Какие типы памяти доступны для программиста при разработке программ

Обновлено: 07.07.2024

Все переменные в программе характеризуются не только типом, но и классом памяти. В языке Си существует четыре класса памяти:

  • Автоматический (automatic);
  • Регистровый (register);
  • Статический (static);
  • Внешний (external).

Рассмотрим все классы памяти подробнее:

1. Автоматический (automatic)

По умолчанию, локальные переменные имеют класс auto. Такие переменные располагаются на стеке, а их область видимости ограничена своим блоком. Спецификатор auto уведомляет компилятор о том, что локальная переменная, перед именем которой он стоит, создаётся при входе в блок и разрушается при выходе из блока. Все переменные, определённые внутри функции, являются автоматическими по умолчанию, и поэтому ключевое слово auto используется крайне редко. Пример:

2. Регистровый (register)

Когда мы определяем регистровую переменную, то мы просим компилятор, чтобы переменная располагалась в регистре, а не в оперативной памяти. Компилятор может сделать переменную регистровой, если позволяют условия (регистры не заняты, и по мнению компилятора это не приведёт к увеличению издержек). Регистровые переменные определяются с помощью служебного слово register перед типом:

Так как регистровая переменная не имеет адреса, то к ней не применима операция взятия адреса, это вызовет ошибку во время компиляции. Аргументы функции также могут быть заданы как register. Внутри функции они будут вести себя также, как и регистровые переменные.

Применять register можно только к near указателям и целому типу. Использовать register можно и при указании формальных параметров функций. Примеры:

3. Статический (static)

Спецификатор static указывает компилятору на хранение локальной переменной во время всего жизненного цикла программы вместо ее создания и разрушения при каждом входе в область действия и выходе из неё. Следовательно, возведение локальных переменных в ранг статистических позволяет поддерживать их значения между вызовами функций.

Модификатор static можно также применять к глобальным переменным. В этом случае область видимости такой переменной ограничивается файлом, в котором она объявлена, это означает, что переменная будет иметь внутреннюю привязку. Внутренняя привязка говорит о том, что индикатор известен только внутри своего файла. Если функция объявлена как static, то она видна только в своём файле. Из другого файла к static функции обратиться нельзя.

Пример. Объявим в отдельном модуле две функции: одну статическую, а другую обычную:

4. Внешний (external)

Внешние переменные вводятся как противоположные автоматическим. Это глобальные переменные и к ним можно обращаться именами из любой функции. Поскольку внешние переменные доступны везде, их можно использовать для связи между функциями, не пренебрегая механизму формальных параметров.

Класс памяти extern в Си используем в двух случаях:

  • если переменная объявляется в программе ниже, чем ссылка на неё;
  • если переменная объявлена в другом модуле.

Внешние переменные могут определятся вне какой-либо функции при этом выделяется фактическая память. В любой другой функции, обращающейся к этим переменным, они должны описываться с помощью описателя extern.

Память – способность объекта обеспечивать хранение данных.
Все объекты, над которыми выполняются команды, как и сами команды, хранятся в памяти компьютера.

Расположение битов в байте

Память состоит из ячеек, в каждой из которых содержится 1 бит информации, принимающий одно из двух значений: 0 или 1. Биты обрабатывают группами фиксированного размера. Для этого группы бит могут записываться и считываться за одну базовую операцию. Группа из 8 бит называется .

Байты последовательно располагаются в памяти компьютера.

  • 1 килобайт (Кбайт) = 2 10 = 1 024 байт
  • 1 мегабайт (Мбайт) = 2 10 Кбайт = 2 20 байт = 1 048 576 байт
  • 1 гигабайт (Гбайт) = 2 10 Мбайт = 2 30 байт = 1 073 741 824 байт


Для доступа к памяти с целью записи или чтения отдельных элементов информации используются идентификаторы , определяющие их расположение в памяти. Каждому идентификатору в соответствие ставится адрес . В качестве адресов используются числа из диапазона от 0 до 2 k -1 со значением k, достаточным для адресации всей памяти компьютера.Все 2 k адресов составляют адресное пространство компьютера .

Способы адресации байтов

Обратная адресация

Существует прямой и обратный способы адресации байтов.
При обратном способе адресации байты адресуются слева направо, так что самый старший (левый) байт слова имеет наименьший адрес.

Прямая адресация


Прямым способом называется противоположная система адресации. Компиляторы высокоуровневых языков поддерживают прямой способ адресации.

Объект занимает целое слово. Поэтому для того, чтобы обратиться к нему в памяти, нужно указать адрес, по которому этот объект хранится.

Организация памяти

  • сегментированную модель
  • страничную модель
  • плоскую модель

В сегментированной модели память для программы делится на непрерывные области памяти, называемые сегментами . Программа может обращаться только к данным, которые находятся в этих сегментах.
Сегмент представляет собой независимый, поддерживаемый на аппаратном уровне блок памяти.

Каждая программа в общем случае может состоять из любого количества сегментов, но непосредственный доступ она имеет только к 3 основным сегментам и к 3 дополнительным сегментам, обслуживаемых 6 сегментными регистрами. К основным сегментам относятся:

  • Сегмент кодов ( .CODE ) – содержит машинные команды для выполнения. Обычно первая выполняемая команда находится в начале этого сегмента, и операционная система передает управление по адресу данного сегмента для выполнения программы. Регистр сегмента кодов ( CS ) адресует данный сегмент.
  • Сегмент данных ( .DATA ) – содержит определенные данные, константы и рабочие области, необходимые программе. Регистр сегмента данных ( DS ) адресует данный сегмент.
  • Сегмент стека ( .STACK ). Стек содержит адреса возврата как для программы (для возврата в операционную систему), так и для вызовов подпрограмм (для возврата в главную программу). Регистр сегмента стека ( SS ) адресует данный сегмент. Адрес текущей вершины стека задается регистрами SS:ESP .

Регистры дополнительных сегментов ( ES, FS, GS ), предназначены для специального использования.

Таким образом, для обращения к конкретному физическому адресу ОЗУ необходимо определить адрес начала сегмента и смещение внутри сегмента.
Физический адрес принято записывать парой этих значений, разделенных двоеточием

сегмент : смещение

Плоская модель памяти предполагает, что задача состоит из одного сегмента, который, в свою очередь, разбит на страницы.
Достоинства:

  • при использовании плоской модели памяти упрощается создание и операционной системы, и систем программирования;
  • уменьшаются расходы памяти на поддержку системных информационных структур.

В абсолютном большинстве современных 32(64)-разрядных операционных систем (для микропроцессоров Intel) используется плоская модель памяти.

Модели памяти

Директива .MODEL определяет модель памяти, используемую программой. После этой директивы в программе находятся директивы объявления сегментов ( .DATA, .STACK, .CODE, SEGMENT ). Синтаксис задания модели памяти

.MODEL модификатор МодельПамяти СоглашениеОВызовах

Параметр МодельПамяти является обязательным.

Основные модели памяти:

Модель памяти Адресация кода Адресация данных Операци-
онная система
Чередование кода и данных
TINY NEAR NEAR MS-DOS Допустимо
SMALL NEAR NEAR MS-DOS, Windows Нет
MEDIUM FAR NEAR MS-DOS, Windows Нет
COMPACT NEAR FAR MS-DOS, Windows Нет
LARGE FAR FAR MS-DOS, Windows Нет
HUGE FAR FAR MS-DOS, Windows Нет
FLAT NEAR NEAR Windows NT, Windows 2000, Windows XP, Windows Vista Допустимо

Модель tiny работает только в 16-разрядных приложениях MS-DOS. В этой модели все данные и код располагаются в одном физическом сегменте. Размер программного файла в этом случае не превышает 64 Кбайт.
Модель small поддерживает один сегмент кода и один сегмент данных. Данные и код при использовании этой модели адресуются как near (ближние).
Модель medium поддерживает несколько сегментов программного кода и один сегмент данных, при этом все ссылки в сегментах программного кода по умолчанию считаются дальними (far), а ссылки в сегменте данных — ближними (near).
Модель compact поддерживает несколько сегментов данных, в которых используется дальняя адресация данных (far), и один сегмент кода с ближней адресацией (near).
Модель large поддерживает несколько сегментов кода и несколько сегментов данных. По умолчанию все ссылки на код и данные считаются дальними (far).
Модель huge практически эквивалентна модели памяти large.

Особого внимания заслуживает модель памяти flat , которая используется только в 32-разрядных операционных системах. В ней данные и код размещены в одном 32-разрядном сегменте. Для использования в программе модели flat перед директивой .model flat следует разместить одну из директив:

Желательно указывать тот тип процессора, который используется в машине, хотя это не является обязательным требованием. Операционная система автоматически инициализирует сегментные регистры при загрузке программы, поэтому модифицировать их нужно только в случае если требуется смешивать в одной программе 16-разрядный и 32-разрядный код. Адресация данных и кода является ближней ( near ), при этом все адреса и указатели являются 32-разрядными.

Параметр модификатор используется для определения типов сегментов и может принимать значения use16 (сегменты выбранной модели используются как 16-битные) или use32 (сегменты выбранной модели используются как 32-битные).

Параметр СоглашениеОВызовах используется для определения способа передачи параметров при вызове процедуры из других языков, в том числе и языков высокого уровня (C++, Pascal). Параметр может принимать следующие значения:

При разработке модулей на ассемблере, которые будут применяться в программах, написанных на языках высокого уровня, обращайте внимание на то, какие соглашения о вызовах поддерживает тот или иной язык. Используются при анализе интерфейса программ на ассемблере с программами на языках высокого уровня.

В традиционных языках программирования, таких как Си , Фортран, Паскаль , существуют три вида памяти: статическая, стековая и динамическая . Конечно, с физической точки зрения никаких различных видов памяти нет: оперативная память - это массив байтов, каждый байт имеет адрес , начиная с нуля. Когда говорится о видах памяти, имеются в виду способы организации работы с ней, включая выделение и освобождение памяти , а также методы доступа.

Статическая память

Статическая память выделяется еще до начала работы программы, на стадии компиляции и сборки. Статические переменные имеют фиксированный адрес, известный до запуска программы и не изменяющийся в процессе ее работы. Статические переменные создаются и инициализируются до входа в функцию main , с которой начинается выполнение программы.

Существует два типа статических переменных:

  • глобальные переменные - это переменные, определенные вне функций, в описании которых отсутствует слово static . Обычно описания глобальных переменных, включающие слово extern , выносятся в заголовочные файлы (h-файлы). Слово extern означает, что переменная описывается, но не создается в данной точке программы. Определения глобальных переменных, т.е. описания без слова extern , помещаются в файлы реализации (c-файлы или cpp-файлы). Пример: глобальная переменная maxind описывается дважды:
    • в h-файле с помощью строки
    • Статическую переменную можно описать и внутри функции, хотя обычно так никто не делает. Переменная размещается не в стеке, а в статической памяти, т.е. ее нельзя использовать при рекурсии, а ее значение сохраняется между различными входами в функцию. Область видимости такой переменной ограничена телом функции, в которой она определена. В остальном она подобна статической или глобальной переменной. Заметим, что ключевое слово static в языке Си используется для двух различных целей:
      • как указание типа памяти: переменная располагается в статической памяти, а не в стеке;
      • как способ ограничить область видимости переменной рамками одного файла (в случае описания переменной вне функции).

      Стековая, или локальная, память

      Локальные, или стековые, переменные - это переменные, описанные внутри функции. Память для таких переменных выделяется в аппаратном стеке, см. раздел 2.3.2. Память выделяется в момент входа в функцию или блок и освобождается в момент выхода из функции или блока. При этом захват и освобождение памяти происходят практически мгновенно, т.к. компьютер только изменяет регистр, содержащий адрес вершины стека.

      Локальные переменные можно использовать при рекурсии, поскольку при повторном входе в функцию в стеке создается новый набор локальных переменных, а предыдущий набор не разрушается. По этой же причине локальные переменные безопасны при использовании нитей в параллельном программировании (см. раздел 2.6.2). Программисты называют такое свойство функции реентерабельностью, от англ. re-enter able - возможность повторного входа. Это очень важное качество с точки зрения надежности и безопасности программы! Программа, работающая со статическими переменными, этим свойством не обладает, поэтому для защиты статических переменных приходится использовать механизмы синхронизации (см. 2.6.2), а логика программы резко усложняется. Всегда следует избегать использования глобальных и статических переменных, если можно обойтись локальными.

      Недостатки локальных переменных являются продолжением их достоинств. Локальные переменные создаются при входе в функцию и исчезают после выхода из нее, поэтому их нельзя использовать в качестве данных, разделяемых между несколькими функциями. К тому же, размер аппаратного стека не бесконечен, стек может в один прекрасный момент переполниться (например, при глубокой рекурсии), что приведет к катастрофическому завершению программы. Поэтому локальные переменные не должны иметь большого размера. В частности, нельзя использовать большие массивы в качестве локальных переменных.

      Динамическая память, или куча

      Помимо статической и стековой памяти, существует еще практически неограниченный ресурс памяти, которая называется динамическая, или куча ( heap ). Программа может захватывать участки динамической памяти нужного размера. После использования ранее захваченный участок динамической памяти следует освободить.

      Под динамическую память отводится пространство виртуальной памяти процесса между статической памятью и стеком. (Механизм виртуальной памяти был рассмотрен в разделе 2.6.) Обычно стек располагается в старших адресах виртуальной памяти и растет в сторону уменьшения адресов (см. раздел 2.3). Программа и константные данные размещаются в младших адресах, выше располагаются статические переменные. Пространство выше статических переменных и ниже стека занимает динамическая память:

      В микроконтроллерах используется три основных вида памяти – это память программ, память данных и регистры. Память программ представляет собой постоянную память (ПЗУ), предназначенную для хранения программного кода (команд). Ее содержание в ходе выполнения программы не изменяется. Память данных предназначена для хранения переменных в процессе выполнения программы. Регистры МК – этот вид памяти включает в себя внутренние регистры процессора и регистры, которые служат для управления периферийными устройствами (регистры специальных функций).

      Основным свойством памяти программ является ее энергонезависимость, то есть возможность хранения программы при отсутствии питания. С момента появления МК технология энергонезависимых запоминающих устройств претерпела множество изменений, которые позволили не только повысить информационную емкость, быстродействие, надежность хранения информации, но и привели к появлению принципиально новых технологий программирования памяти МК. С точки зрения пользователей МК следует различать пять типов энергонезависимой памяти программ.

      1. ПЗУ масочного типа – Mask ROM. Содержание ячеек ПЗУ этого типа заносится на заводе-изготовителе МК с помощью масок и не может быть заменено или «допрограммировано». Поэтому МК с такой памятью программ следует использовать только после достаточно длительной опытной эксплуатации. Основным недостатком данной памяти является необходимость значительных затрат на создание нового комплекта фотошаблонов и их внедрение в производство. Обычно такой процесс занимает 2 – 3 месяца и является экономически выгодным только при выпуске несколько десятков тысяч приборов. Достоинством ПЗУ масочного типа является высокая надежность хранения информации по причине программирования в заводских условиях с последующим контролем качества.

      2. ПЗУ, однократно программируемые пользователем – OTPROM (One-Time Programmable ROM). В незапрограммированном состоянии каждая ячейка памяти однократно программируемого ПЗУ при считывании возвращает код FFh. Программированию подлежат только те разряды, которые должны содержать «0». Если в процессе программирования некоторые разряды какой-либо ячейки памяти были установлены в «0», то восстановить в этих разрядах единичное значение уже невозможно. Поэтому рассматриваемый тип памяти и носит название «однократно программируемые ПЗУ». Технология записи информации состоит в многократном приложении импульсов повышенного напряжения к элементарным ячейкам байта памяти (т.е. к битам), подлежащим программированию. МК с однократно программируемым ПЗУ рекомендуется использовать в изделиях, выпускаемых небольшими партиями.

      3. ПЗУ, программируемые пользователем с ультрафиолетовым стиранием – EPROM (Erasable Programmable ROM). ПЗУ данного типа программируются электрическим сигналами и стираются с помощью ультрафиолетового облучения. Ячейка памяти EPROM представляет собой МОП-транзистор с «плавающим» затвором, заряд на который переносится с управляющего затвора при подаче на него высокого напряжения. При этом МОП-транзистор переключается в открытое состояние, и при обращении к ячейке считывается «0». Для стирания содержимого ячейки она облучается ультрафиолетовым светом, который сообщает заряду на плавающем затворе энергию, достаточную для преодоления потенциального барьера и стекания на подложку. Этот процесс может занимать от десятков секунд до нескольких минут. Число циклов стирания/программирования ПЗУ данного типа ограничено и составляет 15-25 раз. Обычно микросхемы EPROM выпускаются в керамическом корпусе с кварцевым окошком для доступа ультрафиолетового света. МК с ПЗУ данного типа имеют высокую стоимость, поэтому их рекомендуется использовать только в опытных образцах изделий.

      4. ПЗУ, программируемые пользователем с электрическим стиранием – EEPROM (Electrically Erasable Programmable ROM). Электрически программируемые и электрически стираемые ПЗУ совместили в себе положительные качества рассмотренных выше типов памяти. Максимальное число циклов стирания/программирования ПЗУ типа EEPROM в составе МК обычно равно 100000. Эта память позволяет реализовать побайтное стирание и побайтное программирование. По цене ЕEPROM занимают среднее положение между OTPROM и EPROM. Основное преимущество использования ЕEPROM заключается в том, что можно многократно стирать и программировать МК, не снимая его с платы. Таким способом можно производить отладку и модернизацию программного обеспечения. Это дает огромный выигрыш на начальных стадиях разработки микроконтроллерных устройств или в процессе их изучения, когда много времени уходит на поиск причин программ. Несмотря на очевидные преимущества, только в редких моделях современных МК такая память используется для хранения программ. Связано это с тем, что, во-первых, ПЗУ типа ЕEPROM имеют ограниченную емкость и могут использоваться в качестве резидентной памяти программ только в маловыводных МК с небольшим объемом памяти. Во-вторых, почти одновременно с ЕEPROM появились ПЗУ типа Flash, которые при сходных потребительских характеристиках имеют более низкую стоимость.

      Память данных (ПД) микроконтроллеров предназначена для хранения промежуточных данных в ходе выполнения программы. В современных микроконтроллерах память данных подразделяется по выполняемым функция и способу реализации на два вида:

      1) оперативная память – ОЗУ;

      2) память хранения данных в EEPROM.

      Оперативная память (англоязычный термин RAM) является ОЗУ статического типа, так как ячейки ее выполняются на основе триггеров. Эта память энергозависима, так как ее содержимое теряется при выключении электропитания. Достоинством статического ОЗУ является высокое быстродействие, простота управления памятью. Однако такое ОЗУ имеет существенные недостатки: большое энергопотребление и большое количество активных компонентов (транзисторов), необходимых для ее реализации. Объем оперативной памяти данных МК, как правило, невелик и составляет обычно десятки или сотни байт.

      Второй вид ПД – это память хранения данных в EEPROM. Эту память можно использовать для данных, которые необходимо сохранить при выключении электропитания, а также неоперативных данных. Неоперативными данными могут быть настроечные параметры, изменяемые константы. Объем памяти хранения данных небольшой и обычно составляет несколько десятков байт. Эту память нельзя использовать в качестве оперативной. Во-первых, она является очень «медленной». Так время записи в ее ячейку составляет несколько миллисекунд. Во-вторых, она имеет ограниченное количество циклов записи-стирания.

      Подобно всем МПС микроконтроллеры имеют набор регистров, которые используются для управления их ресурсами. В число этих регистров входят обычно регистры процессора (аккумулятор, регистр состояния, индексные регистры), регистры управления (управления прерываниями, таймером), регистры, обеспечивающие ввод/вывод данных (регистры данных портов, регистры управления параллельным, последовательным или аналоговым вводом/выводом). Обращение к этим регистрам может производиться различными способами, а это оказывает существенное влияние на производительность.

      В МК с RISC-процессором все регистры (часто и аккумулятор) располагаются по явно задаваемым адресам. Это обеспечивает более высокую гибкость при работе процессора.

      Одним из важнейших вопросов является размещение регистров в адресном пространстве МК. В некоторых МК все регистры и память данных располагаются в одном адресном пространстве. Это означает, что память данных совмещена с регистрами. Такой подход называется «отображением ресурсов МК на память».

      В других МК адресное пространство устройств ввода/вывода отделено от пространства памяти. Отдельное пространство ввода/вывода дает некоторое преимущество процессорам с Гарвардской архитектурой, обеспечивая возможность считывать команду во время обращения к регистру ввода/вывода.

      Статьи к прочтению:

      Программирование микроконтроллеров: Урок 2. Организация памяти данных(регистры)


      Похожие статьи:

      Читайте также: