Как проверить драйвер светодиодного прожектора

Обновлено: 04.07.2024

В последнее время светодиодные прожекторы приобрели значительную популярность и постепенно вытесняют другие виды прожекторов с рынка благодаря своим качествам: экономичности и долговечности. Но даже светодиодные прожекторы могут выходить из строя.

В случае обращения в специализированные мастерские по ремонту электротехники можно потратить очень много времени и средств на ремонт. В большинстве случаев ремонт светодиодных прожекторов может быть выполнен своими руками, стоит только внимательно изучить принцип работы и конструкцию.

Типовые неисправности

В большинстве случаев при появлении неисправности в прожекторе, в его работе будут следующие проблемы:

  • При подаче напряжения прожектор полностью не работает — свечения нет.
  • При работе прожектора заметно, что светодиод периодически или постоянно мерцает.
  • При подаче напряжения прожектор работает не на полную мощность или заметно, что сильно изменился оттенок света.

Устройство LED-прожектора

Следует знать, что конструкция любого светодиодного прожектора состоит из двух основных частей: led-матрицы и драйвера. Матрица — это источник света. В прожекторе может быть установлена одна или несколько матриц, которые могут состоять из нескольких светодиодов. Другая важная деталь прожектора — драйвер, или блок питания.



Соответственно, ремонт неисправного светодиодного прожектора, будет заключаться в определении неисправной детали и замене ее на другую, подходящую по параметрам.

От источника тока, питание подается на электронную плату драйвера, где электрический ток преобразовывается и затем приходит на матрицу, которая излучает свет.

Кроме матрицы и драйвера в устройство светодиодного прожектора могут входить:

  • Радиатор служащий для отведения тепла.
  • Отражатель, линзы или зеркала, которые служат для фокусировки светового луча.
  • Приспособления для крепления прожектора.

Схемы драйверов

При ремонте драйверов светодиодного прожектора необходимо знать его устройство. Конструкция драйверов включает в себя диодный мост, резисторы и конденсаторы. Диодный мост служит для выпрямления электрического тока, который затем стабилизируется посредством резисторов и конденсаторов.

Вот некоторые простые электрические схемы драйверов. Схемы приведены для наглядного описания принципа работы и могут отличаться от установленых в других устройствах.

Схема драйвера светодиодной лампы MR-16. Схема драйвера светодиодной лампы MR-16 с защитой. Схема драйвера светодиодной лампы SMD-5050.

Но в светодиодных прожекторах применяются драйверы с более сложными схемами, которые обеспечивают лучшие характеристики.

Пошаговая инструкция по диагностике и ремонту

При ремонте светодиодного прожектора своими руками рекомендуется придерживаться следующей последовательности действий:

  1. Внешний осмотр устройства.
  2. Проверка драйвера.
  3. Проверка светодиодной матрицы.

Проведение внешнего осмотра

Как говорят опытные электрики любая неисправность электроприборов имеет две причины: когда нет контакта, там, где он должен быть, или когда есть контакт, там, где его быть не должно!

Внимательный осмотр прожектора может значительно облегчить задачу поиска неисправности. Во-первых, необходимо осмотреть питающий провод. На нем должны отсутствовать переломы, различные механические повреждения изоляции и конечно следы повреждения изоляции от короткого замыкания или следы оплавления в результате термического воздействия электрического тока.

Во-вторых, нужно осмотреть корпус устройства и светодиодную матрицу на наличие различных механических повреждений. При осмотре матрицы можно визуально определить неисправность на светодиодах /матрице (если стоит COB) по наличиию черных точек.

При изготовлении светодиодов по технологии COB (Chip On Board) несколько светодиодов распололагаются на одной плате и покрываются люминофором. При выходе из строя одного или гнескольких светодиодов вся плата оказывается неработоспособной, так как светодиоды подключаются последовательно. Перегоревший светодиод будет отличаться от других более темным цветом. При конструкции матрицы, состоящей из отдельно расположенных светодиодов, неисправный также может отличаться цветом от соседних.

В-третьих, производиться вскрытие корпуса прожектора и проверяется состояние плавкой вставки предохранителя. При этом следует обратить внимание на состояние платы, на отсутствие механических повреждений или элементов, которые перегорели. Также осматриваются контакты на отсутствие следов окисления или коррозии.

При проведении осмотра будет целесообразно прозвонить провода и проверить наличие электрического контакта во всей цепи.

Проверка работоспособности драйвера

Для проверки работоспособности драйвера необходимо подать на отключенный драйвер переменное напряжение 220 В. На его выходе должно быть постоянное напряжение, величина которого будет немного выше, чем величина, указанная на корпусе.

Но при таком способе проверки можно ошибиться, ведь существуют драйверы, которые могут не включаться без нагрузки. Для получения правильных результатов при проверке необходимо подключить к выходу драйвера нагрузочный резистор.

Подбор номинала резистора следует производить по закону Ома. Для этого необходимо узнать, какие выходные параметры написаны на корпусе. К примеру, если на корпусе написано: «OUTPUT 23-35 VDC 600 mA ±5%», наименьшую величину сопротивления рассчитываем, как: 23/0,6=38 Ом. Соответственно, наибольшая величина рассчитывается как: 35/0,6=58 Ом. Затем выбираем наиболее подходящий резистор по номиналу, с учетом мощности. Если выбрать резистор недостаточной мощности, при работе он будет значительно нагреваться и перегорит. Стандартный ряд мощностей включает значения: 0,125; 0,25; 0,5; 1; 2 и более Вт.

Мощность резистора определяется как произведение напряжения (U) на ток (I) по формуле:

После расчета выбираем наиболее подходящее из стандартных значений.

Далее, проверяем уровень напряжения на выходе устройства. Если напряжение находится в пределах, указанных на табличке драйвера, делаем заключение о том, что устройство работоспособно и продолжаем поиск неисправности.

Недавно один знакомый попросил меня помочь с проблемой. Он занимается разработкой LED ламп, попутно ими приторговывая. У него скопилось некоторое количество ламп, работающих неправильно. Внешне это выражается так – при включении лампа вспыхивает на короткое время (менее секунды) на секунду гаснет и так повторяется бесконечно. Он дал мне на исследование три таких лампы, я проблему решил, неисправность оказалась очень интересной (прямо в стиле Эркюля Пуаро) и я хочу рассказать о пути поиска неисправности.

LED лампа выглядит вот так:



Рис 1. Внешний вид разобранной LED лампы

Разработчик применил любопытное решение – тепло от работающих светодиодов забирается тепловой трубкой и передается на классический алюминиевый радиатор. По словам автора, такое решение позволяет обеспечить правильный тепловой режим для светодиодов, минимизируя тепловую деградацию и обеспечивая максимально возможный срок службы диодов. Попутно увеличивается срок службы драйвера питания диодов, так как плата драйвера оказывается вынесенной из теплового контура и температура платы не превышает 50 градусов Цельсия.

Такое решение – разделить функциональные зоны излучения света, отвода тепла и генерации питающего тока – позволило получить высокие эксплуатационные характеристики лампы по надежности, долговечности и ремонтопригодности.
Минус таких ламп, как ни странно, прямо вытекает из ее плюсов – долговечная лампа не нужна производителям :). Историю о сговоре производителей ламп накаливания о максимальном сроке службы в 1000 часов все помнят?

Ну и не могу не отметить характерный внешний вид изделия. Мой «госконтроль» (жена) не разрешил мне ставить эти лампы в люстру, где они видны.

Вернемся к проблемам драйвера.

Вот так выглядит плата драйвера:



Рис 2. Внешний вид платы LED драйвера со стороны поверхностного монтажа

И с обратной стороны:



Рис 3. Внешний вид платы LED драйвера со стороны силовых деталей

Изучение ее под микроскопом позволило определить тип управляющей микросхемы – это MT7930. Это микросхема контроля обратноходового преобразователя (Fly Back), обвешанная разнообразными защитами, как новогодняя елка – игрушками.

В МТ7930 встроены защиты:

• от превышения тока ключевого элемента
• понижения напряжения питания
• повышения напряжения питания
• короткого замыкания в нагрузке и обрыва нагрузки.
• от превышения температуры кристалла

Декларирование защиты от короткого замыкания в нагрузке для источника тока носит скорее маркетинговый характер :)

Принципиальной схемы на именно такой драйвер добыть не удалось, однако поиск в сети дал несколько очень похожих схем. Наиболее близкая приведена на рисунке:


Рис 4. LED Driver MT7930. Схема электрическая принципиальная

Анализ этой схемы и вдумчивое чтение мануала к микросхеме привело меня к выводу, что источник проблемы мигания – это срабатывание защиты после старта. Т.е. процедура начального запуска проходит (вспыхивание лампы – это оно и есть), но далее преобразователь выключается по какой-то из защит, конденсаторы питания разряжаются и цикл начинается заново.

Внимание! В схеме присутствуют опасные для жизни напряжения! Не повторять без должного понимания что вы делаете!

Для исследования сигналов осциллографом надо развязать схему от сети, чтобы не было гальванического контакта. Для этого я применил разделительный трансформатор. На балконе в запасах были найдены два трансформатора ТН36 еще советского производства, датированные 1975 годом. Ну, это вечные устройства, массивные, залитые полностью зеленым лаком. Подключил по схеме 220 – 24 – 24 -220. Т.е. сначала понизил напряжение до 24 вольт (4 вторичных обмотки по 6.3 вольта), а потом повысил. Наличие нескольких первичных обмоток с отводами дало мне возможность поиграть с разными напряжениями питания – от 110 вольт до 238 вольт. Такое решение конечно несколько избыточно, но вполне пригодно для одноразовых измерений.



Рис 5. Фото разделительного трансформатора

Из описания старта в мануале следует, что при подаче питания начинает заряжаться конденсатор С8 через резисторы R1 и R2 суммарным сопротивлением около 600 ком. Два резистора применены из требований безопасности, чтобы при пробое одного ток через эту цепь не превысил безопасного значения.

Итак, конденсатор по питанию медленно заряжается (это время порядка 300-400 мс) и когда напряжение на нем достигает уровня 18,5 вольт – запускается процедура старта преобразователя. Микросхема начинает генерировать последовательность импульсов на ключевой полевой транзистор, что приводит к возникновению напряжения на обмотке Na. Это напряжение используется двояко – для формирования импульсов обратной связи для контроля выходного тока (цепь R5 R6 C5) и для формирования напряжения рабочего питания микросхемы (цепь D2 R9). Одновременно в выходной цепи возникает ток, который и приводит к зажиганию лампы.

Почему же срабатывает защита и по какому именно параметру?

Первое предположение

Срабатывание защиты по превышению выходного напряжения?

Для проверки этого предположения я выпаял и проверил резисторы в цепи делителя (R5 10 ком и R6 39 ком). Не выпаивая их не проверить, поскольку через обмотку трансформатора они запараллелены. Элементы оказались исправны, но в какой-то момент схема заработала!

Я проверил осциллографом формы и напряжения сигналов во всех точках преобразователя и с удивлением убедился, что все они – полностью паспортные. Никаких отклонений от нормы…

Дал схеме поработать часок – все ОК.

А если дать ей остыть? После 20 минут в выключенном состоянии не работает.

Очень хорошо, видимо дело в нагреве какого-то элемента?

Но какого? И какие же параметры элемента могут уплывать?

В этой точке я сделал вывод, что на плате преобразователя имеется какой-то элемент, чувствительный к температуре. Нагрев этого элемента полностью нормализует работу схемы.
Что же это за элемент?

Второе предположение

Подозрение пало на трансформатор. Проблема мыслилась так – трансформатор из-за неточностей изготовления (скажем на пару витков недомотана обмотка) работает в области насыщения и из-за резкого падения индуктивности и резкого нарастания тока срабатывает защита по току полевого ключа. Это резистор R4 R8 R19 в цепи стока, сигнал с которого подается на вывод 8 (CS, видимо Current Sense) микросхемы и используется для цепи ОС по току и при превышении уставки в 2.4 вольта отключает генерацию для защиты полевого транзистора и трансформатора от повреждений. На исследуемой плате стоит параллельно два резистора R15 R16 с эквивалентным сопротивлением 2,3 ома.

Но насколько я знаю, параметры трансформатора при нагреве ухудшаются, т.е. поведение системы должно быть другим – включение, работа минут 5-10 и выключение. Трансформатор на плате весьма массивный и тепловая постоянная у него ну никак не менее единиц минут.
Может, конечно в нем есть короткозамкнутый виток, который исчезает при нагреве?

Перепайка трансформатора на гарантированно исправный была в тот момент невозможна (не привезли еще гарантированно рабочую плату), поэтому оставил этот вариант на потом, когда совсем версий не останется :). Плюс интуитивное ощущение – не оно. Я доверяю своей инженерной интуиции.

К этому моменту я проверил гипотезу о срабатывании защиты по току, уменьшив резистор ОС по току вдвое припайкой параллельно ему такого же – это никак не повлияло на моргание лампы.

Значит, с током полевого транзистора все нормально и превышения по току нет. Это было хорошо видно и по форме сигнала на экране осциллографа. Пик пилообразного сигнала составлял 1,8 вольта и явно не достигал значения в 2,4 вольта, при котором микросхема выключает генерацию.

К изменению нагрузки схема также оказалась нечувствительна – ни подсоединение второй головки параллельно, ни переключение прогретой головы на холодную и обратно ничего не меняло.

Третье предположение

Я исследовал напряжение питания микросхемы. При работе в штатном режиме все напряжения были абсолютно нормальными. В мигающем режиме тоже, насколько можно было судить по формам сигналов на экране осциллографа.

По прежнему, система мигала в холодном состоянии и начинала нормально работать при прогреве ножки трансформатора паяльником. Секунд 15 погреть – и все нормально заводится.

Прогрев микросхемы паяльником ничего не давал.

И очень смущало малое время нагрева… что там может за 15 секунд измениться?

В какой-то момент сел и методично, логически отсек все гарантированно работающее. Раз лампа загорается — значит цепи запуска исправны.
Раз нагревом платы удается запустить систему и она часами работает — значит и силовые системы исправны.
Остывает и перестает работать — что-то зависит от температуры…
Трещина на плате в цепи обратной связи? Остывает и сжимается, контакт нарушается, нагревается, расширяется и контакт восстанавливается?
Пролазил тестером холодную плату — нет обрывов.

Что же еще может мешать переходу от режима запуска в рабочий режим.

От полной безнадеги интуитивно припаял параллельно электролитическому конденсатору 10 мкф на 35 вольт по питанию микросхемы такой же.

И тут наступило счастье. Заработало!

Замена конденсатора 10 мкф на 22 мкф полностью решило проблему.

Вот он, виновник проблемы:



Рис 6. Конденсатор с неправильной емкостью

Теперь стал понятен механизм неисправности. Схема имеет две цепи питания микросхемы. Первая, запускающая, медленно заряжает конденсатор С8 при подаче 220 вольт через резистор в 600 ком. После его заряда микросхема начинает генерировать импульсы для полевика, запуская силовую часть схемы. Это приводит к генерации питания для микросхемы в рабочем режиме на отдельной обмотке, которое поступает на конденсатор через диод с резистором. Сигнал с этой обмотки также используется для стабилизации выходного тока.

Пока система не вышла в рабочий режим — микросхема питается запасенной энергией в конденсаторе. И ее не хватало чуть-чуть — буквально пары-тройки процентов.
Падения напряжения оказалось достаточно, чтобы система защиты микросхемы срабатывала по пониженному питанию и отключала все. И цикл начинался заново.

Отловить эту просадку напряжения питания осциллографом не получалось — слишком грубая оценка. Мне казалось, что все нормально.

Прогрев же платы увеличивал емкость конденсатора на недостающие проценты — и энергии уже хватало на нормальный запуск.

Понятно, почему только некоторая часть драйверов отказала при полностью исправных элементах. Сыграло роль причудливое сочетание следующих факторов:

• Малая емкость конденсатора по питанию. Положительную роль сыграл допуск на емкость электролитических конденсаторов (-20% +80%), т.е. емкости номиналом 10 мкф в 80% случаев имеют реальную емкость около 18 мкф. Со временем емкость уменьшается из-за высыхания электролита.
• Положительная температурная зависимость емкости электролитических конденсаторов от температуры. Повышенная температура на месте выходного контроля — достаточно буквально пары-тройки градусов и емкости хватает для нормального запуска. Если предположить, что на месте выходного контроля было не 20 градусов, а 25-27, то этого оказалось достаточно для практически 100% прохождения выходного контроля.

Производитель драйверов сэкономил конечно, применив емкости меньшего номинала по сравнению с референс дизайн из мануала (там указано 22 мкф) но свежие емкости при повышенной температуре и с учетом разброса +80% позволили партию драйверов сдать заказчику. Заказчик получил вроде бы работающие драйверы, которые со временем стали отказывать по непонятной причине. Интересно было бы узнать – инженеры производителя учли особенности поведения электролитических конденсаторов при повышении температуры и естественный разброс или это получилось случайно?

Светодиодный прожектор. Теория и практика ремонта своими руками.

Ремонту светодиодных прожекторов своими руками и будет посвящена сегодняшняя статья.

Проверяем драйвер

Для того, чтобы проверить драйвер без светодиода (вхолостую, без нагрузки), достаточно просто подать на его вход 220В. На выходе должно появиться постоянное напряжение, по значению чуть большее, чем верхний предел, указанный на блоке.

Однако, этот способ проверки не позволяет судить об исправности светодиодного драйвера на 100%.

Дело в том, что встречаются исправные блоки, которые при включении вхолостую, без нагрузки, или вообще не запустятся, или будут выдавать непонятно что.

Например, если написано Output 23-35 VDC 600 mA, то сопротивление резистора будет от 23/0,6=38 Ом до 35/0,6=58 Ом. Выбираем из ряда сопротивлений: 39, 43, 47, 51, 56 Ом. Мощность должна быть соответственная. Но если взять 5 Вт, то на несколько секунд для проверки его хватит.

Проверяем светодиодную матрицу

Для проверки можно использовать лабораторный блок питания, примерно такой. Подаем напряжение заведомо меньшее, чем номинал. Контролируем ток. Светодиодная матрица должна загореться.

Контролируем ток дальше и аккуратно повышаем напряжение так, чтобы ток достиг номинала. Матрица будет гореть полной яркостью. Подтверждаем, что она на 100% исправна.

Что делать, если мощность светодиодного модуля неизвестна

Бывают ситуации, когда имеется светодиодный чип, но его мощность, ток и напряжение неизвестны. Соответственно, его затруднительно купить, а если он исправен, то непонятно, как подобрать адаптер.

Для меня это было большой проблемой, пока я не разобрался. Делюсь с вами, как по внешнему виды светодиодной сборки определить, на какое она напряжение, мощность и ток.

К примеру, имеем прожектор с такой светодиодной сборкой:

В данной матрице 9 диодов включены последовательно, ток у них один (300 мА), а напряжение 3 Вольта. В итоге, общее напряжение 3х9=27 Вольт. Для таких матриц нужен драйвер с током 300 мА, напряжением примерно 27В (обычно от 20 до 36В). Мощность одного такого диода, как я говорил, около 9 Вт, но в маркетинговых целях этот прожектор будет на мощность 10 Вт.

Другой пример, более типичный:

Светодиодная сборка 20 Вт

Светодиодная сборка для прожектора 20 Вт

Ещё пара примеров:

5 рядов (зиг-заг) по 10 светодиодов.

5 рядов (зиг-заг) по 10 светодиодов.

Матрица 7 рядов по 10 светодиодов

Матрица 7 рядов по 10 светодиодов

Думаю, продолжать не смысла, уже всё понятно.

Немного другое дело с светодиодными модулями на основе дискретных диодов. По моим подсчетам, там один диод, как правило, имеет мощность 0,5 Вт. Вот пример матрицы GT50390, установленной в прожекторе 50 Вт:

Ремонт драйвера светодиодного прожектора

Ремонт лучше начать с поиска электрической схемы Led драйвера.

Как правило, драйвера светодиодных прожекторов строятся на специализированной микросхеме MT7930. В статье про Устройство прожекторов я давал фото платы (невлагозащищенной) на основе этой микросхемы, ещё раз:

Светодиодный прожектор Navigator, 50 вт. Драйвер.

Светодиодный прожектор Navigator, 50 вт. Драйвер. Плата GT503F

Светодиодный прожектор Navigator, 50 вт. Драйвер. Вид со стороны пайки

Внимание! Информация по схемам драйверов и ещё немного по ремонту вынесена в отдельную статью!

Замена светодиода

При замене светодиодной матрицы хитростей особых нет, но нужно обратить внимание на следующие вещи.

  • старую теплопроводную пасту тщательно удалить,
  • нанести теплопроводящую пасту на новый светодиод. Лучше всего это делать пластиковой карточкой,
  • закрепить диод ровно, без перекосов,
  • удалить лишнюю пасту,
  • не перепутать полярность,
  • при пайке не перегревать.

Обратная сторона светодиодной матрицы, на которую наносится теплопроводная паста при монтаже

Обратная сторона светодиодной матрицы, на которую наносится теплопроводная паста при монтаже

Где брать запчасти для ремонта

Если нужен оперативный ремонт, то лучше всего, конечно, сбегать в магазин через дорогу.

Но если вы занимаетесь ремонтом на постоянной основе, то лучше поискать там, где дешевле. Рекомендую это делать на известном сайте АлиЭкспресс.

На этом заканчиваю. Призываю соратников делиться опытом и задавать вопросы!

Светодиодные прожектора сегодня – весьма популярная вещь. Но, как и любая электроника, прожектора сравнительно часто ломаются.

Ремонту светодиодных прожекторов своими руками и будет посвящена сегодняшняя статья.

Вся теория по устройству светодиодных прожекторов и терминология изложена в предыдущей статье , а здесь – практика для домашних умельцев.

Прожектор не горит – с чего начать?

Первым делом, надо убедиться, что питание 220 В на драйвер подается. Это Азы.

Это как если не заводится автомобиль - проверить, есть ли бензин.

Далее остается решить, что неисправно – LED драйвер или LED матрица.

Проверяем драйвер

Напоминаю, что слово “драйвер” – это маркетинговый ход для обозначения источника тока, предназначенного под конкретную матрицу с определенным током и мощностью.

Для того, чтобы проверить драйвер без светодиода (вхолостую, без нагрузки), достаточно просто подать на его вход 220В. На выходе должно появиться постоянное напряжение, по значению чуть большее, чем верхний предел, указанный на блоке.

Однако, этот способ проверки не позволяет судить об исправности светодиодного драйвера на 100%.

Дело в том, что встречаются исправные блоки, которые при включении вхолостую, без нагрузки, или вообще не запустятся, или будут выдавать непонятно что.

Предлагаю подключить к выходу светодиодного драйвера нагрузочный резистор, чтобы обеспечить ему нужный режим работы. Как подобрать резистор – по закону дядюшки Ома, глядя на то, что написано на драйвере.

LED – драйвер 20 Вт. Стабильный выходной ток 600 мА, напряжение 23-35 В.

Например, если написано Output 23-35 VDC 600 mA, то сопротивление резистора будет от 23/0,6=38 Ом до 35/0,6=58 Ом. Выбираем из ряда сопротивлений: 39, 43, 47, 51, 56 Ом. Мощность должна быть соответственная. Но если взять 5 Вт, то на несколько секунд для проверки его хватит.

Внимание! Выход драйвера, как правило, гальванически развязан от сети 220В. Однако, следует быть осторожным – в дешевых схемах трансформатора может не быть!

Если при подключении нужного резистора напряжение на выходе – в указанных пределах, делаем вывод, что светодиодный драйвер исправен.

Проверяем светодиодную матрицу

Для проверки можно использовать лабораторный блок питания, примерно такой . Подаем напряжение заведомо меньшее, чем номинал. Контролируем ток. Светодиодная матрица должна загореться.

Контролируем ток дальше и аккуратно повышаем напряжение так, чтобы ток достиг номинала. Матрица будет гореть полной яркостью. Подтверждаем, что она на 100% исправна.

Что делать, если мощность светодиодного модуля неизвестна

Бывают ситуации, когда имеется светодиодный чип, но его мощность, ток и напряжение неизвестны. Соответственно, его затруднительно купить, а если он исправен, то непонятно, как подобрать адаптер.

Для меня это было большой проблемой, пока я не разобрался. Делюсь с вами, как по внешнему виды светодиодной сборки определить, на какое она напряжение, мощность и ток.

К примеру, имеем прожектор с такой светодиодной сборкой:

9 диодов. 10 Вт, 300 мА. На самом деле – 9 Вт, но это в пределах погрешности.

Дало в том, что в светодиодных матрицах прожекторов используются диоды мощностью 1 Вт. Ток таких диодов равен 300…330 мА. Естественно, всё это примерно, в пределах погрешности, но на практике работает точно.

В данной матрице 9 диодов включены последовательно, ток у них один (300 мА), а напряжение 3 Вольта. В итоге, общее напряжение 3х9=27 Вольт. Для таких матриц нужен драйвер с током 300 мА, напряжением примерно 27В (обычно от 20 до 36В). Мощность одного такого диода, как я говорил, около 9 Вт, но в маркетинговых целях этот прожектор будет на мощность 10 Вт.

Пример 10 Вт – немного нетипичный, из-за особенного расположения светодиодов.


Рассказано с пояснениями о двух способах восстановления светодиодных прожекторов.

Прожектор светодиодный мощностью 30 Вт полностью перестал работать.

Корпус герметичный, разбирается просто откручиванием 4х винтов по периметру.

Вид прожектора со снятой крышкой.


После снятия отражателя получаем доступ к деталям.

Внешних повреждений не видно.

Подключаем к сети 220В и измеряем напряжение прямо на контактах питания светодиодной матрицы. Оно равно 0. Должно быть около 30 В, как написано на корпусе драйвера.


Отпаиваем провода и проверяем светодиоды. Их 10 групп по 6 светодиодов. В каждой группе светодиоды соединены параллельно, а сами группы последовательно. Напряжение питания одного светодиода около 3 В, 10 групп последовательно будет около 30 В. Вот такое напряжение и должен обеспечивать драйвер.


Из 60 светодиодов при проверке не светит только 1. Это не окажет существенного влияния на работу прожектора, поэтому переходим к драйверу.

Драйвер приклеен к корпусу. Его металлический корпус можно разогнуть, чтобы освободить плату с деталями.


После очистки от герметика и гари получаем доступ к деталям. Часть платы выгорела. Но пробитыми оказались только диоды входного мостика. Микросхема и остальные детали не коротят при прозвонке.


Выпаиваем неисправные детали, очищаем плату, обугленные участки платы нужно удалить, через них может быть утечка. Промываем все спиртом. Ставим новые диоды. У меня под рукой 1N4007. Они конечно больше по габаритам, но места для их установки хватит. По обратному напряжению и току они подходят с запасом. Вот так они были запаяны.


Схема подключения показана ниже. Резистор 10 Ом на 2 Вт установлен снаружи драйвера. Он нужен для ограничения тока заряда конденсатора после диодного моста при первом включении. Это повысит надежность. Конденсатор 22 мкф на 400 В в схеме уже был, его не менял.


Первое включение через лампу 220В 100Вт. Вдруг еще что-то неисправно, лампа ограничит ток и потери будут минимизированы.


Все работает нормально.

Отключаем лампу подключаем драйвер в сеть через резистор 10 Ом. Проверяем еще раз. Измеряем ток. При напряжении 30 В ток равен 0,61 А.


Так как герметик мы повредили, покрываем плату и детали шеллаком или электротехническим лаком. Прожектор светодиодный работает на улице и это защитит схему от конденсата и соответственно, от выхода из строя. Собираем корпус светодиодного прожектора в обратном порядке. Тщательно устанавливаем резиновую прокладку, защищающую внутренности прожектора от дождя.


Спустя несколько недель в ремонт поступил еще один прожектор такого же типа.

Его пришлось восстанавливать вторым способом, о котором и пойдет речь ниже.

Он тоже не светится, напряжение на контактах матрицы 0, как и в предыдущем случае.

Отпаял контакты, проверил драйвер без нагрузки, работает, выдает 52В.


Стал проверять светодиоды на замыкание, замыкают все 10 групп в которых светодиоды соединены параллельно, по 6 штук. Естественно, нужно выпаивать, чтобы найти те, которые замыкают. Только феном паяльной станции выпаивать трудно. Положил матрицу на утюг, он греет до 115 °C, помогая феном паяльной станции температура которого выставлена около 220°C, быстро выпаял все светодиоды.


Выпаянные светодиоды проверил. Замыкает половина. Запаял на плату через один, в надежде получить прожектор с мощностью меньше на 50%. Включил, оказалось, драйвер не держит нагрузку, светодиоды мигают и светятся неравномерно. От лабораторного блока питания при 30В светодиоды не мигают, но яркость свечения у всех разная, наверное они повреждены.


Дальше возиться уже невыгодно. Посмотрел сколько стоит новый светодиодный прожектор такого типа или аналогичный. Цена чуть больше $10. Просматривая материалы по этой теме увидел матрицы светодиодные, уже адаптированные под 220В. Их цена на близкую мне мощность около $3,5. Это в три раза ниже стоимости нового прожектора. Приобрести матрицу можно здесь.


Ее установочный размер меньше чем той, которая стояла, но в этом корпусе под матрицей уже были отверстия, которые в точности совпали с нужными для новой матрицы. Видимо корпус адаптирован и под такой вариант.


Но, если бы их и не было, просверлить четыре отверстия в алюминиевом корпусе и нарезать резьбу на 3мм не представляется сложным. Главное, под новую матрицу положить термопасту. Если старая не засохла, ее можно использовать. На матрице три контакта. Два обозначены L и L, а один N. L и L между собой соединены, легко просматривается по дорожкам. 220В В нужно подавать на N и любой L. Весь ремонт сводится к тому, чтобы прикрутить новую матрицу и подпаять два сетевых провода.


Ремонт светодиодного прожектора с заменой матрицы мне понравился. Его можно выполнить минут за 30. Так что, рекомендую. Да и выгода в три раза, между покупкой нового прожектора и матрицы, аргумент весомый.

Материал статьи продублирован на видео:

Читайте также: