растровая графика

И здесь пара ядер востребована большинством приложений, пусть и не в полной мере. Зато, кстати, от кэша пользы немного – к вящей радости тех, кто в свое время покупал Sempron. Сейчас, впрочем, ни их, ни Athlon 64, ни даже Athlon 64 X2 в таковом качестве использовать можно только на безрыбье: 62 балла это не только 65 нм Athlon 64 X2 4200+, но и. одноядерный Celeron G440. В среднем, конечно – пакетные тесты ACDSee любым Athlon 64 X2 выполняются заметно быстрее, однако такая обработка изображений яркое, но, к сожалению, исключение из правил. Другие RAW-конвертеры, где на этапе «проявки» можно распараллелить работу одновременной обработкой нескольких фотографий, поведут себя аналогично. Но после проявки обычно наступает этап ретуширования и прочего – обычно, куда более длительный. Со всеми вытекающими. Особенно для любителей всего альтернативного – если Photoshop частично задействовать многопоточность умеет, то GIMP этому пока вовсе не обучен.

Векторная графика

На первый взгляд и эти две программы тоже, однако это не совсем так – основной проблемой Athlon 64 X2 в них оказывается отсутствие единой кэш-памяти, что и низводит эффект от второго ядра почти до нуля. А то и ниже – Brisbane здесь оказался даже хуже равночастотного Orleans.

Кодирование видео

И вновь близкая к линейной масштабируемость, а также слабая зависимость от емкости кэш-памяти. Все бы, конечно, хорошо. Если сравнивать процессоры только друг с другом, а не с современными моделями, но именно этим мы сегодня и занимаемся. К счастью для старичков, которые для работы такого рода, безусловно, уже не слишком пригодны, даже если достались даром.

Офисное ПО

А вот поработать с такими программами в принципе можно. Не потому, конечно, что «старые» процессоры так уж быстры, а потому, что и новые не слишком далеко ушли от них, поскольку большинство современных технологий приложениями этого класса не используются. Однако какой-никакой прогресс и в однопоточной производительности тоже за прошедшие годы наблюдался, так что даже Celeron G465 обходит Athlon 64 X2 4400+ на 25%. С одной стороны, вроде бы, и ничего критичного. С другой же. а зачем терпеть пусть и мелкие, но неудобства?

Прирост от двухъядерности почти линейный. А вот в плане требовательности JVM к кэш-памяти мы, наконец-то, нащупали тот порог, выше которого можно не «дергаться»: со 192 КБ до 640 КБ почти 15%, но с 640 до 1152 КБ лишь 3%. На SBDC мы наблюдали второе, да и вообще большинство современных процессоров ведут себя подобным образом – в частности, многоядерные Athlon II не хуже аналогичных по частоте и количеству ядер Phenom II, но на то они и современные: либо есть L3, либо L2 большой (от 512К и далее) емкости. А вот «старичков» оказалось полезным протестировать хотя бы для того, чтобы в очередной раз убедиться, что не все зависимости можно продлять бесконечно в любую сторону – бывают пороги, которые все резко меняют. Особенно когда речь идет о кэш-памяти, которой либо хватает (и тогда дальнейшее увеличение уже ничего почти не дает), либо не хватает (и тогда все очень резко замедляется).

Как мы уже как-то писали, запуск современных игр на одноядерных процессорах – занятие не для слабонервных. Однако получить какой-никакой результат можно, порадоваться почти линейному приросту от второго вычислительного ядра тоже можно, а вот дальше мысль останавливается :) Достаточно вспомнить, что самый быстрый двухъядерный процессор, а именно Pentium G2120 набирает 119 баллов, а самый быстрый четырехъядерный Athlon II X4 651 дотягивает до 121 балла. Выше, конечно, есть всяческие Phenom II, FX и Core, но нам сейчас более интересны бюджетные модели, поскольку главными героями являются слишком уж старые процессоры. Используемая видеокарта на NVIDIA GeForce GTX 570, безусловно, избыточна для обоих названных групп CPU, так что получаем чистое их сравнение. Вот выше уже большой прирост получить сложно – результат Core i7-3770K равен 159 баллам. А вот ниже – почти двукратная разница между современными процессорами за «около 100 долларов» и «старичками», т.е. из примерно 150% отрыва i7-3770K от Athlon 64 X2 4200+ первые 100% приходятся на пропасть между последним и современными бюджетниками. Это, повторимся, даже при использовании видеокарты, которая практически никогда в реальных компьютерах не соседствует ни с какими Athlon. Вывод? Неоднократно уже озвученный: при ориентации на игровое применение компьютера основные средства должны быть потрачены на видеокарту. Во вторую очередь – видеокарта. И в третью – она же. А процессор куда менее важен. Естественно, это не должна быть модель среднего класса шестилетней давности и уже точно не бюджетный процессор того времени, а вот из современных устройств – можно обойтись и недорогим. Можно, конечно, и дорогим, если финансы «не жмут», но только после того, как будет приобретена соответствующая видеокарта. А вот прежде чем приобретать новую дорогую видеокарту для старого компьютера, нужно три раза подумать – возможно, что для начала стоит обновить платформу. Ничего нового, конечно, в этом нет, но в очередной раз убедиться в справедливости прописных истин всегда приятно :)

Многозадачное окружение

Итого

Как Athlon 64 X2 соотносятся с современными процессорами мы оценили еще в прошлый раз, а с Sempron разобрались в позапрошлый, почему сегодня и решено было отойти от «дальних» сравнений, просто заполнив пробелы в знаниях о процессорах для Socket AM2. Вот с этой точки зрения на испытуемых и взглянем.

Sempron и одноядерные Athlon 64 на деле очень похожи. Заметно, конечно, что большая емкость кэш-памяти дает последним немало, однако, фактически, Athlon с разным L2 отличаются друг от друга не менее заметно. По диаграмме кажется, что более, но не стоит забывать, что Sempron 3400+ нам найти не удалось, а вот он как раз, скорее всего, встроился бы в промежуток между Sempron 3200+ и Athlon 64 3000+ образом, подобным Athlon 64 Х2 4200+ и 4400+. В общем, различия между одноядерными семействами искусственные: второе начиналось чуть выше, чем первое заканчивалось. Единственной точкой пересечения можно считать разве что Sempron 3600+ и Athlon 64 3000+: более высокая частота пусть и при 256К L2 вполне может позволить первому процессору иногда даже обгонять второй. Но, кстати, обратите внимание на то, насколько разные рейтинги для этого нужны: 3600+ и 3000+. Хотя у обоих процессорах они по указаниям AMD указывают на производительность, однако гранаты явно разной системы ;) Что всегда лило воду на мельницу приверженцев версии, что на деле рейтинг указывает вовсе не какую-то объективную (пусть и гипотетическую) производительность сравнительно с эталонным Athlon на каком-то наборе приложений, а частоту сравнимых по производительности процессоров Intel. Только разных – Celeron и Pentium 4 соответственно. За давностью лет, да и сменой системы маркировки процессоров AMD на, мягко говоря, более удобную и логичную (точнее, вот уже несколько новых более удобных и логичных), естественно, серьезно заниматься этим вопросом сегодня нет смысла, но раз уж у нас в своем роде экскурс в историю, почему бы эту самую историю в очередной раз не вспомнить? :)

Рейтингование же Athlon 64 Х2 по сути контрольный выстрел в лоб официальной версии. Понятно, что массовое ПО не сразу стало хотя бы двухпоточным, однако в перспективе других вариантов развития событий изначально не прослеживалось. И к чему мы пришли? 500 очков Athlon 64 дает прирост итогового балла нашей методики в 1,19 раза, а 300 очков между семействами – 1,2 раза (если сравнить Athlon 64 Х2 3800+ и Athlon 64 3500+). Но следующие 400 очков уже внутри Athlon 64 Х2 – лишь 1,07 раза! В общем, судить по рейтингу разных семейств о производительности – занятие совсем неблагодарное, хотя официально для этого его и вводили. Впрочем, у Athlon 64 Х2 рейтинги уже никак не сопоставишь и с тактовой частотой процессоров Intel – не было Pentium D с официальными частотами по 4 ГГц и выше. Но и Pentium 4 таких тоже не было.

Сравнение же двух вариантов Athlon 64 Х2, т.е. Brisbane и Windsor, тоже уже интересно лишь с исторической точки зрения, но перекликается с современностью. Да и с рейтингами тоже – как видим, процессор на более новом кристалле настолько устойчиво отстает от равного по ТТХ предшественника, что 65 нм Athlon 64 Х2 4200+ стоило бы иметь частоту хотя бы на 100 МГц выше, т.е. 2,3 ГГц. Увы, но такой Brisbane назывался Athlon 64 Х2 4400+, с чем он точно не имел ничего общего. Понятно, что проблему можно было бы решить более грамотной раздачей рейтингов, но ведь без них ее можно было бы и вовсе не создавать. А почему это перекликается с современностью? Brisbane дешевле в производстве, чем Windsor и несколько экономичнее – прямая аналогия с Sandy Bridge и Ivy Bridge. Но есть и серьезные различия: при равных ТТХ Ivy таки быстрее Sandy во-первых, и называются такие процессоры по-разному во-вторых. В общем, ругая Intel за слишком уж небольшой прирост от освоения техпроцесса 22 нм, стоит помнить, что бывали в истории случаи и хуже.

На этом мы заканчиваем архивную тему – как минимум до ввода в эксплуатацию новой версии методики тестирования. На очереди – заключительная версия процессорных итогов, благо материала по сравнению с промежуточной накопилось достаточно: почти столько же, сколько было в последней. Осталось только изучить производительность новых процессоров AMD для Socket AM3+, чем мы в следующей статье и займемся.


Я люблю процессоры фирмы AMD. Мне нравится ее отношение к людям, нравятся незаблокированные множители на моих процах, нравится наличие в них двух контроллеров памяти, позволяющее им одинаково легко работать и на платформе с DDR2, и на платформе с DDR3. Нравится дешевая память для них. Ну, вот кому может не понравиться обмен 2-х гигов обычной DDR2 на 8 гигов DDR2 для AMD, если работать памяти предстоит все равно на платформе AMD? А у меня так и вышло. Две гиговых линейки я продал на Авито по 200 руб, а на ебее за 800 руб купил 8 гиг оперативы для AMD. Но, поскольку продавец немного слукавил и в SPD зашил небольшой разгончик, а я его на этом поймал, то половину стоимости он мне вернул. Эти 8 гиг до сих пор успешно работают на компе моей жены, а ее универсальные 8 гиг освободились для сборки компа, о котором напишу ниже.

Нет, я не слепой фанат AMD, у меня на работе Intel Core I7 2600, в гараже Core 2 Duo 6700, в родительском доме сейчас квадик, о котором писал выше, да и ноут у меня тоже на Интеле. Но мой рабочий комп все-таки на AMD FX 6300, который сменил недавно мою рабочую лошадку Phenom II 720. А теперь мы построили дачный дом и, поскольку в летнее время я собираюсь жить и работать именно на даче, то загодя начал потихоньку собирать дачный компьютер.
Для дачного компа были сформулированы свои задачи. Я собираюсь на компе работать, иногда погонять Сталкера, слушать музыку, смотреть через проектор фильмы и пользоваться инетом.
Для решения этих задач я решил сначала построить систему на народном Xeon-е 5450, для чего планировалось приобрести соответствующую мать на Авито и проц на Алиэкспрессе. Часть денег для покупки планировалось выручить от продажи этой, уже ненужной, материнки и ее проца.

Купить мать под 775 сокет с 4-мя разъемами для памяти за вменяемые деньги быстро не получилось и процесс несколько затянулся. За это время я уже продал на Авито Athlon 64 5200+ и нарисовался покупатель на мать. И вот тут случилось нечто интересное.
Покупатель спросил о возможности поставить на эту мать с сокетом AM2 процессор для сокета AM3. Я ему разъяснил, что ничего не выйдет и проц AM3 с памятью DDR2 сможет работать только на матерях с сокетом AM2+. Собственно, в основном, для этой цели сокет AM2+ и был разработан AMD. Но покупатель сказал, что вроде как некоторые матери AM2 могут работать с процами AM3. Я сказал, что это сильно вряд-ли и покупатель решил еще подумать. Но, для очистки совести, помня о чудесах, творимых иногда биосом животворящим, я решил зайти на сайт Gigabyte и посмотреть последние BIOS для этой материнки.
И вот тут я не поверил своим глазам. Последний BIOS для GA-M61P-S3 обещал поддержку большинства процов для сокета AM3. Среди них был и Phenom II 720, который трудился на моем основном компе. Решение созрело мгновенно. Поскольку у меня мать основного компа на сокете AM3+, то можно было-бы, занедорого, не только собрать приличный комп для дачи на феноме, но и проапгрейтить основной комп, поставив туда шустрый шестиядерник. Поэтому, объявление о продаже материнки с Авито было тут-же снято, а на Алиэксперессе за $63 был заказан AMD FX 6300. К слову сказать, несостоявшийся покупатель, видимо, тоже нашел инфу о последнем BIOS и запоздало позвонил мне, сказав, что купить мать он, все же, надумал. Пришлось его огорчить.

Через некоторое время приехал заказанный на али проц, который и был установлен в основной комп, а Phenom, наконец, освободился для переезда в старую материнку.
Пришла пора обновления BIOS. Мать GA-M61P-S3 поддерживает технологию Q–Flash, а это значит, что прошивать ее можно напрямую из-под BIOS. Процессор был установлен в сокет, нужный BIOS скачан с сайта производителя, к матери подключены монитор, клава и мышь. Запуск системы, вентиляторы зашумели и… черный экран монитора с моргающим светодиодом. Засада! Нового проца мать не приняла и, значит, прошить BIOS у меня не выйдет. Поиски решения обогатили меня новыми познаниями, и я узнал, к примеру, что на некоторых матерях Q–Flash работает в “слепом” режиме. Т.е. при запуске компа нажимаешь нужную комбинацию на клаве и прошивка автоматом идет с флэшки, несмотря на черный экран. У меня этот фокус не прошел. На некоторых матерях есть дополнительный встроенный микропроцессор, который позволяет запускать их вообще без основного проца! Т.е. вынимаешь проц, запускаешь мать, заходишь в BIOS и шьешь его. Затем выключаешь, встромляешь новый проц и вуаля, все пашет!
Но, увы, это тоже оказалось не про мою материнку. Короче, мне нужен был проц на АM2 буквально на несколько минут для запуска матери с целью перепрошивки BIOS. Но свой старый я уже продал, а поиски по знакомым успеха не принесли. В общем, я попал…

Пришлось заказывать сабж за $4.5 на Али. Через месяц он приехал и работа по апгрейду материнки продолжилась.



Проц был намазан термопастой MX-2 и вставлен в гнездо. Мать стартовала успешно, я вошел в BIOS и тут увидел температуру проца за 70 градусов, которая, к тому-же, продолжала резво расти. Видимо, криво поставил кулер, — подумал я и провел снова всю процедуру по установке более тщательно. Температура снова бодро полезла к 80 градусам. Пришлось вынуть проц и осмотреть его внимательно. И вот тут я обнаружил, что небольшая область со стороны ножек сильно испачкана каким-то серым веществом, похожим на остатки старой термопасты. Мда, проц-то б\у – и его демонтаж явно провели не очень аккуратно. Вооружившись лупой и зубочисткой, я тщательно выскреб всю грязь, и только после этого все заработало как надо.

Виды и различия сокетов процессоров

Тип сокета — это важнейшая характеристика процессора и материнской платы. Если опытный пользователь слышит такие названия, как сокет 462, 775, 1155 или AM4, то сразу понимает, о ПК из какого времени идет речь. Давайте разберемся в различиях современных сокетов под процессоры Intel и AMD, а заодно вспомним историю их развития: от первых персональных компьютеров и до наших дней.

Сокет (англ. «socket» — «разъём») — это разъем на материнской плате, в который устанавливается процессор. Сокет является важнейшей характеристикой компьютера, определяя список совместимых чипсетов, процессоров, материнских плат и систем охлаждения, которые можно установить на него.

Сокеты отличаются числом контактов, которое обычно растет вместе с мощностью и сложностью процессоров. Часть контактов используется для питания процессора, а часть — для работы самого процессора, шины PCI Express, ОЗУ и т. д. Для каждого сокета существует уникальная распиновка контактов, выглядит она примерно так.


Распиновка контактов сокета Intel LGA 1151

Сокет определяет и срок службы вашего ПК. Например, покупая сейчас ПК на сокете LGA1151, с процессором Core i5-9400F и материнской платой GIGABYTE B365M D2V, вы должны понимать, что новых процессоров под этот сокет выходить не будет, и оптимальный максимум на который вы можете рассчитывать при апгрейде, — это процессор Core i7-8700K или Core i9-9900K.

Для того, чтобы понять плюсы и минусы различных сокетов, а также нюансы их использования, стоит вспомнить, с чего все начиналось на заре зарождения персональных компьютеров. Давайте освежим в памяти самые распространенные сокеты на рынке ПК в хронологическом порядке. Серверных сокетов касаться не будем из-за их малого распространения.

Сокеты 1980-х и 1990-х годов

Процессоры первых ПК, такие как Intel 8086 и 8088, устанавливались в простейшие разъемы PIN DIP.


Следующее поколение — Intel 80186, 80286, 80386 — устанавливались в разъемы CLCC, PLCC. Зачастую процессоры Intel 80386 припаивались к плате, как некоторые процессоры современных ноутбуков.


И только некоторые процессоры 80386 стали использовать сокет 80386 со 132 контактами, который уже похож на современные сокеты.


Процессоры 80486 в 1989-1994 годах устанавливались аж в четыре типа сокетов: сокеты 1, 2, 3 и 5 с 169, 238, 237 и 238 контактами соотвественно. В сокет 5 можно было установить процессоры AMD K5 и Cyrix/IBM/TI M1/6x86.

На этих сокетах появился известный многим рычажок фиксации, который до сих пор используется на сокетах AM4. Называется такой тип фиксации ZIF (от англ. «Zero Insertion Force» — «нулевое усилие вставки»).


Для установки в такой сокет процессора вы должны чуть отогнуть рычажок, чтобы вывести его из зацепа и приподнять на 90 градусов. При этом откроются контактные площадки, в которые процессор должен провалиться под своим весом, без усилия. После этого рычажок опускается на место и контактные площадки зажимают ножки процессора.

В 1993 году первые процессоры Pentium потребовали новый сокет 4 с 273 контактами. Обновленный сокет 7 появился в 1995 году. В нем уже был 321 контакт, но эти сокеты больше интересны тем, что в них было возможно установить процессоры AMD K6 и Cyrix/IBM/TI 6x86L, а потом и новые процессоры Pentium MMX.

AMD продолжило развитие сокета 7, выпустив сокет Super Socket 7, который поддерживал шину в 100 МГц и процессоры AMD K6-2, AMD K6-III, AMD K6-2+/K6-III+, Cyrix MII/6x86MX.

В 1997 году появляется новый разъем щелевого типа Slot 1 предназначенный для установки новых процессоров Pentium II и Celeron, выпущенных в формате картриджей SECC и SECC2, а потом и на полностью открытой печатной плате — SEPP.


Разъем поддерживал и ранние Pentium III, но имел недостатки в виде ненадежной фиксации, и уже в 1998 году на рынке появляется знакомый многим сокет 370. Начиная с него, Intel стала указывать в названии сокета количество контактов.

Что интересно, Slot 1 и сокет 370 с точки зрения электрики были очень похожи, что позволило выпустить переходники — слоткеты (англ. Slotket от slot и socket), которые позволяли использовать новые процессоры сокета 370 на старых материнских платах Slot 1.


AMD скопировало разъем Slot 1, выпустив Slot A в 1999 году. Но совместим он был только механически, а не электрически. Slot A поддерживал первые процессоры Athlon на ядре K7, выпущенные в формате SECC.

Сокеты 2000-х годов

В 2000 году появляются процессоры Pentium 4, которые вначале используют сокет 423, а затем — сокет 478.


У AMD в это время появляется сокет A или, как его еще называли, сокет 462, поддерживающий процессоры Athlon, Athlon XP, Sempron и Duron на разных ядрах.


В 2004 году Intel выпускает сокет совершенно нового типа под названием сокет T или LGA 775. Ножки с процессора переместились в сокет на материнской плате, и теперь изготавливались в виде пружинных контактов.


Сокеты типа LGA имеют важные преимущества над старыми сокетами PGA:

  • удешевление производства процессора
  • меньшие утечки тока
  • возможность наращивать количество контактов
  • возможность изготавливать сокеты очень больших размеров, как LGA 3647 от Intel или TR4 от AMD
  • очень надежное, по сравнению с сокетами PGA, удержание процессора

Даже используя современные сокеты PGA, такие как AM4, вы должны быть крайне осторожны при снятии системы охлаждения. Густая, а особенно прикипевшая термопаста «приклеивает» радиатор к процессору и при снятии радиатора процессор может выскочить из сокета, помяв ножки.

Чтобы этого не произошло, производители рекомендуют разогреть радиатор перед снятием и сделать им несколько движений в горизонтальном (к материнской плате) направлении.

Но и у сокетов PGA есть свои преимущества:

  • сам сокет более дешев, что удешевляет материнскую плату
  • ножки на процессоре более надежны, чем ножки на сокете LGA, и позволяют произвести ремонт помятых ножек. Повредить ножки в сокете LGA очень легко, а выпрямить крайне затруднительно
  • сокет PGA более компактен и больше подходит для мобильной техники

Intel продолжила выпускать сокеты LGA и дальше. В 2008 году LGA 775 сменили LGA 1366 для высокопроизводительных систем. В 2009 году — LGA 1156 для настольных систем. Крепежные отверстия под систему охлаждения LGA 1156 совпадают и с современными сокетами Intel. Вы сможете установить на современную систему LGA 1200 старый качественный кулер, если он у вас есть.


А у AMD в 2003 году выходит сокет 754 для процессоров Athlon 64, затем, в 2004 году, — сокет 939. В 2006 году выходит сокет AM2, а в 2007 году — AM2+. В 2009 году выходит сокет AM3 с поддержкой памяти DDR3. А в 2011 году выходит сокет AM3+ с поддержкой процессоров Bulldozer. Платы и процессоры под этот сокет продаются и сейчас.


Эти сокеты отличало поступательное эволюционное развитие, что отражалось в расширенной обратной совместимости процессоров. Например, процессор под сокет AM3, Phenom II X4 925, можно установить в материнскую плату AM2+, и даже в AM3+!

Такая широкая возможность совместимости давала пользователям очень широкие возможности апгрейда и принесла компании AMD дивиденды в виде преданности пользователей.

Сокеты 2010-х годов

В 2011-2014 годах AMD выпускает сокеты FM1, FM2 и FM2+ для процессоров Athlon и APU серий A8, A6 и А4. В 2014 году выходит сокет AM1 для недорогих и энергоэффективных процессоров Kabini.

У Intel в 2011 году выходит сокет LGA 1155 или H2. Сокет оказался очень удачным и популярным. Для высокопроизводительных систем был выпущен сокет LGA 2011 или R.

В 2013 году Intel выпускает сокет LGA 1150 или H3. В 2014 году для высокопроизводительных систем выходит LGA 2011-3 или R3. А в 2015 году выходит сокет LGA 1151 или H4. Процессоры и платы под этот сокет продаются и сейчас.


Зачастую сокет 1151 обозначается сейчас как «1151 v2» или «1151 rev 2», но на самом деле официально никакой второй ревизии этого сокета нет, а совместимость определяется лишь материнской платой.

Энтузиасты, модифицируя BIOS материнских плат с чипсетом 100 или 200 серии, запускают на них процессоры Coffee Lake (иногда требуется выполнить «пинмод» — замыкание определенных контактных площадок на процессоре).

Особо впечатляющим выглядит запуск и разгон процессора Coffee Lake Refresh Core i9-9900K на устаревшей материнской плате с чипсетом Z170.

Самые актуальные сокеты

Ну вот мы и подошли к самым актуальным на сегодняшний момент сокетам. У Intel это сокет LGA 1200, выпущенный во втором квартале 2020 года. По сути, это модифицированный сокет LGA 1151 с 49 дополнительными контактами для улучшения питания и поддержки новых функций ввода-вывода.


На 2021 год уже запланирован выход новых процессоров Alder Lake-S и нового сокета LGA 1700.

А вот у AMD актуальным является сокет AM4, выпущенный в 2017 году. Это стандартный PGA-ZIF сокет с 1331 контактом, но интересен он тем, что уже стал долгожителем. Первые процессоры под этот сокет — APU 7-ого поколения и Athlon X4 950 на архитектуре AMD Excavator.


А в 2017 году появляются популярнейшие процессоры Zen, совершившие рывок в количестве ядер и потоков у бюджетных процессоров. В 2018 году под сокет AM4 выходят процессоры Zen+, а в 2019 — Zen 2. И остается буквально месяц до анонса процессоров архитектуры Zen 3, которые также будут использовать сокет AM4.

Серьезный минус сокета AM4 — изменение расстояний между отверстиями под СО, что сразу сделало несоместимым с ним огромное число дорогих кулеров. При этом расстояние между пластиковыми зубцами осталось прежним и на него можно поставить стандартное крепление даже от сокета 754.

Следующее поколение процессоров будет использовать память DDR5 и, скорее всего, потребует нового сокета.

Заключение

Как видите, сокеты за 40 лет прошли огромный путь, постоянно видоизменяясь и увеличив количество контактов в 30 раз. Некоторые сокеты остаются актуальны очень короткое время и не пользуются особой популярностью. А некоторые — становятся долгожителями, как, к примеру, сокет LGA 775 или AM4.

Читайте также: