Схема управления вентилятором блока питания компьютера

Обновлено: 04.07.2024

_________________
Мудрость приходит вместе с импотенцией.

Схему не я рисовал, просто скинул картинку с веб-страницы и свои номиналы подрисовал. Но да, рисовка косячная, термистор нарисован обычным резюком (однако, рядом написано Rt). Ну, не суть.

По этой последней схемке.. Вместо КТ815 вставил два КТ940А параллельно, вместо КТ3102 какой-то неопознанный npn (из маркировки одна малюсенькая серая точка а морде, цоколевку вызвонил). Вопрос такой: ток коллектора у 940-го вроде всего 100мА, у двоих, выходит-200мА. Испытывая, гонял со 160-миллиамперным кулером. Вопрос: выдержат ли транзюки его в течение долгого времени? Нагревая датчик, разогнал кулер на всю и держал с минуту, транзюки чуть теплые, вроде, ничто не предвещает бабаха..

Почему КТ940А? Да девать некуда, накопилась горстка.. А при их слабом токе их особо никуда не пихнешь.

И еще смешной момент: при малых оборотах кулера в соседней комнате по радио прут весьма заметные помехи) При том что гоняю от аккумулятора.

_________________
Не всегда есть комп, или скорость интернета, но чем смогу-помогу.

И да пребудет с вами Сила тока!

JLCPCB, всего $2 за прототип печатной платы! Цвет - любой!

Сляпал на TL431, работает только на вкл-выкл. И подстроечником температура срабатывания ставится. А что ООС поставить не судьба, благодаря большой чувствительности схемы можно любую зависимость сделать.

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Спасибо, скинул схемку в коллекцию.

Вопрос из разряда "сначала сделал, потом спросил". Приклеил термистор к процессорному радиатору с помощью плюшки Поксипола ("холодная сварка"). Не отвалится со временем? В простое, когда кроме винды, ничего не запущено, нагрева практически нет, вентиль еле крутится, и этого хватает. С нагрузкой (игры, программы) пока не проверял. Но, думаю, прямо таки сильно греть не будет. И все таки.

_________________
Не всегда есть комп, или скорость интернета, но чем смогу-помогу.

И да пребудет с вами Сила тока!

Приглашаем всех желающих 25/11/2021 г. принять участие в вебинаре, посвященном антеннам Molex. Готовые к использованию антенны Molex являются компактными, высокопроизводительными и доступны в различных форм-факторах для всех стандартных антенных протоколов и частот. На вебинаре будет проведен обзор готовых решений и перспектив развития продуктовой линейки. Разработчики смогут получить рекомендации по выбору антенны, работе с документацией и поддержкой, заказу образцов.

Доброго времени.
В одном веселом устройстве, попался такой терморегулятор кулера. Минус его в том, что при старте и останове, при очень малых оборотах, слышен противный писк как пъезокапсюль. Как только крыльчатка срывается, с ростом оборотов писк пропадает. Подключал напрямую к стабу, через переменник и к другому регулируемому бп - работает вообще без всяких звуков. Если подкинуть конденсатор паралльно резистору 200Ом, то писк исчезает при запуске(медленном нагреве терморезистора), а при остановке остается)). Мне кажется, может тут лучше биполярник подойдет? Терморегулятор 2-х канальный. На втором канале тоже самое. В чем может быть подвох?:)

Приглашаем 30 ноября всех желающих посетить вебинар о литиевых источниках тока Fanso (EVE). Вы узнаете об особенностях использования литиевых источников питания и о том, как на них влияют режим работы и условия эксплуатации. Мы расскажем, какие параметры важно учитывать при выборе литиевого ХИТ, рассмотрим «подводные камни», с которыми можно столкнуться при неправильном выборе, разберем, как правильно проводить тесты, чтобы убедиться в надежности конечного решения. Вы сможете задать вопросы представителям производителя, которые будут участвовать в вебинаре

Всем здравствуйте. Для многих не секрет, что в блоках питания или других устройствах в охлаждении используются вентиляторы. В промышленных устройствах это уже предусмотрено схемотехническим решением. А как быть тем, кто сам делает для себя, вот такая простая схема приходит на помощь. На рисунке показана схема простого управления вентилятором.

Конечно наверняка схема многим будет знакома, но из своей простоты до сих пор считаю ее актуальной. Предполагается, что скорость вентилятора регулируется в зависимости от тепловыделения того или иного прибора. И так если мы собираем блок питания плата обычно размещается вместе с вентилятором в отдельном корпусе. Силовые полупроводники на печатной плате снабжены радиаторами, которые выделяют больше всего тепла. Поэтому лучше всего замерять воздушный поток, выходящий через эти радиаторы. Таким образом, температура этих радиаторов определяет скорость вращения вентилятора.

Схема, которая отслеживает это, состоит из трех обычных транзисторов и нескольких пассивных компонентов. Сама схема питается от разъема 12В, которое несомненно будет присутствовать в блоке питания. Вентилятор, в свою очередь, подключен к выходу управления. Если посмотреть на схему, то окажется, что в основе регулирования лежит некая дифференциальная ступень, состоящая из транзисторов Т1 и Т2. База T2 устанавливается фиксированное напряжение с помощью делителя на резисторах R3 / R4.

На транзисторе T1 находится переменный делитель напряжения, состоящий из PTC (R1) и резистора R2. Таким образом, напряжение на базе транзистора T1 будет изменяться в зависимости от температуры, поскольку сопротивление PTC увеличивается с увеличением температуры. Конденсатор C1 гарантирует, что напряжение не изменится слишком резко в случае внезапных небольших колебаний температуры. Кроме того, его задача — на короткое время подать на вентилятор напряжение при включенном питании, чтобы он нормально запустился.

Транзисторы T1 и T2 имеют общий резистор в эмиттере, поэтому разница напряжений на базах определяет, какой транзистор открыт больше всего. Коллектор транзистора T2 управляет драйвером T3, который, в свою очередь, отвечает за напряжение питания вентилятора. Когда температура увеличивается, сопротивление PTC увеличивается, а напряжение на базе T1 падает. Тогда T2 будет открываться больше, и он откроет T3, так что вентилятор будет вращаться быстрее.

Задача делителя из резисторов R6 / R7 всегда открывать транзистор T3 до тех пор, пока минимальное напряжение на вентиляторе не упадет ниже примерно 7В. Это предотвращает остановку вентилятора при низкой температуре. Для регулятора возможный вариант небольшой печатной платы, которая показана на рисунке

Работе компонентов персонального компьютера сопутствует большое количество выделяемой тепловой энергии. Если не решать проблему отвода тепла, излишний нагрев неизбежно приведет к выходу из строя дорогостоящих комплектующих.

При сборке или модернизации ПК эта задача решается установкой достаточного количества кулеров (вентиляторов). Обходя стороной дискуссию о корректности данного термина, в обзоре рассмотрен вопрос подключения устройств создания воздушного потока для отведения излишнего тепла.

Виды и назначение вентиляторов для ПК

Самыми мощными источниками тепла внутри корпуса ПК являются центральный процессор на материнской плате и графический процессор на видеокарте. Для них устанавливаются отдельные вентиляторы, конструктивно объединенные с теплоотводящими радиаторами. Такую систему обычно называют кулером (в отличие от корпусного вентилятора), хотя в англоязычной технической литературе такого термина нет. Там он называется Heatsink and fan.

Как подключить вентилятор напрямую к блоку питания компьютера

Остальные составляющие ПК все вместе выделяют тепла меньше, и для создания комфортного режима достаточно общей системы отвода нагретого воздуха. Раньше для этого было достаточно одного устройства, нагнетавшего воздух внутрь корпуса. Нагретые воздушные массы выходили через вентиляционные отверстия. Сейчас эффективной считается приточно-вытяжная система. Она состоит из одного или нескольких нагнетающих устройств, и одного или нескольких вытяжных, высасывающих нагретый воздух наружу. Возможности установки одного или нескольких кулеров зависит от конструкции корпуса.

Также вентилятор обычно встроен внутрь БП компьютера. Подключение кулера к блоку питания выполняется в процессе изготовления и при эксплуатации не изменяется. Но в связи с широким распространением стандарта 80 PLUS, в самых дорогих источниках уровней 80+ Platinum и 80+ Titanum электродвигатель с крыльчаткой, как мощный потребитель, все чаще исключается из конструкции устройства. Вместо этого применяются другие меры для отвода тепла.

Как подключить вентилятор напрямую к блоку питания компьютера

Распиновка разъёмов подключения

Несмотря на то, что внешне вентиляторы выглядят примерно одинаково (электродвигатель с крыльчаткой, закрепленные на каркасе), существуют разные схемы их подключения к цепям питания и различия в распиновке разъемов питания кулера. Связано это с их разным внутренним устройством.

2 pin

Как подключить вентилятор напрямую к блоку питания компьютера

Самые простые вентиляторы имеют разъем всего из двух контактов. На них подается питание +12 вольт на красный провод, и 0 вольт на черный. Обратной связи такие вентиляторы не имеют и их частоту вращения (а также исправность) определить невозможно.

3 pin

Наиболее распространенный тип вентилятора с терминалом на 3 pin. Здесь к выводам питания добавился еще один контакт от датчика Холла, установленного на корпусе электродвигателя. За один оборот ротора он формирует два импульса. По частоте появления импульсов компьютер отслеживает обороты кулера и мониторит его исправность. При возникновении нештатной ситуации генерируется сигнал тревоги. Посмотреть обороты в режиме реального времени можно с помощью специальных утилит. Например, Everest.

Как подключить вентилятор напрямую к блоку питания компьютера

Скриншот окна утилиты Everest со значениями частоты вращения двух вентиляторов.

К сожалению, единого стандарта цветовой маркировки выводов нет. Большинство производителей придерживаются двух типов обозначений. Они приведены в таблице.

Назначение проводаЦвет изоляции
Вариант 1Вариант 2
0 вольт (общий провод)ЧерныйЧерный
+12 вольтКрасныйЖелтый
RPM (частота вращения)ЖелтыйЗеленый

Как подключить вентилятор напрямую к блоку питания компьютера

Два варианта цветовой маркировки трехвыводных терминалов.

Нулевой провод в черной изоляции всегда расположен с краю, поэтому проблем с идентификацией выводов обычно не бывает, подключение кулера к блоку питания производится корректно.

4 pin

Как подключить вентилятор напрямую к блоку питания компьютера

Более продвинутые кулеры имеют дополнительный вход PWM (ШИМ). На него подаются импульсы стабильной частоты, но изменяемой скважности. В зависимости от ширины импульса изменяется среднее напряжение и средний ток через электродвигатель. Так регулируются обороты крыльчатки. Это позволяет создавать системы автоматического управления частотой вращения. При отсутствии необходимости обороты можно уменьшать, снижая шум и расход электроэнергии. При росте температуры в охлаждаемой области частота вращения автоматически увеличивается, повышая эффективность охлаждения.

Здесь также наиболее распространены два варианта цветовой маркировки выводов. Цоколевка разъема при этом одинаковая.

Назначение входа/выходаЦвет провода
Маркировка 1Маркировка 2
0 вольт (земля, общий провод)ЧерныйЧерный
+12 вольтКрасныйЖелтый
RPM (частота вращения)ЖелтыйЗеленый
PWM (управление оборотами)СинийСиний

В обоих случаях первые три провода повторяют последовательность варианта с тремя контактами, а вход управления оборотами всегда выполнен проводником в синей изоляции.

Варианты подключения

Если количество контактов у разъема для подключения кулера и у самого вентилятора совпадает, то проблем нет. Разъемы подключаются друг к другу, несоблюдение полярности исключено благодаря наличию ключа. Если не совпадают, то возможны варианты.

3-pin к 4-pin

Трех- и четырехпиновые разъемы полностью совместимы друг с другом, как электрически, так и механически. Конструктивно они выполнены так, что ключ позволяет выполнять соединение, при этом конфликта распиновки не будет.

Как подключить вентилятор напрямую к блоку питания компьютера

Подключение вентилятора с 3 пинами к 4-контактному разъему.

Если у кулера разъем с 3 контактами, а от компьютера идет жгут с 4 пинами, то на терминале соединяются провода питания, а также цепи измерения оборотов. Провод ШИМ-регулирования остается неподключенным.

Как подключить вентилятор напрямую к блоку питания компьютера

Подключение вентилятора с 4 пинами к 3-контактному разъему.

Если же у кулера разъем с 4 контактами, а от компьютера подходит терминал с 3 пинами, то неподключенным останется вход управления оборотами со стороны электродвигателя. В обоих случаях управление частотой вращения посредством ШИМ невозможно.

Подключение напрямую к проводам БП

В тех случаях, когда автоматическое управление воздушным потоком не требуется (обычно это касается корпусных вентиляторов), их можно запитать непосредственно от блока питания. В этом случае кулеры будут включаться при старте блока питания, а останавливаться при его выключении. Такое подключение рационально выполнять для вентиляторов с двумя пинами (без контроля оборотов). Принципиальных ограничений для использования в таком качестве 3- и 4-пиновых кулеров нет, но они стоят дороже.

Как подключить вентилятор напрямую к блоку питания компьютера

Переходник Molex male-female с ответвлением к кулеру.

Проще всего подключить двухпиновый вентилятор напрямую к свободному разъему Молекс. Удобнее это сделать с помощью переходника «папа-мама» Molex с ответвлением для разъема кулера. Если свободного молекса в жгуте от БП нет, но есть, например, неиспользуемый терминал питания SATA, можно с него перейти на Molex, а потом на вентилятор.

Количество разъемных соединений надо минимизировать. Еще лучше (при наличии навыков и квалификации) обрезать терминалы, а потом соединить провода питания скруткой со следующей пропайкой и изоляцией места подключения.

Как изменить скорость вращения кулера

Скорость вращения вентилятора, имеющего вход ШИМ (PWM) (вариант разъема с 4 пинами), регулируется изменением скважности импульсов, поступающих на этот вход от схемы управления. Частота может выбираться исходя из режима работы платы или всего компьютера, или в зависимости от температуры в контролируемой области.

Если у кулера нет входа ШИМ (2 или 3 пина в разъеме), автоматическое регулирование невозможно. Но можно выбрать режим вращения вручную, изменяя напряжение питания. Удобно для этого использовать свободный разъем Molex. На нем присутствуют:

  • два земляных провода черного цвета;
  • желтый провод +12 вольт;
  • красный провод +5 вольт.

Это позволяет получить три комбинации напряжения:

  • подключением вентилятора к к желтому и черному проводу блока питания можно получить напряжение 12 вольт и максимальные обороты;
  • при соединении с красным и черным проводами на вентиляторе будет питание 5 вольт – минимальная частота вращения;
  • при соединении между красным и желтым проводами получается разность потенциалов в 7 вольт (12-5=7) и промежуточная частота вращения.

Как подключить вентилятор напрямую к блоку питания компьютера

Варианты подключения вентилятора к разным уровням напряжения разъема Молекс.

Если существует острая необходимость работы кулера на сверхнизких оборотах, можно попробовать взять напряжение +3,3 вольта, например, с разъема SATA, но не факт, что при таком уровне вентилятору хватит крутящего момента, чтобы ротор начал вращаться.

Также некоторые материнские платы имеют возможность непосредственно изменять напряжение на шине питания вентилятора, тем самым регулируя его скорость.

Можно ли устанавливать несколько вентиляторов

Количество устанавливаемых вентиляторов ограничивается наличием разъемов, а также запасом по мощности источника питания. Кулер потребляет относительно немного, поэтому напрямую к блоку питания можно подключать два или больше вентиляторов. Но предварительно все же лучше прикинуть запас по току на линии +12 вольт, а еще лучше измерить фактическое потребление (это можно сделать токоизмерительными клещами постоянного тока), посмотреть, какую мощность потребляет выбранный вентилятор и определить возможность установки.


Как узнать хватает ли мощности блока питания на компьютере

Трех- и четырехпиновые кулеры, у которых замеряется и регулируется частота вращения, при отсутствии свободных разъемов параллельно лучше не соединять. Вопрос здесь не только в нагрузочной способности питающих и управляющих линий. При вращении роторов, датчики Холла будут выдавать импульсы не в фазе, поэтому корректного измерения частоты вращения не получится. Система будет воспринимать данные, как аварийную ситуацию и соответственно на нее реагировать.

В завершении для наглядности рекомендуем серию тематических видеороликов.

Задача подключение кулера к компьютерному блоку питания несложна. Но любое действие в этом направлении должно быть осознанным, иначе вместо повышения эффективности работы можно получить проблемы.

В данной схеме управление вентилятором или кулером системы охлаждения происходит по сигналу термистора в течении заданного периода времени. Схема простая, собрана всего на трех транзисторах.


Эта система управления может быть использована в самых разных областях жизни, где необходимо охлаждение посредством вентилятора, например, охлаждения материнской платы ПК, в усилителях звука, в мощных блоках питания и в иных устройствах, которые в ходе своей работы могут перегреваться. Система представляет собой сочетание двух устройств: таймера и термореле.

Описание работы схемы управления вентилятором

Когда температура низкая, сопротивление термистора высокое и, следовательно, первый транзистор закрыт, потому что на его базе напряжение ниже 0,6 вольт. В это время конденсатор на 100 мкФ разряжен. Второй PNP-транзистор так же закрыт, поскольку напряжение на базе равно напряжению на его эмиттере. И третий транзистор так же заперт.

При повышении температуры, сопротивление термистора уменьшается. Таким образом, напряжение на базе первого транзистора увеличивается. Когда это напряжение превысит 0,6 В, первый транзистор начинает пропускать ток заряжая конденсатор 100 мкФ и подает отрицательный потенциал на базу второго транзистора, который открывается и включает третий транзистор, который в свою очередь активирует реле.

После того, как вентилятор включается, температура уменьшается, но конденсатор 100 мкФ разряжается постепенно, сохраняя работу вентилятора в течение некоторого времени после того, как температура приходит в норму.

Подстроичный резистор (показан на схеме как 10 ком) должен иметь значение сопротивления около 10% от сопротивления термистора при 25 градусах. Термистор применен марки EPCOS NTC B57164K104J на 100 кОм. Таким образом, сопротивление подстрочного резистора (10%) получается 10 кОм. Если вы не можете найти эту модель можно использовать другой. Например, при использовании термистора 470 кОм сопротивление подстроичного составит 47 кОм.

Схема подключения вентилятора с питанием от 12 вольт.

Схема подключения вентилятора с питанием от 220 вольт

В печатной плате можно увидеть два подстроичных резистора. Первый на 10 кОм для регулирования порога срабатывания вентилятора, второй на 1 мОм позволяет регулировать время работы после нормализации температуры. Если вам нужен больший интервал времени, то конденсатор на 100 мкФ можно увеличить до 470 мкФ. Диод 1N4005 используется для защиты транзистора от индуктивных выбросов в реле.

Регулятор скорости вентилятора

Схема регуляторов скорости вращения вентиляторов — необходимые радиоэлементы для сборки, инструкции по монтажу своими руками, видео.

Регулятор скорости вентилятора — простая схема

Предлагаемая ниже схема обеспечивает простую регулировку оборотов вентилятора без контроля оборотов. В устройстве использованы отечественные транзисторы КТ361 и КТ814. Конструктивно плата размещается непосредственно в блоке питания, на одном из радиаторов. Она имеет дополнительные посадочные места для подключения второго датчика (внешнего) и возможность добавить стабилитрон, ограничивающий минимальное напряжение, подаваемое на вентилятор.

Принципиальная схема регулятора

Список необходимых радиоэлементов:

  • 2 биполярных транзистора — КТ361А и КТ814А.
  • Стабилитрон — 1N4736A (6.8В).
  • Диод.
  • Электролитический конденсатор — 10 мкФ.
  • 8 резисторов — 1х300 Ом, 1х1 кОм, 1х560 Ом, 2х68 кОм, 1х2 кОм, 1х1 кОм, 1х1 МОм.
  • Терморезистор — 10 кОм
  • Вентилятор.

Печатная плата

Фото готового регулятора скорости вентилятора:

Внешний вид регулятора скорости вентилятора

Регулятор вентилятора с датчиком температуры

Как известно, вентилятор в блоках питания компьютеров формата AT вращается с неизменной частотой независимо от температуры корпусов высоковольтных транзисторов. Однако блок питания не всегда отдает в нагрузку максимальную мощность. Пик потребляемой мощности приходится на момент включения компьютера, а следующие максимумы — на время интенсивного дискового обмена.

Уменьшить износ вентилятора и снизить общий уровень шума, создаваемого компьютером можно, применив автоматический регулятор частоты вращения вентилятора, схема которого показана на рисунке. Датчиком температуры служат германиевые диоды VD1–VD4, включенные в обратном направлении в цепь базы составного транзистора VT1VT2. Выбор в качестве датчика диодов обусловлен тем, что зависимость обратного тока от температуры имеет более выраженный характер, чем аналогичная зависимость сопротивления терморезисторов. Кроме того, стеклянный корпус указанных диодов позволяет обойтись без каких-либо диэлектрических прокладок при установке на теплоотводе транзисторов блока питания.

Схема регулятора скорости вентилятора с датчиком температуры

Необходимые радиодетали:

  • 2 биполярных транзистора (VT1, VT2) — КТ315Б и КТ815А соответственно.
  • 4 диода (VD1-VD4) — Д9Б.
  • 2 резистора (R1, R2) — 2 кОм и 75 кОм (подбор) соответственно.
  • Вентилятор (M1).

Следует отметить, что число диодов датчика температуры зависит от статического коэффициента передачи тока составного транзистора VT1, VT2. Если при указанном на схеме сопротивлении резистора R2, комнатной температуре и включенном питании крыльчатка вентилятора неподвижна, число диодов следует увеличить.

Необходимо добиться того, чтобы после подачи напряжения питания она уверенно начинала вращаться с небольшой частотой. Естественно, если при четырех диодах датчика частота вращения окажется значительно больше требуемой, число диодов следует уменьшить.

Устройство монтируют в корпусе блока питания. Одноименные выводы диодов VD1-VD4 спаивают вместе, расположив их корпусы в одной плоскости вплотную друг к другу. Полученный блок приклеивают клеем БФ-2 (или любым другим термостойким, например, эпоксидным) к теплоотводу высоковольтных транзисторов с обратной стороны. Транзистор VT2 с припаянными к его выводам резисторами R1, R2 и транзистором VT1 устанавливают выводом эмиттера в отверстие «-cooler» платы блока питания.

Налаживание устройства сводится к подбору резистора R2. Временно заменив его переменным (100–150 кОм), подбирают такое сопротивление введенной части, чтобы при номинальной нагрузке (теплоотводы транзисторов блока питания теплые наощупь) вентилятор вращался с небольшой частотой. Во избежание поражения электрическим током (теплоотводы находятся под высоким напряжением!) «измерять» температуру наощупь можно, только выключив компьютер. При правильно отлаженном устройстве вентилятор должен запускаться не сразу после включения компьютера, а спустя 2–3 мин после прогрева транзисторов блока питания.

Схема регулятора скорости вентилятора для уменьшения шума

В отличии от схемы, которая замедляет обороты вентилятора после старта (для уверенного запуска вентилятора), данная схема позволит увеличить эффективность работы вентилятора путем увеличения оборотов при повышении температуры датчика. Схема также позволяет уменьшить шум вентилятора и продлить его срок службы.

Схема регулятора скорости вентилятора

Необходимые для сборки детали:

  • Биполярный транзистор (VT1) — КТ815А.
  • Электролитический конденсатор (С1) — 200 мкФ/16В.
  • Переменный резистор (R1) — Rt/5.
  • Терморезистор (Rt) — 10–30 кОм.
  • Резистор (R2) — 3–5 кОм (1 Вт).

Если ваш вентилятор иногда не запускается даже при сильном нагреве (паяльник поднести), то нужно добавить цепочку С1, R2. Тогда R1 выставляем так, чтобы вентилятор гарантированно запускался при подаче напряжения на холодный блок питания. Через несколько секунд после заpяда конденсатора, обороты падали, но полностью вентилятор не останавливался. Теперь закрепляем датчик и проверяем, как все это будет крутится пpи реальной работе.

Rt — любой терморезистор с отрицательным ТКЕ, например, ММТ1 номиналом 10–30 кОм. Терморезистор крепится (приклеивается) через тонкую изолирующую прокладку (лучше слюдяную) к радиатору высоковольтных транзисторов (или к одному из них).

Видео о сборке регулятора оборотов вентилятора:

Читайте также: