Алгоритмика программы это инструмент для обработки файлов

Обновлено: 03.07.2024

Роль алгоритмов в программировании. В настоящее время наибольшей популярностью пользуются системы объектно-ориентированного программирования (Visual Basic, Delphi). Разработка программы с помощью такой системы программирования состоит из двух этапов: 1) создание в визуальном режиме элементов графического интерфейса программы; 2) разработка программного кода. Такой подход существенно облегчает создание программ, так как разработка графического интерфейса вручную (в процедурных языках) сложный и трудоёмкий процесс.

Первый шаг к пониманию важности изучения и знания алгоритмов это дать точное определение тому, что понимается под алгоритмом. Алгоритм в программировании- это понятная и точная последовательность действий , записанных на языке программирования. Согласно популярной книге Алгоритмы: построение и анализ (Кормен, Лейзерсон, Ривест, Штайн)"алгоритм (algorithm) - это любая корректно определенная вычислительная процедура, на вход (input) которой подается некоторая величина или набор величин, и результатом выполнения которой является выходная (output) величина или набор значений". Другими словами, алгоритмы похожи на дорожные карты для достижения четко определенной цели. Код, для вычисления членов последовательности Фибоначчи - это реализация конкретного алгоритма. Даже простая функция сложения двух чисел является алгоритмом, хотя и простым.

Для создания алгоритма (программы) необходимо знать:

полный набор исходных данных задачи (начальное состояние объекта);

цель создания алгоритма (конечное состояние объекта);

систему команд исполнителя (то есть набор команд, которые исполнитель понимает и может выполнить).

Полученный алгоритм (программа) должен обладать следующим набором свойств:

дискретность (алгоритм разбит на отдельные шаги - команды);

однозначность (каждая команда определяет единственно возможное действие исполнителя);

понятность (все команды алгоритма входят в систему команд исполнителя);

результативность (исполнитель должен решить задачу за конечное число шагов).

Большая часть алгоритмов обладает также свойством массовости (с помощью одного и того же алгоритма можно решать множество однотипных задач).


Некоторые алгоритмы, к примеру, для вычисления последовательности Фибоначчи, являются интуитивно понятными и относятся к врожденным навыкам логического мышления и решения задач. Тем не менее, большинству из нас будет не лишним изучить и сложные алгоритмы, чтобы в будущем можно было использовать их в качестве строительных блоков для более эффективного решения логических задач. В действительности можно удивиться, узнав как много сложных алгоритмов используется людьми при проверке электронной почты или прослушивании музыки. В этой статье представлены некоторые основные идеи анализа алгоритмов с практическими примерами, иллюстрирующими важность изучения алгоритмов.

Язык программирования - набор правил записи алгоритмических структур и данных.

Анализ времени выполнения алгоритма

Одним из наиболее важных аспектов алгоритма является его скорость. Часто бывает легко придумать алгоритм решающий задачу, но если алгоритм слишком медленный, то он возвращается на доработку. Поскольку точная скорость алгоритма зависит от того где запускается алгоритм, а также деталей реализации, компьютерные специалисты обычно говорят о времени выполнения относительно входных данных. Например, если вход состоит из N целых чисел, то алгоритм может иметь время выполнения пропорциональное N 2 , что представляется как O(N 2 ). Это означает, что если вы запустите реализацию алгоритма на компьютере с входом размером в N, то это займет C*N 2 секунд, где C-некоторая константа, которая не меняется с изменением размера входа.

Тем не менее, время выполнения многих сложных алгоритмов зависит не только от размера входных данных, но и от множества других факторов. Например, алгоритм сортировки множества целых чисел может работать намного быстрее, если это множество уже отсортировано. Принято говорить о наихудшем случае выполнения, и среднем случае выполнения. Наихудшее время выполнения - это максимальное время работы алгоритма при самом "плохом" из всех возможных входов. Средний случай выполнения - это среднее время работы алгоритма на всех возможных входах. Из этих двух типов времени выполнения, легче всего рассуждать о наихудшем случае и поэтому его используют чаще в качестве эталона для заданного алгоритма. Процесс определения наихудшего и среднего случая времени выполнения алгоритма может быть достаточно сложным, т.к. обычно невозможно запустить алгоритм для всех возможных входов.

Выше отмечалось, что один и тот же алгоритм может быть записан по-разному. Можно записывать алгоритм естественным языком. В таком виде мы используем рецепты, инструкции и т.п. Для записи алгоритмов, предназначенных формальным исполнителям, разработаны специальные языки программирования . Любой алгоритм можно описать графически в виде блок-схемы . Для этого разработана специальная система обозначений:

Начало и конец алгоритма

Ввод и вывод данных.

Вывод данных иногда обозначают иначе:

В вычислительных алгоритмах так обозначают присваивание

Развилка - компонент, необходимый для реализации ветвлений и циклов

Начало цикла с параметром

В программировании - процедуры или подпрограммы

Переходы между блоками

Приведем пример описания алгоритма суммирования двух величин в виде блок-схемы:

Такой способ описания алгоритм наиболее нагляден и понятен человеку. Поэтому, алгоритмы формальных исполнителей обычно разрабатывают сначала в виде блок-схемы, и только затем создают программу на одном из языков программирования.

Сортировка

Сортировка является хорошим примером алгоритма, который часто используется программистами. Самый простой способ отсортировать группу элементов это начать с удаления наименьшего элемента из группы, и поставить его первым. Затем удаляется второй по величине элемент и ставится вторым и т.д. К сожалению, время работы этого алгоритма составляет O(N 2 ), а это означает, что потребуется количество времени пропорциональное количеству элементов в квадрате. Если бы нам пришлось сортировать млрд. элементов, то этот алгоритмы бы потребовал 10 18 операций. Если считать что обычные настольные ПК делают примерно 10 9 операций в секунду, то потребуются годы чтобы закончить сортировку этого млрд. элементов.

К счастью существует ряд более совершенных алгоритмов, например, быстрая сортировка (quicksort), пирамидальная сортировка (heapsort) и сортировка слияния(mergesort). Эти алгоритмы имеют время выполнения O(N * Log(N)). Таким образом, число операций необходимых для сортировки млрд. элементов сокращается до таких разумных пределов, что даже самый дешевый настольный ПК способен провести такую сортировку. Вместо млрд. в квадрате операций (10 18 ) эти алгоритмы требуют только 10 млрд. операций (10 10 ), т.е. в 100 млн. раз быстрее.

Кратчайший путь

Алгоритмы поиска кратчайшего пути из одной точки в другую исследуются уже на протяжении многих лет. Примеров прикладного применения этих алгоритмов предостаточно, однако для простоты изложения будем придерживаться следующей постановки: требуется найти кратчайший путь из точки А в точку Б в городе с несколькими улицами и перекрестками. Существует много разных алгоритмов для решения этой задачи и все они со своими преимуществами и недостатками. Прежде чем мы углубимся в их изучение, давайте рассмотрим время выполнения простого алгоритма перебором. Если алгоритм рассматривает каждый возможный путь от А до Б (который не образует циклов) он вряд ли закончится при нашей жизни, даже если А и Б находятся в маленьком городке. Время выполнения этого алгоритма является экспоненциальным, что обозначается как O(C N ) для некоторого C. Даже для малых значений C, C N становится астрономическим числом, когда N принимает умеренно большое значение.

Один из самых быстрых алгоритмов для решения этой задачи имеет время выполненияO(E+V*Log(V)), где E число дорожных сегментов, а V число пересечений. Алгоритм займет около 2 секунд времени, для поиска кратчайшего пути в городе из 10000 пересечений и 20000 дорожных сегментов (обычно бывает около 2 дорожных сегментов на одно пересечение). Этот алгоритм известен как алгоритм Дейкстры, он является довольно таки сложным и требует использования структуры данных очередь с приоритетом (priority queue). Однако в некоторых случаях даже такое время выполнения является слишком медленным (взять например нахождение кратчайшего пути от Нью-Йорка до Сан-Франциско - в США есть миллионы пересечений), в таких случаях программисты пытаются улучшить время выполнения с помощью так называемой эвристики. Эвристика - это приближенное значение чего-то, что имеет отношение к задаче. В задаче поиска кратчайшего пути, например, может оказаться полезным знать, как далеко находится точка от пункта назначения. Зная это можно разработать более быстрый алгоритм (например алгоритм поиска А* в некоторых случаях работает значительно быстрее чем алгоритм Дейкстры). Такой подход не всегда улучшает время выполнения алгоритма в наихудшем случае, но в большинстве реальных приложений алгоритм начинает работать быстрее.

Приближенные алгоритмы

Иногда даже самый продвинутый алгоритм с самой продвинутой эвристикой работает слишком медленно на самом быстром компьютере. В таких случаях приходится снижать точность конечного результата. Вместо того чтобы пытаться получить кратчайший путь, можно ограничиться путем, который например на 10% больше чем кратчайший путь.

На самом деле есть немало важных задач, для которых известные на сегодня алгоритмы выдают оптимальный результат слишком медленно. Наиболее известная группа из этих задач называется NP (non-deterministic polynomial). Если задача называется NP-полной или NP-трудной, то это означает, что никто не знает достаточно хорошего способа для получения оптимального решения. Кроме того, если кто-то разработает эффективный алгоритм для решения одной NP-трудной задачи, то этот алгоритм можно будет применить ко всем NP-трудным задачам.

Хорошим примером NP-трудной задачи является задача коммивояжёра. Продавец хочет посетить N городов, и он знает, сколько времени занимает перемещение из одного города в другой. Вопрос в том насколько быстро он сможет посетить все города? Самый быстрый из известных алгоритмов для решения этой задачи является слишком медленным - и многие считают, что так будет всегда - поэтому программисты ищут достаточно быстрые алгоритмы, дающие хорошее решение, но часто не оптимальное.

Случайные алгоритмы

Еще один подход, применяемый для решения некоторых задач, заключается в том, чтобы сделать алгоритм случайным. Данный подход не улучшает время алгоритма в худшем случае, но довольно часто хорошо работает в среднем случае. Алгоритм быстрой сортировки является хорошим примером использования рандомизации. В худшем случае, алгоритм быстрой сортировки сортирует группу элементов за O(N 2 ), где N количество элементов. Если в этом алгоритме использовать рандомизацию, то шансы на худший случай становятся незначительно малыми, и в среднем случае алгоритм быстрой сортировки работает за время O(N*Log(N)). Другие алгоритмы даже в худшем случае гарантируют время работы O(N*Log(N)), однако они медленнее в среднем случае. Хотя оба алгоритма имеют время работы пропорциональное N*Log(N), алгоритм быстрой сортировки имеет более меньший постоянный коэффициент (constant factor) - т.е. он требует C*N*Log(N), в то время как другие алгоритмы требуют более 2*C*N*Log(N) операций.

Другой алгоритм, использующий случайные числа ищет медиану для группы чисел и его время работы в среднем случае составляет O(N). Это намного быстрее по сравнению с алгоритмом, который сортирует числа и выбирает среднее, и работает за O(N*Log(N)). Существуют детерминированные алгоритмы (не случайные) которые позволяют найти медиану за время O(N), однако случайный алгоритм проще для понимания и часто работает быстрее этих детерминированных алгоритмов.

Основная идея алгоритма поиска медианы это выбрать среди чисел случайное, и посчитать, сколько чисел в группе меньше чем выбранное число. Допустим, есть N чисел, K из них меньше или равно выбранному числу. Если K меньше чем половина N, тогда мы знаем что медиана это (N/2-K)-е число которое больше чем случайно выбранное число, так что мы отбрасываем K чисел меньших или равных случайному числу. Теперь допустим мы хотим найти (N/2-K)-е наименьшее число, вместо медианы. Алгоритм такой же, мы просто случайно выбираем число и повторяем описанные шаги.

Сжатие

Еще один класс алгоритмов предназначен для сжатия данных. Этот алгоритм не имеет ожидаемого результата (как например, алгоритм сортировки), но вместо этого делается оптимизация по некоторым критериям. В случае сжатия данных, алгоритм (например, LZW) пытается сделать так чтобы данные занимали как можно меньше байтов, но в то же время, чтобы можно было распаковывать их до первоначальной формы. В некоторых случаях этот тип алгоритмов использует те же методы что и другие алгоритмы, что приводит к хорошему результату, но неоптимальному. Например, JPG и MP3 сжимают данные таким образом, что конечный результат получается более низкого качества, чем оригинал, однако и размер меньше. MP3 сжатие не сохраняет каждую особенность оригинального аудио файла, но пытается сохранить достаточно деталей, чтобы обеспечить приемлемое качество и в то же время значительно сократить размер файла. Формат JPG следует тому же принципу, но детали существенно отличаются, т.к. целью является сжатие изображения, а не аудио.

Зачем нужно знать всякие алгоритмы

Чтобы использовать алгоритмы должным образом, важно знать все упомянутые типы алгоритмов. Если вам придется разрабатывать важную часть программного обеспечения, то вы должны быть в состоянии оценить скорость работы вашего алгоритма. Точность вашей оценки зависит от того насколько вы владеете анализом времени исполнения алгоритмов. Кроме этого, необходимо знать детали алгоритмов, что позволит предсказывать особые случаи, в которых программа не будет работать быстро, или будет давать неприемлемые результаты.

Конечно, будут моменты, когда вы будете натыкаться на ранее не изучавшиеся проблемы. В таких случаях нужно придумать новый алгоритм, или по-новому применить старый алгоритм. Чем больше вы знаете об алгоритмах, тем больше у вас шансов найти хорошее решение проблемы. Во многих случаях новая задача легко сводится к старой, но для этого нужно иметь фундаментальное понимание старых задач.

Реальные примеры

Примеров решений реальных задач требующих новейших алгоритмов предостаточно. Почти все, что вы делаете на компьютере зависит от алгоритмов, которые кто-то очень долго разрабатывал. Даже самых простых программ не существовало бы без алгоритмов, которые работают "за сценой" управляя памятью и загружая данные с жесткого диска.

Существуют десятки примеров применения сложных алгоритмов, но обсудим две задачи, решение которых требует таких же навыков, как для решения некоторых задач на TopCoder. Первая задача известна как задача о максимальном потоке, а вторая связана с динамическим программированием - методом который часто позволяет решать задачи с казалось бы невозможной молниеносной скоростью.

Алгоритм поиска максимального потока

Задача поиска максимального потока состоит в том, чтобы посредством имеющейся сети наилучшим образом переместить что-то из одного места в другое. Конкретно такая проблема впервые возникла в 1950-х в связи с железнодорожными путями Советского Союза. США хотели знать, как быстро Советский Союз может подвозить материалы к государствам-сателлитам в Восточной Европе через свою сеть железных дорог.

Кроме того США хотели знать какую часть рельсов можно наиболее легко уничтожить чтобы отрезать государства-сателлиты от остальной части Советского Союза. Оказалось, что эти две задачи тесно связаны и что решение задачи поиска максимального потока также решает задачу о минимальном разрезе, что, в конечном счете, позволит выяснить самый дешевый способ отрезать Советский Союз от своих спутников.

Первый эффективный алгоритм для поиска максимального потока был придуман учеными Фордом и Фалкерсоном. Алгоритм впоследствии был назван алгоритмом Форда - Фалкерсона и является одним из наиболее известных алгоритмов в области компьютерной науки. В последние 50 лет алгоритм претерпел ряд улучшений, что сделало его быстрее (правда, некоторые из этих улучшений устрашают своей сложностью).

Сравнение последовательностей

Многим кодерам за всю свою карьеру ни разу не приходилось реализовывать алгоритм, использующий динамическое программирование. Тем не менее, динамическое программирование применяется в ряде важных алгоритмов. Один из алгоритмов это нахождение различий между двумя последовательностями, который большинство программистов наверняка использовали, хотя возможно и не разбирались в нем. Этот алгоритм вычисляет минимальное количество вставок, удалений, редактирований необходимых для преобразования последовательность A в последовательность B.

Например, рассмотрим последовательности "AABAA" и "AAAB". Для преобразования первой последовательности во вторую самое простое, что нужно сделать это удалить B в середине и изменить последнюю A на B. Этот алгоритм имеет множество применений, включая некоторые задачи связанные с ДНК и обнаружением плагиата. Однако многие программисты используют его в основном для сравнения версий одного и того же файла с исходным кодом. Если элементы последовательности это строки в файле, тот этот алгоритм позволяет узнать какие строки надо удалить, вставить, изменить чтобы преобразовать одну версию файла в другую.

Без динамического программирования приходится перебирать экспоненциальное число преобразований, чтобы перейти от одной последовательности к другой. Однако динамическое программирование сокращает время выполнения алгоритма до O(N*M), где N и M количество элементов в двух последовательностях.

Заключение

Сколько существует различных задач, столько существует и различных алгоритмов для их решения. Тем не менее есть большая вероятность того что задача которую вы пытаетесь решить в некотором смысле похожа на другую задачу. Развивая глубокое понимание широкого диапазона алгоритмов, вы сможете выбрать верный алгоритм и применить его для решения задачи. Кроме того решение задач в соревнованиях на TopCoder поможет вам отточить свои навыки в этой области. Многие из этих задач кажутся искусственными и не реалистичными, но они требуют такого, же набора алгоритмических знаний который требуется каждый день в реальном мире.

Понятие алгоритма так же фундаментально для информатики, как и понятие информации. Существует много различных определений алгоритма, так как это понятие достаточно широкое и используется в различных областях науки, техники и повседневной жизни.

Алгоритм – понятная и точная последовательность действий, описывающая процесс преобразования объекта из начального состояния в конечное.

Исполнителем алгоритма может быть как человек (кулинарные рецепты, различные инструкции, алгоритмы математических вычислений), так и техническое устройство. Различные машины (компьютеры, промышленные роботы, современная бытовая техника) являются формальными исполнителями алгоритмов. От формального исполнителя не требуется понимание сущности решаемой задачи, но требуется точное выполнение последовательности команд.

Алгоритм можно записывать различными способами (словесное описание, графическое описание – блок схема, программа на одном из языков программирования и т.д.). Программа – это алгоритм, записанный на языке программирования.

Для создания алгоритма (программы) необходимо знать:

Полученный алгоритм (программа) должен обладать следующим набором свойств:

Большая часть алгоритмов обладает также свойством массовости (с помощью одного и того же алгоритма можно решать множество однотипных задач).

Выше отмечалось, что один и тот же алгоритм может быть записан по-разному. Можно записывать алгоритм естественным языком. В таком виде мы используем рецепты, инструкции и т.п. Для записи алгоритмов , предназначенных формальным исполнителям , разработаны специальные языки программирования. Любой алгоритм можно описать графически в виде блок-схемы. Для этого разработана специальная система обозначений:

Приведем пример описания алгоритма суммирования двух величин в виде блок-схемы:

Такой способ описания алгоритм наиболее нагляден и понятен человеку. Поэтому, алгоритмы формальных исполнителей обычно разрабатывают сначала в виде блок-схемы, и только затем создают программу на одном из языков программирования .

Программист имеет возможность конструировать и использовать нетипичные алгоритмические структуры, однако, в этом нет необходимости. Любой сколь угодно сложный алгоритм может быть разработан на основе трёх типовых структур: следования, ветвления и повторения. При этом структуры могут располагаться последовательно друг за другом или вкладываться друг в друга.

Линейная структура (следование).

Наиболее простой алгоритмической структурой является линейная. В ней все операции выполняются один раз в том порядке, в котором они записаны.

В полном ветвлении предусмотрено два варианта действий исполнителя в зависимости от значения логического выражения (условия). Если условие истинно, то выполняться будет только первая ветвь, иначе только вторая ветвь.

Вторая ветвь может быть пустой. Такая структура называется неполным ветвлением или обходом.

Из нескольких ветвлений можно сконструировать структуру «выбор» (множественное ветвление), которая будет выбирать не из двух, а из большего количества вариантов действий исполнителя, зависящих от нескольких условий . Существенно, что выполняется только одна ветвь - в такой структуре важное значение приобретает порядок следования условий: если выполняются несколько условий, то сработает только одно из них - первое сверху.

Цикл (повторение).

Цикл позволяет организовать многократное повторение одной и той же последовательности команд - она называется телом цикла. В различных видах циклических алгоритмов количество повторений может зависеть от значения логического выражения (условия) или может быть жестко задано в самой структуре. Различают циклы : « д о» , « п ока» , циклы со счётчиком . В циклах « д о» и « п ока» логическое выражение (условие) может предшествовать телу цикла (цикл с предусловием) или завершать цикл (цикл с послеусловием).

Ц иклы « д о» - повторение тела цикла до выполнения условия :

Ц иклы « п ока» - повторение тела цикла пока условие выполняется ( истинно ):

Ц иклы со счётчиком (с параметром) – повторение тела цикла заданное число раз :

Вспомогательный алгоритм (подпрограмма, процедура).

Вспомогательный алгоритм представляет собой модуль, к которому можно многократно обращаться из основного алгоритма. Использование вспомогательных алгоритмов может существенно уменьшить размер алгоритма и упростить его разработку.

Методы разработки сложных алгоритмов.

Существует два метода разработки сложных алгоритмов:

Метод последовательной детализации задачи («сверху-вниз») состоит в том, что исходная сложная задача разбивается на подзадачи. Каждая из подзадач рассматривается и решается отдельно. Если какие-либо из подзадач сложны, они также разбиваются на подзадачи. Процесс продолжается до тех пор, пока подзадачи не сведутся к элементарным. Решения отдельных подзадач затем собираются в единый алгоритм решения исходной задачи. Метод широко используется, так как позволяет вести разработку общего алгоритма одновременно нескольким программистам, решающим локальные подзадачи. Это необходимое условие быстрой разработки программных продуктов.

Сборочный метод («снизу-вверх») заключается в создании множества программных модулей, реализующих решение типичных задач. При решении сложной задачи программист может использовать разработанные модули в качестве вспомогательных алгоритмов (процедур). Во многих системах программирования уже существуют подобные наборы модулей, что существенно упрощает и ускоряет создание сложного алгоритма.

Управление - целенаправленное взаимодействие объектов, одни из которых являются управляющими, другие - управляемыми.

В простейшем случае таких объектов два:

С точки зрения информатики управляющие воздействия можно рассматривать как управляющую информацию. Информация может передаваться в форме команд. Последовательность команд по управлению объектом, приводящая к заранее поставленной цели, называется алгоритмом управления. Следовательно, объект управления можно назвать исполнителем управляющего алгоритма. В рассмотренном примере, управляющий объект работает "не глядя" на то, что происходит с управляющим объектом (управление без обратной связи). Такая схема управления называется незамкнутой. Другая схема управления может учитывать информацию о процессах, происходящих в объекте управления:

В этом случае, алгоритм управления должен быть достаточно гибким, чтобы анализировать эту информацию и принимать решение о своих дальнейших действиях в зависимости от состояния объекта управления (управление с обратной связью). Такая схема управления называется замкнутой.

Более подробно процессы управления изучаются рассматриваются кибернетикой. Эта наука утверждает, что самые разнообразные процессы управления в обществе, природе и технике происходят сходным образом, подчиняются одним и тем же принципам.

Языки программирования

Язык программирования – набор правил записи алгоритмических структур и данных.

Вся информация в компьютере, в том числе и компьютерные программы, представляется в двоичной форме, т.е. в виде последовательности нулей и единиц. На заре компьютерной эры программисты вынуждены были составлять программы именно в таком виде. Такой способ программирования позволяет создать программу, состоящую непосредственно из команд процессора (язык машинных команд). Написание и отладка такой программы всегда были чрезвычайно сложным и трудоёмким занятием. Для облегчения труда программистов были разработаны так называемые ассемблерыязыки, которые позволяли записывать машинные команды с помощью команд, состоящих из символов обычного алфавита. Языки машинных команд и ассемблеры относятся к языкам низкого уровня.

В 60 – 70-е годы прошлого века стали появляться языки высокого уровня – формальные языки, позволяющие записывать алгоритмы в привычном для человека виде. Такие языки строились на основе использования определённого набора символов – алфавита и строгих правил построения команд – синтаксиса. Широкое распространение получили процедурные языки высоко уровня. Самые известные процедурные языки - Basic и Pascal . Они развивались длительное время, и последние версии этих языков используются и сейчас ( Qbasic , TurboPascal ). В них широко используются команды (операторы), реализующие типовые алгоритмические структуры. Для ввода и редактирования такой программы используется подобие текстового редактора. Для исполнения такой программы компьютер с помощью специальной программы – транслятора (компилятора или интерпретатора) осуществляет перевод программы с языка высокого уровня в язык машинных команд, при этом компьютер должен проверять программу на наличие ошибок и сообщать о них программисту. Таким образом, для создания компьютерной программы нужны другие компьютерные программы!

Система программирования – набор программ, необходимых для ввода, редактирования, отладки и исполнения программы, записанной с помощью одного из языков программирования.

В настоящее время наибольшей популярностью пользуются системы объектно-ориентированного визуального программирования ( Visual Basic , Delphi ). Разработка программы с помощью такой системы программирования состоит из двух этапов:

Такой подход существенно облегчает создание программ, так как разработка графического интерфейса вручную (в процедурных языках) сложный и трудоёмкий процесс.

Algo_Deep_14.7_Site-5020-9819d3.jpg

Каждый программист знает о важности использования алгоритмов. В этой статье мы поговорим о том, что такое алгоритм и какими характеристиками он обладает. А самое главное — составим список алгоритмов, которые широко применяются в программировании на разных языках и, стало быть, будут полезны для любого программиста.

Algorithm — что это?

Если говорить неофициально, то алгоритмом можно назвать любую корректно определённую вычислительную процедуру, когда на вход подаётся какая-нибудь величина либо набор величин, а результатом выполнения этой процедуры становится выходная величина либо набор значений. Можно сказать, что алгоритм — это некая последовательность действий (вычислительных шагов), благодаря чему происходит преобразование входных данных в выходные данные.

Также нужно понимать, что алгоритм как последовательность шагов позволяет решать конкретную задачу и должен: 1. Работать за конечный объём времени. Если алгоритм не способен разобраться с проблемой за конечное количество времени, можно сказать, что он бесполезен. 2. Иметь чётко определённые инструкции, порядок. Любой шаг должен точно определяться. Его инструкции должны быть однозначны для любой последовательности шагов. 3. Быть пригодным к использованию. Алгоритм должен быть способен решить проблему, для устранения которой его создавали.

Если интересуют подробности, вот отдельные статьи про свойства алгоритма, а вот про способы представления и записи алгоритма.

Сегодня алгоритмы используются при обработке данных как в информатике и программировании, так и в математике. Кстати, наиболее ранними математическими алгоритмами называют разложение на простые множители и извлечение квадратного корня — их использовали в древнем Вавилоне ещё в 1600 г. до н. э. Но мы не будем уходить далеко в прошлое, а рассмотрим, как и обещали, основные алгоритмы программирования на сегодняшний день.

Алгоритмы сортировки (пирамидальная, быстрая, слиянием)

1-20219-4be9ea.jpg

Какой алгоритм сортировки считают лучшим? Здесь нет однозначного ответа, ведь всё зависит от ваших предпочтений и поставленных перед вами задач. Рассмотрим несколько основных: 1. Сортировка слиянием. Важнейший на сегодня, базируется на принципе сравнения элементов и задействует подход «разделяй и властвуй», позволяя более эффективно решать проблемы, которые когда-то решались за время O (n^2). Сортировка слиянием была изобретена математиком Джоном фон Нейманом в далёком 1945 году. 2. Быстрая сортировка. Это уже другой подход и несколько иная процедура. Тут алгоритм базируется, как на in-place разделении, так и на принципе «разделяй и властвуй». Однако эта сортировка нестабильна, что и является её проблемой. Зато алгоритм эффективен при сортировке массивов в оперативной памяти. 3. Пирамидальная сортировка. Алгоритм in-place который использует приоритетную очередь (за счёт этой очереди сокращается время поиска данных).

Некоторые пользователи утверждают, что именно благодаря алгоритмам сортировки у нас сегодня есть искусственный интеллект, глубинный анализ данных и даже интернет.

Преобразование Фурье. Быстрое преобразование Фурье

2-20219-04d879.jpg

Электронно-вычислительные устройства используют алгоритмы для функционирования, в том числе и алгоритм преобразования Фурье. И телефон, и смартфон, и компьютер, и маршрутизатор, и интернет — всё это не может работать без алгоритмов для функционирования, запомните это.

Dijkstra's algorithm

3-20219-08cdeb.jpg

Без этого алгоритма, опять же, не сможет эффективно работать тот же интернет. С его помощью решаются задачи, в которых проблема представляется в виде графа, обеспечивающего поиск наикратчайшего пути между 2-мя узлами. Даже сегодня, когда у нас есть решения и получше, программисты по-прежнему используют поиск кратчайшего пути, если речь идёт о системах, требующих повышенной стабильности.

Algorithm RSA

Пришёл к нам из криптографии и сделал криптографию доступной всем, предопределив её будущее. Вообще, он служит для решения простой задачи с неочевидным решением и позволяет делиться открытыми ключами между конечными пользователями и независимыми платформами таким образом, чтобы можно было применять шифрование.

Алгоритм безопасного хэширования

Ну, это не совсем algorithm. Скорее, его можно назвать семейством криптографических хэш-функций (SHA-1, SHA-2 и т.д.), которые разработаны в США и имеют важнейшее значение для всего мира. Антивирусы, электронная почта, магазины приложений, браузеры и т. п. — во всём этом используются алгоритмы безопасного хэширования (на деле хэш является результатом их работы). Алгоритм служит для определения, удалось ли пользователю загрузить то, что хотелось, а также не подверглись ли вы фишингу или атаке «человек посередине».

Анализ связей

4-20219-54d473.jpg

Идея анализа связей проста. К примеру, вы легко сможете представить график в виде матрицы, что сведёт задачу к проблеме уровня собственной значимости каждого узла. Данный подход к структуре графа позволит оценить относительную важность каждого объекта, который включён в систему.

Algorithm был создан в далёком 1976 году и используется сегодня при ранжировании страниц в процессе поиска в Google, при генерации ленты новостей, при составлении списка возможных друзей на Facebook, при работе с контактами в LinkedIn и во многих других случаях. Любой из перечисленных сервисов работает с различными объектами и параметрами и объектами, однако сама математика по сути не меняется.

Пропорционально-интегрально-дифференцирующий algorithm

5-20219-8205e6.jpg

Пользовались ли вы автомобилем, самолётом, сотовой связью? Видели ли вы робота в работе? Во всех этих случаях вы можете сказать, что видели данный algorithm в действии.

Его обычно применяет замкнутый механизм обратной связи для контура управления. Это необходимо для минимизации ошибки между реальным выходным сигналом и желаемым выходным сигналом. Задействуется там, где необходимо создать систему для обработки сигнала либо для управления гидравлическими, механическими и тепловыми механизмами автоматизированного типа.

Сжатие данных

Сложно сказать, какой algorithm для сжатия наиболее важен, ведь в зависимости от поставленных задач он может меняться от zip до mp3 либо от JPEG до MPEG-2. Но эти алгоритмы важны почти для всех сфер деятельности.

Алгоритм сжатия — это не только очередной заархивированный документ. Он позволяет выполнять сжатие данных на веб-странице при их загрузке на компьютер. Или задействуется в базах данных, видео, музыке, облачных вычислениях. По сути алгоритмы сжатия данных делают системы дешевле и эффективнее.

Алгоритм генерации случайных чисел

6-20219-5732f3.jpg

На самом деле не существует «настоящего» генератора случайных чисел, и мы уже об этом говорили. Зато у нас существуют генераторы псевдослучайных чисел, которые прекрасно делают свою работу. Они имеют расширенную вариативность использования: программные приложения в программировании, криптография, алгоритмы хэширования, видеоигры, искусственный интеллект, тесты при разработке программ и т. д.

Алгоритмы в науке и технике

Роль алгоритмических последовательностей в современной науке и технике очень велика. Их без преувеличения считают богатством науки и техники, которое накапливалось десятилетиями. Можно вспомнить пресловутую машину Тьюринга и не только.

Однако на деле наибольшее значение имеют algorithms, которые накоплены в математике, ведь именно математика пронизывает иные технические науки и делает их более структурированными. Замечено, что если удается получить алгоритмическую последовательность данных, позволяющую решить конкретную задачу, то можно создать соответствующую машину, что если удалось получить алгоритм решения какой-нибудь задачи, то можно создать машину, стало быть, автоматизировать решение этой задачи. А автоматизация важна не только в IT-сфере, но и в промышленности, технике, науке, медицине и многих других отраслях.

С этой точки зрения суть алгоритмов можно выразить иначе, то есть они являются: - формой изложения научных данных, результатов исследований и анализа; - реальным руководством к действию по решению ранее изученных проблем; - средством экономии времени и умственной работы; - важным и нужным этапом по автоматизации; - инструментом исследования новых проблем (особенно в математике).

Да, algorithms -- важная часть как всей науки, так и локальной обработки исходных данных, но эта часть не исчерпывает содержание самой науки. Не менее важны понятия и определения, которые входят в эту науку, установленные факты (доказанные теоремы), выработанные подходы к изучаемым явлениям и объектам.

Раз уж вспомнили математику, скажем, что большой вклад в развитие алгоритмов здесь внесли советские (российские) ученые. К примеру, хорошо известен так называемый алгоритм четырех русских -- метод алгоритмического ускорения с использованием булевых матриц. Он был создан четырьмя русскими учеными В. Л. Арлазаровым, Э. А. Диницем, М. А. Кронродом и И. А. Фараджевым в 1970 г. в Москве. Также упоминания заслуживает один известный метод русского ученого Анатолия Карацубы -- созданный им алгори тм служит для быстрого умножения. И так далее.

Говорить на эту тему можно очень долго. Если же вы хотите освоить нужные алгоритмические последовательности на практике и в контексте программирования, добро пожаловать на специальный курс в OTUS!

Что такое алгоритм программы?
Алгоритм программы — это точное предписание (совокупность последовательных шагов, схема действий), которое определяет процесс перехода от первичных данных к желаемому результату.

Формы представления алгоритма

Как известно, существует две формы представления алгоритма:

  1. Словесное описание алгоритма
  2. Графическое представление алгоритма (с помощью блок-схем)

На рисунке ниже представлены основные символы, объекты, необходимые для того, чтобы представить алгоритм в виде определенной блок-схемы.

Алгоритм программы

Такое представление алгоритма с помощью блок-схем дает возможность программисту понять последовательность действий и команд, которые впоследствии будут выполнены для получения решения поставленной задачи, а также убедиться в правильности и корректности понимания исходной задачи.

Примеры алгоритмов в программировании

В среде программирования Delphi под алгоритмом решения задачи понимается совокупность алгоритмов процедур обработки событий. Например, создадим программу под названием «Стоимость покупки». Вначале составим блок-схему (рис. ниже), содержащей последовательные действия и всевозможные варианты:

Алгоритм программы

Руководствуясь составленным алгоритмом, можем приступить к разработке диалогового окна, включающего текстовые поля для вывода цены и количества, а также кнопки, при нажатии на которую произойдет вычисление итоговой суммы:

Алгоритм программы

Далее после предложенного алгоритма и составления диалогового окна, наконец, приступаем к созданию программного кода. Листинг данной программы Вы можете скачать по этой ссылке.

Читайте также: