В каком случае образы процессов выгружаются на диск и возвращаются в оперативную память целиком

Обновлено: 07.07.2024

Со времен создания ЭВМ фон Неймана основная память в компьютерной системе организована как линейное (одномерное) адресное пространство, состоящее из последовательности слов, а позже байтов [10]. Аналогично организована и внешняя память. Хотя такая организация и отражает особенности используемого аппаратного обеспечения, она не соответствует способу, которым обычно создаются программы. Большинство программ организованы в виде модулей, некоторые из которых неизменны (только для чтения, только для исполнения), а другие содержат данные, которые могут быть изменены.

Если операционная система и аппаратное обеспечение могут эффективно работать с пользовательскими программами и данными, представленными модулями, то это обеспечивает ряд преимуществ.

  1. Модули могут быть созданы и скомпилированы независимо друг от друга, при этом все ссылки из одного модуля в другой разрешаются системой во время работы программы.
  2. Разные модули могут получать разные степени защиты (только чтение, только исполнение) за счет весьма умеренных накладных расходов.
  3. Возможно применение механизма, обеспечивающего совместное использование модулей разными процессами (для случая сотрудничества процессов в работе над одной задачей).

Память – важнейший ресурс вычислительной системы, требующий эффективного управления. Несмотря на то, что в наши дни память среднего домашнего компьютера в тысячи раз превышает память больших ЭВМ 70-х годов, программы увеличиваются в размере быстрее, чем память. Достаточно сказать, что только операционная система занимает сотни Мбайт (например, Windows 2000 – до 30 млн строк), не говоря о прикладных программах и базах данных, которые могут занимать в вычислительных системах десятки и сотни Гбайт.

Перефразированный закон Паркинсона гласит: Программы расширяются, стремясь заполнить весь объем памяти, доступный для их поддержки (сказано это было об ОС). В идеале программисты хотели бы иметь неограниченную в размере и скорости память, которая была бы энергонезависимой, т.е. сохраняла свое содержимое при выключении электричества, а также недорого бы стоила. Однако реально пока такой памяти нет. В то же время на любом этапе развития технологии производства запоминающих устройств действуют следующие достаточно устойчивые соотношения:

  • чем меньше время доступа, тем дороже бит;
  • чем выше емкость, тем ниже стоимость бита;
  • чем выше емкость, тем больше время доступа.

Чтобы найти выход из сложившийся ситуации, необходимо опираться не на отдельно взятые компоненты или технологию, а выстроить иерархию запоминающих устройств, показанную на рис. 6.1. При перемещении слева направо происходит следующее :

  • снижается стоимость бита;
  • возрастает емкость;
  • возрастает время доступа;
  • снижается частота обращений процессора к памяти.


Рис. 6.1. Иерархия памяти

Предположим, процессор имеет доступ к памяти двух уровней. На первом уровне содержится Е1 слов, и он характеризуется временем доступа Т1 = 1 нс. К этому уровню процессор может обращаться непосредственно. Однако если требуется получить слово, находящееся на втором уровне, то его сначала нужно передать на первый уровень. При этом передается не только требуемое слово, а блок данных, содержащий это слово. Поскольку адреса, к которым обращается процессор, имеют тенденцию собираться в группы (циклы, подпрограммы), процессор обращается к небольшому повторяющемуся набору команд. Таким образом, работа процессора с вновь полученным блоком памяти будет проходить достаточно длительное время.

Обозначим через Т2 = 10 нс время обращения ко второму уровню памяти, а через Р – отношение числа нахождений нужного слова в быстрой памяти к числу всех обращений. Пусть в нашем примере Р = 0,95 (т.е. 95% обращений приходится на быструю память, что вполне реально), тогда среднее время доступа к памяти можно записать так:

Tср = 0,95*1нс + 0,05* (1нс+10нс)=1,55нс

Этот принцип можно применять не только к памяти с двумя уровнями. Реально так и происходит. Объем оперативной памяти существенно сказывается на характере протекания вычислительного процесса, так как он ограничивает число одновременно выполняющихся программ, т.е. уровень мультипрограммирования. Если предположить, что процесс проводит часть р своего времени в ожидании завершения операции ввода-вывода, то степень загрузки Z центрального процессора (ЦП) в идеальном случае будет выражаться зависимостью

На рис. 6.2 показана зависимость Z=p(n) для различного времени ожидания завершения операции ввода-вывода (20%, 50% и 80%) и числа процессов n. Большое количество задач, необходимое для высокой загрузки процессора, требует большого объема оперативной памяти. В условиях, когда для обеспечения приемлемого уровня мультипрограммирования имеющейся памяти недостаточно, был предложен метод организации вычислительного процесса, при котором образы некоторых процессов целиком или частично временно выгружаются на диск.


Рис. 6.2. Загрузка процессора при различном числе процессов

Очевидно, что имеет смысл временно выгружать неактивные процессы, находящиеся в ожидании каких-либо ресурсов, в том числе очередного кванта времени центрального процессора. К моменту, когда пройдет очередь выполнения выгруженного процесса, его образ возвращается с диска в оперативную память. Если при этом обнаруживается, что свободного места в оперативной памяти не хватает, то на диск выгружается другой процесс.

Такая подмена (виртуализация) оперативной памяти дисковой памятью позволяет повысить уровень мультипрограммирования, поскольку объем оперативной памяти теперь не столь жестко ограничивает число одновременно выполняемых процессов. При этом суммарный объем оперативной памяти, занимаемой образами процессов, может существенно превосходить имеющийся объем оперативной памяти.

В данном случае в распоряжение прикладного программиста предоставляется виртуальная оперативная память, размер которой намного превосходит реальную память системы и ограничивается только возможностями адресации используемого процесса (в ПК на базе Pentium 232 = 4 Гбайт). Вообще виртуальным (кажущимся) называется ресурс, обладающий свойствами (в данном случае большой объем ОП), которых в действительности у него нет.

Виртуализация оперативной памяти осуществляется совокупностью аппаратных и программных средств вычислительной системы (схемами процессора и операционной системой) автоматически без участия программиста и не сказывается на логике работы приложения.

Виртуализация памяти возможна на основе двух возможных подходов [17]:

  • свопинг (swapping) – образы процессов выгружаются на диск и возвращаются в оперативную память целиком;
  • виртуальная память (virtual memory) – между оперативной памятью и диском перемещаются части образов (сегменты, страницы, блоки и т.п.) процессов.
  • избыточность перемещаемых данных и отсюда замедление работы системы и неэффективное использование памяти;
  • невозможность загрузить процесс, виртуальное пространство которого превышает имеющуюся в наличии свободную память.

Достоинство свопинга по сравнению с виртуальной памятью – меньшие затраты времени на преобразование адресов в кодах программ, поскольку оно делается один раз при загрузке с диска в память (однако это преимущество может быть незначительным, т.к. выполняется при очередной загрузке только часть кода и полностью преобразовывать код, может быть, и не надо).

Виртуальная память не имеет указанных недостатков, но ее ключевой проблемой является преобразование виртуальных адресов в физические (почему это проблема, будет ясно дальше, а пока можно отметить существенные затраты времени на этот процесс, если не принять специальных мер).

Статьи к прочтению:

Оперативная память персонального компьютера


Похожие статьи:

Виртуализация оперативной памяти осуществляется совокупностью программных модулей ОС и аппаратных схем процессора и включает решение следующих задач:

размещение данных в запоминающих устройствах разного типа, например часть кодов программы - в оперативной памяти, а часть - на
диске;

выбор образов процессов или их частей для перемещения из оперативной памяти на диск и обратно;

перемещение по мере необходимости данных между памятью и
диском;

преобразование виртуальных адресов в физические.

Очень важно то, что все действия по организации совместного использования диска и оперативной памяти - выделение места для перемещаемых фрагментов, настройка адресов, выбор кандидатов на загрузку и выгрузку - осуществляются операционной системой и аппаратурой процессора автоматически, без участия программиста, и никак не сказываются на логике работы приложений.

Виртуализация памяти может быть осуществлена на основе двух различных подходов:

свопинг (swapping) -образы процессов выгружаются на диск и возвращаются в оперативную память целиком;

виртуальная память (virtual memory) -между оперативной памятью и диском перемещаются части (сегменты, страницы и т. п.) образов про-цессов.

Свопинг представляет собой частный случай виртуальной памяти и, следовательно, более простой в реализации способ совместного использования оперативной памяти и диска. Однако подкачке свойственна избыточность: когда ОС решает активизировать процесс, для его выполнения, как правило, не требуется загружать в оперативную память все его сегменты полностью - достаточно загрузить небольшую часть кодового сегмента с подлежащей выполнению инструкцией и частью сегментов данных, с которыми работает эта инструкция, а также отвести место под сегмент стека. Аналогично при освобождении памяти для загрузки нового процесса очень часто вовсе не требуется выгружать другой процесс на диск целиком, достаточно вытеснить на диск только часть его образа. Перемещение избыточной информации замедляет работу системы, а также приводит к неэффективному использованию памяти. Кроме того, системы, поддерживающие свопинг, имеют еще один очень существенный недостаток: они не способны загрузить для выполнения процесс, виртуальное адресное пространство которого превышает имеющуюся в наличии свободную память. Именно из-за указанных недостатков свопинг как основной механизм управления памятью почти не используется в современных ОС. На смену ему пришел более совершенный механизм виртуальной памяти, который, как уже было сказано, заключается в том, что при нехватке места в оперативной памяти на диск выгружаются только части образов процессов.

Ключевой проблемой виртуальной памяти, возникающей в результате многократного изменения местоположения в оперативной памяти образов процессов или их частей, является преобразование виртуальных адресов в физические. Решение этой проблемы, в свою очередь, зависит от того, какой способ структуризации виртуального адресного пространства принят в данной системе управления памятью. В настоящее время все множество реализаций виртуальной памяти может быть представлено тремя классами.

Страничная виртуальная память организует перемещение данных между памятью и диском страницами - частями виртуального адресного пространства, фиксированного и сравнительно небольшого размера.

Сегментная виртуальная память предусматривает перемещение данных сегментами - частями виртуального адресного пространства произвольного размера, полученными с учетом смыслового значения данных.

Сегментно-страничная виртуальная память использует двухуровневое деление: виртуальное адресное пространство делится на сегменты, а затем сегменты делятся на страницы. Единицей перемещения данных здесь является страница. Этот способ управления памятью объединяет в себе элементы обоих предыдущих подходов.

Для временного хранения сегментов и страниц на диске отводится либо специальная область, либо специальный файл, которые во многих ОС по традиции продолжают называть областью или файлом свопинга, хотя перемещение информации между оперативной памятью и диском осуществляется уже не в форме полного замещения одного процесса другим, а частями. Другое популярное название этой области - страничный файл (page file, или paging file). Текущий размер страничного файла является важным параметром, оказывающим влияние на возможности операционной системы: чем больше страничный файл, тем больше приложений может одновременно выполнять ОС (при фиксированном размере оперативной памяти). Размер страничного файла в современных ОС является настраиваемым параметром, который выбирается администратором системы для достижения компромисса между уровнем мультипрограммирования и быстродействием системы.

Виртуа́льная па́мять (англ. virtual memory) — метод управления памятью компьютера, позволяющий выполнять программы, требующие больше оперативной памяти, чем имеется в компьютере, путём автоматического перемещения частей программы между основной памятью и вторичным хранилищем (например, жёстким диском).

Применение виртуальной памяти позволяет:

· освободить программиста от необходимости вручную управлять загрузкой частей программы в память и согласовывать использование памяти с другими программами

· предоставлять программам больше памяти, чем физически установлено в системе

· в многозадачных системах изолировать выполняющиеся программы друг от друга, путём назначения им непересекающихся адресных пространств

Виртуальным называется ресурс, который пользователю или пользовательской программе представляется обладающим свойствами, которыми он в действительности не обладает. В данном случае в распоряжение прикладного программиста предоставляется виртуальная оперативная память, размер которой намного превосходит всю имеющуюся в системе реальную оперативную память.

Понятно, однако, что работа такой «оперативной памяти» происходит значительно медленнее.

Виртуализация оперативной памяти осуществляется совокупностью программных модулей ОС и аппаратных схем процессора и включает решение следующих задач:

Ø размещение данных в запоминающих устройствах разного типа, например часть кодов программы — в оперативной памяти, а часть — на диске;

Ø выбор образов процессов или их частей для перемещения из оперативной памяти на диск и обратно;

Ø перемещение по мере необходимости данных между памятью и диском;

Ø преобразование виртуальных адресов в физические.

Виртуализация памяти может быть осуществлена на основе двух различных подходов:

ü свопинг (swapping) — образы процессов выгружаются на диск и возвращаются в оперативную память целиком,

ü виртуальная память (virtual memory) — между оперативной памятью и диском перемещаются части (сегменты, страницы и т. п.) образов процессов.

Подготавливая в очередной раз оборудования, ПО и помещение к прохождению аттестации на разные там «конфи» и «перс данные», мне показалось странным что такая область работы ОС как организация Свопинга ни кем, или ни чем не защищается.

Немного взгляда изнутри. Википедия дает довольно сбалансированное определение данному термину:

Свопинг

Один из механизмов реализации виртуальной памяти, при котором отдельные запущенные процессы (обычно неактивные) перемещаются из ОЗУ на жёсткий диск, освобождая ОЗУ для загрузки других процессов. Основное отличие этого механизма от страничного заключается в том, что процессы перемещаются между ОЗУ и жестким диском целиком, поэтому иногда некоторые процессы могут полностью отсутствовать в ОЗУ. При наступлении условий активизации процесса он возвращается диспетчером памяти в ОЗУ. Существуют различные алгоритмы выбора процессов на загрузку и выгрузку, а также различные способы выделения оперативной и дисковой памяти загружаемому процессу.


Все хорошо, еще из жизни мы знаем что своп может быть размещен на дисках в виде файлов (т.е. подчиняться драйверам файловой системы) или же занимать отдельное выделенное место на устройстве, чаще всего в виде выделенного раздела (так называемого раздела подкачки).

Угроза

Исходя из механизма организации свопинга можно утверждать, что ОС руководствуясь неведомыми алгоритмами, переносит неиспользуемые, или ниже приоритетные области памяти на дисковые устройства. После чего освободившиеся области памяти отдает другим процессам. Предположим, что на компьютере ведется работа с важной информации, которая храниться в защищенном виде, на защищенном компьютере и в защищенном помещении. Для работы с данными необходимо приложение, которое снимает защиту на момент ручной или автоматизированной обработки, назовем это — расшифровывание. После расшифровывания данные обрабатываются в «открытом виде».

Если в этот момент ОС решит засвопить рабочий процесс, то все переменные в которых и хранятся данные попадут на устройства хранения в открытом виде. Мало того, закрытые ключи использовавшиеся для расшифровки данных, при неправильном программировании и не использовании специальных носителей информации, так же могу оказаться в свопе.

Ну а дальше дело техники:
Вариант №1. Выключаем компьютер — забираем устройство — копируем своп — возвращаем все назад.
Вариант №2. На ОС настроено удаление совп файла при завершении работы. Нашел такое только в Windows 2008 Server R2. В Linux нашел команду swapoff, не уверен что она делает именно это. При таких условиях жмем — Reset.
Вариант №3. Снимаем образ Acronis'ом.
Полученный файл или область диска изучаем имеющимися у нас способами.

Для защиты могут использоваться специальные устройства перехватывающие кнопку Reset, например: Электронный замок «Соболь» , он кстати умеет сверять контрольные суммы с файлов при загрузки, почему бы ему и своп не контролировать.

Выключать своп реально не хочется, т.к. действия пользователя в течении дня не предсказуемы. Если есть какие либо мысли или ответы — очень буду рад.

Ну из рекомендации можно посоветовать только пока:
Панель упр.->Система->Дополнительно->Быстродействие->Параметры->
Дополнительно->Виртульная память->Изменить->Без файла подкачки->OK.

Лично я встречал только один носитель информации в описании которого есть такая фраза:

Возможности Rutoken ЭЦП позволяют осуществлять механизм электронной цифровой подписи так, чтобы закрытый (секретный) ключ подписи никогда не покидал пределы токена. Таким образом, исключается возможность компрометации ключа и увеличивается общая безопасность информационной системы.

Читайте также: