Sdc2008 блок питания не запускается

Обновлено: 07.07.2024

Информация Неисправность Прошивки Схемы Справочники Маркировка Корпуса Сокращения и аббревиатуры Частые вопросы Полезные ссылки

Справочная информация

Этот блок для тех, кто впервые попал на страницы нашего сайта. В форуме рассмотрены различные вопросы возникающие при ремонте бытовой и промышленной аппаратуры. Всю предоставленную информацию можно разбить на несколько пунктов:

  • Диагностика
  • Определение неисправности
  • Выбор метода ремонта
  • Поиск запчастей
  • Устранение дефекта
  • Настройка

Неисправности

Все неисправности по их проявлению можно разделить на два вида - стабильные и периодические. Наиболее часто рассматриваются следующие:

  • не включается
  • не корректно работает какой-то узел (блок)
  • периодически (иногда) что-то происходит

О прошивках

Большинство современной аппаратуры представляет из себя подобие программно-аппаратного комплекса. То есть, основной процессор управляет другими устройствами по программе, которая может находиться как в самом чипе процессора, так и в отдельных микросхемах памяти.

На сайте существуют разделы с прошивками (дампами памяти) для микросхем, либо для обновления ПО через интерфейсы типа USB.

Схемы аппаратуры

Начинающие ремонтники часто ищут принципиальные схемы, схемы соединений, пользовательские и сервисные инструкции. Это могут быть как отдельные платы (блоки питания, основные платы, панели), так и полные Service Manual-ы. На сайте они размещены в специально отведенных разделах и доступны к скачиванию гостям, либо после создания аккаунта:

Справочники

На сайте Вы можете скачать справочную литературу по электронным компонентам (справочники, таблицу аналогов, SMD-кодировку элементов, и тд.).

Marking (маркировка) - обозначение на электронных компонентах

Современная элементная база стремится к миниатюрным размерам. Места на корпусе для нанесения маркировки не хватает. Поэтому, производители их маркируют СМД-кодами.

Package (корпус) - вид корпуса электронного компонента

При создании запросов в определении точного названия (партномера) компонента, необходимо указывать не только его маркировку, но и тип корпуса. Наиболее распостранены:

  • DIP (Dual In Package) – корпус с двухрядным расположением контактов для монтажа в отверстия
  • SOT-89 - пластковый корпус для поверхностного монтажа
  • SOT-23 - миниатюрный пластиковый корпус для поверхностного монтажа
  • TO-220 - тип корпуса для монтажа (пайки) в отверстия
  • SOP (SOIC, SO) - миниатюрные корпуса для поверхностного монтажа (SMD)
  • TSOP (Thin Small Outline Package) – тонкий корпус с уменьшенным расстоянием между выводами
  • BGA (Ball Grid Array) - корпус для монтажа выводов на шарики из припоя

Краткие сокращения

При подаче информации, на форуме принято использование сокращений и аббревиатур, например:

Сокращение Краткое описание
LEDLight Emitting Diode - Светодиод (Светоизлучающий диод)
MOSFETMetal Oxide Semiconductor Field Effect Transistor - Полевой транзистор с МОП структурой затвора
EEPROMElectrically Erasable Programmable Read-Only Memory - Электрически стираемая память
eMMCembedded Multimedia Memory Card - Встроенная мультимедийная карта памяти
LCDLiquid Crystal Display - Жидкокристаллический дисплей (экран)
SCLSerial Clock - Шина интерфейса I2C для передачи тактового сигнала
SDASerial Data - Шина интерфейса I2C для обмена данными
ICSPIn-Circuit Serial Programming – Протокол для внутрисхемного последовательного программирования
IIC, I2CInter-Integrated Circuit - Двухпроводный интерфейс обмена данными между микросхемами
PCBPrinted Circuit Board - Печатная плата
PWMPulse Width Modulation - Широтно-импульсная модуляция
SPISerial Peripheral Interface Protocol - Протокол последовательного периферийного интерфейса
USBUniversal Serial Bus - Универсальная последовательная шина
DMADirect Memory Access - Модуль для считывания и записи RAM без задействования процессора
ACAlternating Current - Переменный ток
DCDirect Current - Постоянный ток
FMFrequency Modulation - Частотная модуляция (ЧМ)
AFCAutomatic Frequency Control - Автоматическое управление частотой

Частые вопросы

Как мне дополнить свой вопрос по теме Ремонт БП ATX?

После регистрации аккаунта на сайте Вы сможете опубликовать свой вопрос или отвечать в существующих темах. Участие абсолютно бесплатное.

Кто отвечает в форуме на вопросы ?

Ответ в тему Ремонт БП ATX как и все другие советы публикуются всем сообществом. Большинство участников это профессиональные мастера по ремонту и специалисты в области электроники.

Как найти нужную информацию по форуму ?

Возможность поиска по всему сайту и файловому архиву появится после регистрации. В верхнем правом углу будет отображаться форма поиска по сайту.

По каким еще маркам можно спросить ?

По любым. Наиболее частые ответы по популярным брэндам - LG, Samsung, Philips, Toshiba, Sony, Panasonic, Xiaomi, Sharp, JVC, DEXP, TCL, Hisense, и многие другие в том числе китайские модели.

Какие еще файлы я смогу здесь скачать ?

При активном участии в форуме Вам будут доступны дополнительные файлы и разделы, которые не отображаются гостям - схемы, прошивки, справочники, методы и секреты ремонта, типовые неисправности, сервисная информация.

Полезные ссылки

Здесь просто полезные ссылки для мастеров. Ссылки периодически обновляемые, в зависимости от востребованности тем.

Доброго времени суток! Блок питания gigabyte . НА входе 13009 . микросхема SDC2008 . после того как хозяин переключил на 110в. Всё заменил . осталась микросхема. нигде нет. её выхода на промежуточный -7. 8 . в магазинах ни аналогов ни её самой. в китае только от 10 шт. всего 20$ . помогите если кто может! Подарить 20-ть долларов или чем тебе помочь? Что то запрос неясен. Я чего-то не понял, ты развернул разъем на флоппи и что?? С БП напряжение 12 В пошло на 5 Вольтовую схему флоппи а 12 В пошло на 5 Вольтовую - ДА?. если так, то должен был сгореть флоппи, а не БП С БП напряжение 12 В пошло на 5 Вольтовую схему флоппи а 12 В пошло на 5 Вольтовую - ДА? Блок питания ATX12V Power модель KY600ATX состав: мс. SDC2008, тр. 3DD13009 2шт. и C5027.
Вышли из строя транзистор 8050s (Q3) в его обвязке пара резисторов и диод параллельно оптопаре, а также один из 13009.
Пытался отыскать схему, но что-то не смог. Помогите, пожалуйста. Кирилов Н.А., схема дежурки аналогична
ссылка скрыта от публикации
Оттуда же можно взять силовую часть. uam, спасибо, а то не мой профиль компьютеры. Теперь думаю разберусь. доброва времени суток! кто-нить сталкивался вот с таким зверем cooler master extreme power 2 525w!? очень нужна схема не могу нигде найти принесли его с сгоревшими силовыми ключами (STW9NK90Z) и шимом (TL3843P) заменил,+при глубоком анализе заменил кучу smd рассыпухи по высоковольтной части (обвязка ключей). при пуске через лампу (как полагается моргнула и погасла)на одном входном кондёре 135в на другом 165в. далее дежурка работает,призапуске (зелёный+масса) лампа моргает!? нагрузку не ставил питания ни по одной линии нет,дежурка проседает до

2.5в ТГР нет (два транса) по низковольтной части нечего не менял там микросхема PS223 грешу на неё
может кто поможет с воскрешением зверя,я с таким сталкиваюсь впервой и схемы как назло нет!

russ33, схемы нет.
Насколько помню схема стандартная, два транзистора STW9NK90Z в параллель, корректор мощности отсутствует.
Один блок запомнился. Проблема была в дежурке. Во время запуска основного преобразователя дежурка переходила в стартстопный режим и на электролитике выпрямленное напряжение, питающее TL3843, начинало скакать (если смотреть осциллографом), мультиметр показывал заниженное напряжение, недостаточное для запуска 3843.
До запуска напряжение на этом электролите в норме.
В действительности блок запускался на пиках на очень короткое время.
Если не ошибаюсь, перебрав всё, кроме трансформатора дежурки, не смог найти причину, для дальнейшего ковыряния не было времени. Всем привет.
Есть бп от моноблока Acer.
БП зовется Chicony CPB09-D220A.
Дежурка на BH0270, основной шим был CM4800 или FAN4800, не помню. В нем и PFC и основной БП (обратноход).
Третий раз приносят, на этот раз не получается поднять.
Первый раз усох сетевой кондер и вынесло ключ PFC, токовый шунт в истоке. поменял, поставил ключ , по памяти вроде что-то типа 13n60.
Второй раз ровно через год - то же самое, опять банка и PFC.
Третий раз принесли - то же самое, но ключ разорвало в клочья, оборвало токовый шунт, вынесло линию PFC OUT у шимки, вынесло все по затвору ключа.
Понял, что маловато ему банки на 100мкФ. Поставил 330мкФх450в.
Ключ разорванный , ничего не прочитать, поставил в этот раз понажористее - STP20NM60. В истоке все поменял за одним исключением - на разрядку поставил транзистор BC807. В остальном схема оригинальная. поставил новый ML4800CS. Получилось вот так:

e0cf85d1626f1182261dd6eec952633a.jpg

Погонял на своем компе полдня, отдал клиенту.
С их слов, полчаса у них бп отработал, моноблок потух и из бп свист.

Вскрываю - в пробое на землю выход PFC OUT у шимки. остальное живо.
Подумал, что слишком нажористый полевик воткнул на прекондей - раскачивать шимке его сложно из-за ёмкости затвора (около 2000пик по-моему). Начал гуглить схемы включения 6800\4800.
Решил сделать полумост, наткнулся на схемку:

e1492e6bed01b4bfb2e2a841487b2a24.jpg

Сделал на её основе аналог.
транзисторы раскачки (bc807-bc817) припаял прямо один над другим, керамику 1мкф по питанию прямо тут же. VCC кинул от шимки до керамики МГТФом длиной 5см.
По моим конкретным номиналам получилось вот так:

4c5d188077441853aad6aed69c2e4b1d.jpg


На обеих схемах забыл нарисовать резистор 10кОм по цепи затвор-исток.

в общем, включил, что-то свистнуло и нет запуска.
Выключил, меряю - опять пробит PFC OUT на землю. притом и полевик, и его раскачка - всё живое.
Распаял все, (вдруг сопля) поменял керамику на 0.2мкФ, собрал обратно, 4800 взял с донора, а не из магазина. Отмыл, включил..
опять сразу же выход PFC OUT в пробой.
Что может быть не так?
Где я туплю?
или BC807\BC817 не пойдут в раскачку? честно, скоростные характеристики не глядел даже. Глядел только что 45в и 0.5А, и h21 хороший.

Полной схемы бп нет. Померить питалово на шимке я тупо не успею. Если только без нее. Но ключ, подающий на нее питание по команде PS-ON, звонится исправно. да и до него вроде питалово около 14-15в , что является исправностью.

Сейчас добавлю остальные фото.

Добавлено 12-10-2016 00:07

93c5019ca7474209a0993ef609116345.jpg

026ea03521a8256735c8fd6fb7df4bca.jpg

60c2b8a7bbb7782ee591adeacef62a77.jpg

d68d02830491aaf88e53604d2863a6b9.jpg

f933dfc55810880dd6be7aa3c042d349.jpg

Добавлено 12-10-2016 00:14

Вот фото моего колхоза в нормальном качестве (кликабельно) .
может чо перемудрил?
ссылка скрыта от публикации

Добавлено 12-10-2016 00:19

и на схемах не совсем верно указал, куда идет земля с токового шунта. на минус моста, а не общую линию всей схемы. и оттуда уже на Current sense шимаря. хотя тут значения это не имеет


В этой статье, я немного расскажу об основах ремонта компьютерных, импульсных блоков питания стандарта ATX. Это одна из первых моих статей, я написал её примерно 5 лет назад, по этому прошу строго не судить.

Меры предосторожности.
Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.

Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Инструментарий.

Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
Отсос для припоя и (или) оплетка. Служат для удаления припоя.
Отвертка
Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
Мультиметр
Пинцет
Лампочка на 100Вт
Очищенный бензин или спирт. Используется для очистки платы от следов пайки.
Устройство БП.

Немного о том, что мы увидим, вскрыв блок питания.


Внутреннее изображение блока питания системы ATX

A – диодный мост, служит для преобразования переменного тока в постоянный

B – силовые конденсаторы, служат для сглаживания входного напряжения

Между B и C – радиатор, на котором расположены силовые ключи

C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки

между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений

D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе

E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе

Распиновка разъема 24 pin и измерение напряжений.

Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.


Визуальный осмотр.

Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.

Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

Первичная диагностика.

Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

Неисправности:

БП не запускается, отсутствует напряжение дежурного питания
БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
БП уходит в защиту,
БП работает, но воняет.
Завышены или занижены выходные напряжения
Предохранитель.


Если вы обнаружили, что сгорел плавкий предохранитель, не спешите его менять и включать БП. В 90% случаев вылетевший предохранитель это не причина неисправности, а её следствие. В таком случае в первую очередь надо проверять высоковольтную часть БП, а именно диодный мост, силовые транзисторы и их обвязку.

Варистор


Задачей варистора является защита блока питания от импульсных помех. При возникновении высоковольтного импульса сопротивление варистора резко уменьшается до долей Ома и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. При перенапряжении в сети варистор резко уменьшает свое сопротивление, и возросшим током через него выжигается плавкий предохранитель. Остальные элементы блока питания при этом остаются целыми.

Варистор выходит из строя из-за скачков напряжения, вызванными например грозой. Так же варисторы выходят из строя, если по ошибке вы переключили БП в режим работы от 110в. Вышедший из строя варистор обычно определить не сложно. Обычно он чернеет и раскалывается, а на окружающих его элементах появляется копоть. Вместе с варистором обычно перегорает предохранитель. Замену предохранителя можно производить только после замены варистора и проверки остальных элементов первичной цепи.

Диодный мост
Диодный мост представляет собой диодную сборку или 4 диода стоящие рядом друг с другом. Проверить диодный мост можно без выпаивания, прозвонив каждый диод в прямом и обратном направлениях. В прямом направлении падение напряжения должно быть около 500мВ, а в обратном звониться как разрыв.



Диодные сборки измеряются следующим образом. Ставим минусовой щуп мультиметра на ножку сборки с отметкой «+», а плюсовым щупом прозваниваем в направления указанных на картинке.


Конденсаторы
Вышедшие из строя конденсаторы легко определить по выпуклым крышкам или по вытекшему электролиту. Конденсаторы заменяются на аналогичные. Допускается замена на конденсаторы немногим большие по ёмкости и напряжению. Если из строя вышли конденсаторы в цепи дежурного питания, то блок питания будет включаться с n-ого раза, либо откажется включаться совсем. Блок питания с вышедшими из строя конденсаторами выходного фильтра будет выключаться под нагрузкой либо так же полностью откажется включаться, будет уходить в защиту.

Иногда, высохшие, деградировавшие, конденсаторы выходят из строя, без каких либо видимых повреждений. В таком случае следует, предварительно выпаяв конденсаторы проверить их емкость и внутренние сопротивление. Если емкость проверить нечем, меняем все конденсаторы на заведомо рабочие.


Блок питания - это аппаратный компонент ПК, который подает энергию на внутренние устройства. Он получает ее от домашней электросети и преобразует переменный ток в постоянный, который нужен элементам компьютера. И также он регулирует напряжение внутри компьютерной сети до рабочего уровня, что позволяет машине работать стабильно и не перегреваться. Он является неотъемлемой частью любого ПК и должен работать исправно, чтобы другие компоненты надежно функционировали. Поэтому если блок питания не запускается, пользователю необходимо провести его проверку, а при необходимости, ремонт или замену.

Все о блоках питания

не запускается блок питания телевизора

Переменный ток сети не может напрямую подаваться в ПК, поскольку его компоненты используют энергию постоянного тока и нужно предварительно выполнить процесс выпрямления. Этот переход и обусловливает основную задачу блока питания (БП) в качестве выпрямителя переменного тока.

Источник устроен таким образом, что гарантирует нормативное напряжение всем узлам ПК. Для этого он распределяет мощность по разным кабелям с рабочим напряжением. Например, разъем жесткого диска DVD обеспечивает 5 вольт для электронных узлов и 12 вольт для двигателя своего привода.

Компоненты ПК имеют различные соединения, но каждый источник имеет все необходимые разъемы для стандартной сборки. Особенно важно: блок должен иметь такое количество штепсельных вилок для жестких дисков и дисководов CD / DVD, чтобы можно было легко установить дополнительные дисководы.

Большинство офисных ПК имеют небольшую модель с мощностью 300 Вт. Адаптер для ПК с поддержкой игр должен обеспечивать мощность не менее 400 Вт, потому что сильные процессоры и быстрые видеокарты требуют много энергии. В этом случае может появиться сбой, когда блок питания запускается и выключается сразу же.

Если в ПК работает несколько видеокарт, то может потребоваться модель мощностью 500 или 650 Вт. В настоящее время продаются устройства мощностью 1 000 Ватт. Но они редко применимы. Если приобрести маломощный блок, компьютер может выйти из строя, например, во время игр или просмотра видео. Это происходит потому, что соответствующие компоненты ПК потребляют много энергии. Перегрев является основной причиной того, почему блок питания не запускается.

Описание источника постоянного тока ATX

Описание источника постоянного тока ATX

Блок ATX - это преобразователь энергии. Он преобразует переменный ток (AC), подаваемый энергоснабжающей компанией, в постоянный ток (DC) с необходимым уровнем напряжения, достаточным для компонентов ПК, что соответствует 110-115 или 220-230 вольт.

Это преобразование выполняется с помощью процессов:

  • переключения;
  • выпрямления;
  • фильтрации.

На многих ПК установлены блок, называемый SMPS или импульсным. Когда не запускается импульсный блок питания и потребуется провести тестирование его работы, пользователям необходимо строго выполнять технику безопасности и меры по защите от ударов электрическим током. В БП присутствуют опасные напряжения и токи. Внутри есть конденсаторы, которые накапливают энергию и могут поразить человека электротоком, поэтому ремонт блока должен выполняться только квалифицированным персоналом.

Рекомендации и меры защиты в случаях, если не запускается блок питания ATX:

  1. Пользователь может легко найти источник на системном блоке, увидев вход, к которому подключен шнур, не открывая компьютер.
  2. Если отключить и снять БП, то он будет выглядеть в виде металлической коробки с вентилятором внутри и несколькими кабелями, прикрепленными к нему.
  3. Рядовому пользователю не рекомендуется отсоединять блок питания, лучше оставить его в корпусе.

PSU: аппаратный компонент компьютера

PS, P / S или PSU являются аббревиатурами для блока питания. Ниже приведен список элементов, которые поставляются в комплекте с БП:

  1. Шнур питания к компьютеру.
  2. Корпус для предотвращения попадания пыли в БП.
  3. Вентилятор для охлаждения и отвода воздуха.
  4. Выключатель для изменения напряжения.
  5. Пакеты кабелей, размещенные на передней внутренней панели БП. Они подключаются к материнской плате компьютера и внутренним компонентам. Поэтому если не запускается блок питания, материнская плата – это первое устройство которое перестанет работать.
  6. Разъемы для дисков.
  7. Разъем материнской платы представляет собой 24-контактный ATX, который при подключении обеспечивает ее питанием.
  8. Селектор входного напряжения.

Функциональный блок ATX обеспечивает ток в режиме ожидания +5 В, 720 мА по фиолетовому проводу на контакт двигателя. Этот ток также подается на слоты PCI, даже когда компьютер выключен и поврежден. Поэтому, когда блок питания не запускается, есть дежурка. Поэтому рекомендуются при отключении БП, подождать 30 секунд перед началом работы внутри системного блока, чтоб принять надлежащие меры предосторожности против электростатического разряда.

Диагностика проблем с питанием

Диагностика проблем с питанием

Проблемы с электропитанием могут трудно диагностироваться, особенно если пользователь не знает, что искать. Вот несколько советов о том, как быстро определить неисправность, если блок питания не запускается и как устранить этот сбой.

Плохой источник может быть предпосылкой многих проблем с ПК. Опыт может помочь техническому специалисту в диагностике проблем, вызванных неисправным источником, который обычно игнорируют новички.

Любая непостоянная проблема может быть вызвана неисправным источником. Общие симптомы, когда компьютерный блок питания не запускается:

  1. Сбой при включении напряжения.
  2. Самопроизвольная перезагрузка или прерывистая блокировка во время стабильной работы.
  3. Ошибки памяти.
  4. HDD и вентилятор не вращаются.
  5. Перегрев из-за отключенного вентилятора.
  6. Частые отключения, которые вызывают перезапуск системы.
  7. Удары током, которые ощущаются при прикосновении к корпусу.

Есть также некоторые очевидные подсказки, которые должны дать ответ на вопрос, почему не запускается блок питания. Они включают:

  1. Система, которая полностью мертва, в ней ничего не происходит, когда ПК включен.
  2. Дым, который появляется при включении ПК.

Другой способ проверить БП - это использовать специальное программное обеспечение. Оно позволяет обнаружить перепады температуры или производительности, покажет, сколько энергии подается на какие компоненты, что поможет быстрее решить проблему.

Электрическая проверка БП

Электрическая проверка БП

Сначала убеждаются, что компьютер подключен к электросети через розетку. При необходимости можно использовать лампу или фен, чтобы удостовериться, что электрическая розетка работает. В некоторых случаях на БП присутствует переключатель, убеждаются, что он включен. Иногда на блоке может быть установлен красный выключатель меньшего размера для выбора типа напряжения.

Блок питания работает правильно, если напряжения в проводах соответствует параметрам:

  • синий + 11,20 В;
  • желтый + 11,20 В;
  • фиолетовый + 5,20 В;
  • оранжевый + 3,33 В;
  • красный + 5,20 В;
  • белый + 5,20 В;
  • серый + 5,20 В.

Источники питания не предназначены для работы в режиме ожидания, поэтому напряжения могут отличаться незначительно от приведенной ниже таблицы, и по этой причине источник должен работать таким образом только в течение короткого времени. Напряжение по номерам контактов:

  • № 1 - 3,3 В;
  • № 2 - 12 В;
  • № 3, 5, 6, 7 - GND;
  • № 4 - питание;
  • № 8 - 5 В;
  • № 9, 10 - 5 В;
  • № 11, 12 - 3,3 В;
  • № 13, 15, 17 - GND;
  • № 14, 16 - 5 В;
  • № 18 - PW-OK;
  • № 19 - 5 В;
  • № 20 - 12 В.

Для текущих источников питания линия управления Power/On обычно зеленого цвета.

Упрощенный метод проверки ATX

Упрощенный метод проверки ATX

Если блок питания ATX не запускается, то проверяют правильность работы на соответствие его напряжений техническим данным производителя. Для выполнения этих тестов используют отвертку, чтобы открыть коробку, кабель для обхода питания. В этом случае используют простую скрепку и один мультиметр для выполнения необходимых измерений. Прежде всего, нужно принять определенные меры предосторожности перед тем, как открывать корпус БП. Источник должен быть отключен от электросети и кнопка питания на задней панели в выключенном положении.

Для начала необходимо открыть коробку с помощью отвертки и найти разъем БП, состоящий из 24 (20 + 4) контактов. После нахождения отключают его от материнской платы. Следующим шагом находят зеленый провод, называемый PS_ON (PowerSupply ON), который подключен к общему черному кабелю БП. С помощью перемычки с зажимом зеленый провод соединяют с любым черным проводом разъема, после чего будет искусственно включаться источник без необходимости подключения базовой платы. После этого подключают кабель питания к электросети и нажимают кнопку на задней панели, чтобы перевести его во включенное состояние. Для того чтобы убедиться, что мост сделан правильно, включают источник питания, и если вентилятор вращается и гонит воздух, то все сделано правильно.

Теперь нужно провести измерения, для чего используют мультиметр. Красный и черный разъемы расположены в положении измерения натяжения: черный разъем для COM и красный для V Гц.

Поворотный переключатель расположен в зоне измерения постоянного напряжения в положении 20, поскольку будет измерять напряжение 3,3 В, 5 В и 12 В.

Краткое примечание о полярности

Если блок питания не запускается с первого раза, при проведении проверки нужно обеспечить полярность измерений мультимером. Помещают черный измерительный провод мультимера в любой общий кабель, а красный по очередности в кабель разных цветов, которые находятся в разъеме БП. Замеряют напряжения на соответствие паспортным значениям, указанным производителем. Все напряжения, которые будут определяться, являются постоянными. Провода БП имеют цветовую кодировку.

Любое напряжение в пределах 10 процентов от указанного приемлемо для целей тестирования. Некоторые проблемы не могут быть обнаружены с помощью прямого измерения, поэтому наличие запаса для замены крайне важно.

Ревизия с помощью расширенного тестера

Ревизия с помощью расширенного тестера

Следующие инструкции относятся только к специализированному тестеру для блоков питания ATX Coolmax PS-228, или для любого другого аналогичного тестера с ЖК-экраном.

Важно: этот процесс считается сложным, пользователю нужно внимательно следовать инструкциям ниже.

Необходимое время: тестирование БП с тестовым устройством для блока питания обычно занимает около 30 минут или чуть больше для новичков.

  1. Ознакомиться с важными советами по безопасности при ремонте ПК. Проверка БП включает в себя работу с электричеством высокого напряжения, потенциально опасную деятельность. Безопасность должна быть главной заботой во время проверки блока.
  2. Открыть корпус, предварительно выключив компьютер, отсоединив шнур питания и все, что подключено к внешней стороне компьютера.
  3. Переместить отключенный блок в место, где можно легко работать, например, на столе. Пользователю не понадобится клавиатура, мышь, монитор или другие внешние периферийные устройства.
  4. Отсоединить разъемы питания каждого внутреннего устройства на боковой панели. Простой способ убедиться в том, что каждый разъем питания отключен, - это снять комплект шнура питания, который идет от БП. Каждая группа кабелей должна заканчиваться одним или несколькими разъемами питания. Нет необходимости отсоединять отсоединять кабели данных или другие кабели, которые не подключены к БП.
  5. Сгруппировать все силовые кабели и разъемы для удобства тестирования. При организации силовых кабелей рекомендуется отсоединить их и вынуть из корпуса компьютера, как можно дальше. Это позволит максимально легко подключить разъемы питания к расширенному тестеру.
  6. Убедиться, что переключатель напряжения источника питания, расположенный на задней панели, правильно настроен для страны пребывания. В США этот переключатель должен быть настроен на 110 В / 115 В, а в России на 220/230.
  7. Подключить 24-контактный разъем питания ATX и 4-контактный разъем питания ATX на материнской плате в тестере для блоков питания ПК. В зависимости от источника может не быть 4-контактного разъема материнской платы, но может быть 6 или 8 контактов. Если имеется более одного типа, просто подключаются поочередно вместе с 24-контактным разъемом основного питания.
  8. Подключить БП к электрической розетке и включить выключатель. Некоторые блоки не имеют переключателя на задней панели. Если источник, который тестируется, не работает, просто подключают устройство для подачи питания. Нажать и удерживать кнопку включения / выключения тестера для блоков питания ПК. Пользователь должен услышать, что вентилятор внутри источника начинает работать.

Некоторые версии усовершенствованного тестера Coolmax PS-228 для БП не требуют постоянного нажатия кнопки питания. Тот факт, что вентилятор работает, не означает, что источник питания правильно подает питание на остальные устройства. Если не запускается вентилятор блока питания при тестировании, даже если источник находится в хорошем состоянии, возможно он перегорел и его нужно проверить отдельно.

ЖК-дисплей расширенного тестера для источников должен быть включен, и пользователь увидит цифры тестирования по всем показателям. Если напряжение показывает «LL» или «HH» или если ЖК-дисплей не горит, БП не работоспособный, поэтому придется заменить его.

Контроль периферийных разъемов питания

Контроль периферийных разъемов питания

Если нужна проверка отдельных разъемов, продолжают тестирование БП. Алгоритм проверки:

  1. Выключают выключатель на панели БП и отключают его от розетки.
  2. Подключают разъем гнезда тестера к соответствующему разъему SATA с 15-контактной модификацией Molex. Нельзя подключать более одного из этих периферийных разъемов одновременно, иначе можно повредить тестер.
  3. Два разъема на материнской плате должны оставаться подключенными для этих тестов с другими разъемами.
  4. Подключают источник, а затем включают кнопку на панели.
  5. Индикаторы с маркировкой +12 В, + 3,3 В и +5 В соответствуют напряжением, подаваемым через подключенный периферийный разъем питания, и должны гореть должным образом. В противном случае требуется замена источника питания.
  6. Разъем SATA обеспечивает +3,3 В постоянного тока. Можно увидеть напряжение, подаваемое различными разъемами, просмотрев таблицы выходных контактов разъемов ATX.
  7. Повторить этот процесс для других разъемов питания по одному, кроме разъема на материнской плате, которые все время остаются подключенными к тестеру.
  8. После завершения испытаний выключают подачу энергии, отсоединяют кабели тестера, а затем подключают внутренние устройства ПК к источнику.
  9. После того как БП был протестирован или заменен на новый, можно снова включить ПК.

Замена неисправного устройства

Замена неисправного устройства

Если блок питания компьютера не запускается, вентилятор не работает, а тестирование показывает, что источник не обеспечивает надлежащее выходное напряжение, его следует отремонтировать или заменить. Поскольку БП не содержит много частей, обслуживаемых пользователем, для большинства людей это означает замену. Перед началом убеждаются, что новый источник имеет правильный форм-фактор и номинальную мощность. Мощность в ваттах должна быть такой, как и у старой модели. Лучше при замене выбирать по мощности на один размер больше.

Замена БП выполняется довольно просто:

  1. Отключают все кабели от задней части устройства.
  2. Открывают корпус и отсоединяют все кабели привода и кабели, питающие материнскую плату.
  3. Проверяют провод к вентилятору процессора. Обычно это небольшая пара, которая может сломаться, если ее слишком сильно потянуть. На некоторых компьютерах также необходимо отключить выключатель.
  4. Отсоединяют источник питания от корпуса после того, как все провода питания будут свободны, и вынимают его из корпуса.
  5. Вставляют новый БП в корпус и подключают все провода, начиная с материнской платы.

Все, тестирование и замена БП завершены.

Аналогично можно выполнить проверку, если не запускается блок питания телевизора. Источник питания ЖК-телевизора соединен с большой печатной платой, расположенной посередине корпуса, и связан с большим количеством трансформаторов, двух микросхем и конденсаторов. Как бы не хотелось, чтобы телевизор работал вечно, все же приходится столкнуться с проблемами неисправности источника. Тестирование источника энергии ЖК-телевизора позволит точно определить, в чем заключается сбой, и какой требуется ремонт.

После того как пользователь провел успешно все тесты и определил, что блок питания исправен, а компьютер не запускается, то, скорее всего, БП уходит в защиту. В этом случае рекомендуется отсоединять поочередно все устройства (CD-ROM, FDD, HDD, звук, видео, память) от блока и материнки, таким образом устанавливая источник поломки.

Для более доступного объяснения данного материала настоятельно рекомендую прочесть статью по основам ремонта компьютерных блоков питания.

Проверяем входное сопротивление

Итак, дали в ремонт блок питания Power Man на 350 Ватт

компьютерный блок питания

Замеряем напряжения

Если все ОК, включаем наш блок питания в сеть с помощью сетевого кабеля, который идет вместе с блоком питания, и не забываем про кнопочку включения, если она у вас была в выключенном состоянии.

кнопка включения

Далее меряем напряжение на фиолетовом проводе

распиновка компьютерного блока питания ATX

Ремонт компьютерного блока питания

Ремонт компьютерного блока питания

Ну что же, будем искать схему на этот блок питания. Погуглив по просторам интернета, я нашел схему. Но нашел только на Power Man 300 Ватт. Они все равно будут похожи. Отличия в схеме были лишь в порядковых номерах радиодеталей на плате. Если уметь анализировать печатную плату на соответствие схемы, то это не будет большой проблемой.

А вот и схемка на Power Man 300W. Щелкните по ней для увеличения в натуральный размер.

Ищем виновника

Ремонт компьютерного блока питания

Что происходит при сгорании разных радиодеталей с физической точки зрения? Во-первых, изменяется их сопротивление. У резисторов оно становится бесконечным, или иначе говоря, уходит в обрыв. У конденсаторов оно иногда становится очень маленьким, или иначе говоря, уходит в короткое замыкание. С полупроводниками возможны оба этих варианта, как короткое замыкание, так и обрыв.

В нашем случае мы можем проверить это только одним способом, выпаяв одну или сразу обе ножки стабилитрона, как наиболее вероятного виновника короткого замыкания. Далее будем проверять пропало ли короткое замыкание между дежуркой и массой или нет. Почему так происходит?

Вспоминаем простые подсказки:

1)При последовательном соединении работает правило больше большего, иначе говоря, общее сопротивление цепи больше, чем сопротивление большего из резисторов.

2)При параллельном же соединении работает обратное правило, меньше меньшего, иначе говоря итоговое сопротивление будет меньше чем сопротивление резистора меньшего из номиналов.

Можете взять произвольные значения сопротивлений резисторов, самостоятельно посчитать и убедиться в этом. Попробуем логически поразмыслить, если у нас одно из сопротивлений параллельно подключенных радиодеталей будет равно нулю, какие показания мы увидим на экране мультиметра ? Правильно, тоже равное нулю…

И до тех пор пока мы не устраним это короткое замыкание путем выпаивания одной из ножек детали, которую мы считаем проблемной, мы не сможем определить, в какой детали у нас короткое замыкание. Дело все в том, что при звуковой прозвонке, ВСЕ детали параллельно соединенные с деталью находящейся в коротком замыкании, будут у нас звониться накоротко с общим проводом!

Ремонт компьютерного блока питания

Дело не в стабилитроне

Проверяем, устранилось ли у нас короткое замыкание по цепям дежурки и массы, либо нет. Действительно, короткое замыкание пропало. Я сходил в радиомагазин за новым стабилитроном и запаял его. Включаю блок питания, и… вижу как мой новый, только что купленный стабилитрон испускает волшебный дым)…

И тут я сразу вспомнил одно из главных правил ремонтника:

Если что-то сгорело, найди сначала причину этого, а только затем меняй деталь на новую или рискуешь получить еще одну сгоревшую деталь.

Ругаясь про себя матом, перекусываю сгоревший стабилитрон бокорезами и снова включаю блок питания.

Ремонт компьютерного блока питания

Проверяем конденсаторы

Начинаю гуглить по моей проблеме на спец сайтах, посвященных ремонту БП ATX. И конечно же, проблема завышенного напряжения дежурки оказывается в банальном увеличении ESR электролитических конденсаторов в цепях дежурки. Ищем эти конденсаторы на схеме и проверяем их.

Вспоминаю о своем собранном приборе ESR метре

Ремонт компьютерного блока питания

Самое время проверить, на что он способен.

Проверяю первый конденсатор в цепи дежурки.

Ремонт компьютерного блока питания

Ремонт компьютерного блока питания

ESR в пределах нормы.

Находим виновника проблемы

Ремонт компьютерного блока питания

Ремонт компьютерного блока питания

Жду, когда на экране мультиметра появится какое-либо значение, но ничего не поменялось.

Ремонт компьютерного блока питания

Понимаю, что виновник, или по крайней мере один из виновников проблемы найден. Перепаиваю конденсатор на точно такой же, по номиналу и рабочему напряжению, взятый с донорской платы блока питания. Здесь хочу остановиться подробнее:

Если вы решили поставить в блок питания ATX электролитический конденсатор не с донора, а новый, из магазина, обязательно покупайте LOW ESR конденсаторы, а не обычные. Обычные конденсаторы плохо работают в высокочастотных цепях, а в блоке питания, как раз именно такие цепи.

Итак, я включаю блок питания и снова замеряю напряжение на дежурке. Наученный горьким опытом уже не тороплюсь ставить новый защитный стабилитрон и замеряю напряжение на дежурке, относительно земли. Напряжение 12 вольт и раздается высокочастотный свист.

Снова сажусь гуглить по проблеме завышенного напряжения на дежурке, и на сайте rom.by, посвященном как ремонту БП ATX и материнских плат так и вообще всего компьютерного железа. Нахожу свою неисправность поиском в типичных неисправностях данного блока питания. Рекомендуют заменить конденсатор емкостью 10 мкФ.

Ремонт компьютерного блока питания

Ремонт компьютерного блока питания

Ремонт компьютерного блока питания

Да, я согласен с этим. Но это касается только конденсаторов большого номинала. Конденсаторы относительно небольших номиналов не вздуваются. В их верхней части нет насечек по которым они могли бы раскрыться. Поэтому их просто невозможно определить на работоспособность визуально. Остается только менять их на заведомо рабочие.

Итак, перебрав свои платы был найден и второй нужный мне конденсатор на одной из плат доноров. На всякий случай было измерено его ESR. Оно оказалось в норме. После впаивания второго конденсатора в плату, включаю блок питания клавишным выключателем и измеряю дежурное напряжение. То, что и требовалось, 5,02 вольта… Ура!

Измеряю все остальные напряжения на разъеме блока питания. Все соответствуют норме. Отклонения рабочих напряжений менее 5%. Осталось впаять стабилитрон на 6,3 Вольта. Долго думал, почему стабилитрон именно на 6,3 Вольта, когда напряжение дежурки равно +5 Вольт? Логичнее было бы поставить на 5,5 вольт или аналогичный, если бы он стоял для стабилизации напряжения на дежурке. Скорее всего, этот стабилитрон стоит здесь как защитный, для того, чтобы в случае повышения напряжения на дежурке, выше 6,3 Вольт, он сгорел и замкнул накоротко цепь дежурки, отключив тем самым блок питания и сохранив нашу материнскую плату от сгорания при поступлении на нее завышенного напряжения через дежурку.

Вторая функция этого стабилитрона, видать, защита ШИМ контроллера от поступления на него завышенного напряжения. Так как дежурка соединена с питанием микросхемы через достаточно низкоомный резистор, поэтому на 20 ножку питания микросхемы ШИМ поступает почти то же самое напряжение, что и присутствует у нас на дежурке.

Заключение

Итак, какие можно сделать выводы из этого ремонта:

1)Все параллельно подключенные детали при измерении влияют друг на друга. Их значения активных сопротивлений считаются по правилу параллельного соединения резисторов. В случае короткого замыкания на одной из параллельно подключенных радиодеталей, такое же короткое замыкание будет на всех остальных деталях, которые подключены параллельно этой.

2)Для выявления неисправных конденсаторов одного визуального осмотра мало и необходимо либо менять все неисправные электролитические конденсаторы в цепях проблемного узла устройства на заведомо рабочие, либо отбраковывать путем измерения прибором ESR-метром.

3)Найдя какую либо сгоревшую деталь, не торопимся менять её на новую, а ищем причину которая привела к её сгоранию, иначе мы рискуем получить еще одну сгоревшую деталь.

Читайте также: