На каком уровне иерархии памяти находится программа в процессе выполнения

Обновлено: 05.07.2024

При проектировании высокопроизводительных компьютеров и систем необходимо решить множество компромиссов, например, размеры и технологии для каждого уровня иерархии. Можно рассматривать набор различных памятей (m1,m2,…,mn), находящихся в иерархии, то есть каждый mi уровень является как бы подчиненным для mi-1 уровня иерархии. Для уменьшения времени ожидания на более высоких уровнях, низшие уровни могут подготавливать данные укрупненными частями с буферизацией и, по наполнению буфера, сигнализировать верхнему уровню о возможности получения данных.

Часто выделяют 4 основных (укрупненных) уровня иерархии: [1]

Иерархия памяти в современных ПК

В большинстве современных ПК рассматривается следующая иерархия памяти:

Большинство программистов обычно предполагает, что память делится на два уровня, оперативную память и дисковые накопители, хотя в ассемблерных языках и ассемблерно-совместимых (типа C) существует возможность непосредственной работы с регистрами. Получение преимуществ от иерархии памяти требует совместных действий от программиста, аппаратуры и компиляторов (а также базовая поддержка в операционной системе):

  • Программисты отвечают за организацию передачи данных между дисками и памятью (ОЗУ), используя для этого файловыйввод-вывод; Современные ОС также реализуют это как подкачку страниц. отвечает за организацию передачи данных между памятью и кэшами.
  • Оптимизирующие компиляторы отвечают за генерацию кода, при исполнении которого аппаратура эффективно использует регистры и кэш процессора.

Многие программисты не учитывают многоуровневость памяти при программировании. Этот подход работает пока приложение не столкнется с падением производительности из-за нехватки производительности подсистемы памяти (memory wall). При исправлении кода (Рефакторинг) необходимо учесть наличие и особенность работы верхних уровней иерархии памяти для достижения наивысшей производительности.

Главная задача компьютерной системы – выполнять программы. Программы вместе с данными, к которым они имеют доступ , в процессе выполнения должны (по крайней мере частично) находиться в оперативной памяти . Операционной системе приходится решать задачу распределения памяти между пользовательскими процессами и компонентами ОС. Эта деятельность называется управлением памятью. Таким образом, память ( storage , memory ) является важнейшим ресурсом, требующим тщательного управления. В недавнем прошлом память была самым дорогим ресурсом.

Часть ОС, которая отвечает за управление памятью , называется менеджером памяти.

Физическая организация памяти компьютера

Запоминающие устройства компьютера разделяют, как минимум, на два уровня: основную (главную, оперативную , физическую ) и вторичную (внешнюю) память.

Основная память представляет собой упорядоченный массив однобайтовых ячеек, каждая из которых имеет свой уникальный адрес (номер). Процессор извлекает команду из основной памяти , декодирует и выполняет ее. Для выполнения команды могут потребоваться обращения еще к нескольким ячейкам основной памяти . Обычно основная память изготавливается с применением полупроводниковых технологий и теряет свое содержимое при отключении питания.

Вторичную память (это главным образом диски) также можно рассматривать как одномерное линейное адресное пространство , состоящее из последовательности байтов. В отличие от оперативной памяти , она является энергонезависимой, имеет существенно большую емкость и используется в качестве расширения основной памяти .

Эту схему можно дополнить еще несколькими промежуточными уровнями, как показано на рис. 8.1. Разновидности памяти могут быть объединены в иерархию по убыванию времени доступа, возрастанию цены и увеличению емкости.

Многоуровневую схему используют следующим образом. Информация, которая находится в памяти верхнего уровня, обычно хранится также на уровнях с большими номерами. Если процессор не обнаруживает нужную информацию на i-м уровне, он начинает искать ее на следующих уровнях. Когда нужная информация найдена, она переносится в более быстрые уровни.

Локальность

Оказывается, при таком способе организации по мере снижения скорости доступа к уровню памяти снижается также и частота обращений к нему.

Ключевую роль здесь играет свойство реальных программ, в течение ограниченного отрезка времени способных работать с небольшим набором адресов памяти. Это эмпирически наблюдаемое свойство известно как принцип локальности или локализации обращений.

Свойство локальности (соседние в пространстве и времени объекты характеризуются похожими свойствами) присуще не только функционированию ОС, но и природе вообще. В случае ОС свойство локальности объяснимо, если учесть, как пишутся программы и как хранятся данные, то есть обычно в течение какого-то отрезка времени ограниченный фрагмент кода работает с ограниченным набором данных. Эту часть кода и данных удается разместить в памяти с быстрым доступом. В результате реальное время доступа к памяти определяется временем доступа к верхним уровням, что и обусловливает эффективность использования иерархической схемы. Надо сказать, что описываемая организация вычислительной системы во многом имитирует деятельность человеческого мозга при переработке информации. Действительно, решая конкретную проблему, человек работает с небольшим объемом информации, храня не относящиеся к делу сведения в своей памяти или во внешней памяти (например, в книгах).

Кэш процессора обычно является частью аппаратуры, поэтому менеджер памяти ОС занимается распределением информации главным образом в основной и внешней памяти компьютера. В некоторых схемах потоки между оперативной и внешней памятью регулируются программистом (см. например, далее оверлейные структуры ), однако это связано с затратами времени программиста, так что подобную деятельность стараются возложить на ОС.

Адреса в основной памяти , характеризующие реальное расположение данных в физической памяти , называются физическими адресами. Набор физических адресов, с которым работает программа, называют физическим адресным пространством .

Логическая память

Аппаратная организация памяти в виде линейного набора ячеек не соответствует представлениям программиста о том, как организовано хранение программ и данных. Большинство программ представляет собой набор модулей, созданных независимо друг от друга. Иногда все модули, входящие в состав процесса, располагаются в памяти один за другим, образуя линейное пространство адресов. Однако чаще модули помещаются в разные области памяти и используются по-разному.

Схема управления памятью, поддерживающая этот взгляд пользователя на то, как хранятся программы и данные, называется сегментацией. Сегмент – область памяти определенного назначения, внутри которой поддерживается линейная адресация. Сегменты содержат процедуры, массивы, стек или скалярные величины , но обычно не содержат информацию смешанного типа.

По-видимому, вначале сегменты памяти появились в связи с необходимостью обобществления процессами фрагментов программного кода (текстовый редактор, тригонометрические библиотеки и т. д.), без чего каждый процесс должен был хранить в своем адресном пространстве дублирующую информацию. Эти отдельные участки памяти, хранящие информацию, которую система отображает в память нескольких процессов, получили название сегментов . Память, таким образом, перестала быть линейной и превратилась в двумерную. Адрес состоит из двух компонентов: номер сегмента , смещение внутри сегмента . Далее оказалось удобным размещать в разных сегментах различные компоненты процесса (код программы, данные, стек и т. д.). Попутно выяснилось, что можно контролировать характер работы с конкретным сегментом , приписав ему атрибуты, например права доступа или типы операций, которые разрешается производить с данными, хранящимися в сегменте .


Рис. 8.2. Расположение сегментов процессов в памяти компьютера

Некоторые сегменты , описывающие адресное пространство процесса, показаны на рис. 8.2. Более подробная информация о типах сегментов имеется в лекции 10.

Большинство современных ОС поддерживают сегментную организацию памяти. В некоторых архитектурах (Intel, например) сегментация поддерживается оборудованием.

Адреса, к которым обращается процесс, таким образом, отличаются от адресов, реально существующих в оперативной памяти . В каждом конкретном случае используемые программой адреса могут быть представлены различными способами. Например, адреса в исходных текстах обычно символические. Компилятор связывает эти символические адреса с перемещаемыми адресами (такими, как n байт от начала модуля). Подобный адрес, сгенерированный программой, обычно называют логическим (в системах с виртуальной памятью он часто называется виртуальным) адресом. Совокупность всех логических адресов называется логическим (виртуальным) адресным пространством .

Связывание адресов

Итак логические и физические адресные пространства ни по организации, ни по размеру не соответствуют друг другу. Максимальный размер логического адресного пространства обычно определяется разрядностью процессора (например, 2 32 ) и в современных системах значительно превышает размер физического адресного пространства . Следовательно, процессор и ОС должны быть способны отобразить ссылки в коде программы в реальные физические адреса, соответствующие текущему расположению программы в основной памяти . Такое отображение адресов называют трансляцией (привязкой) адреса или связыванием адресов (см. рис. 8.3).

Связывание логического адреса, порожденного оператором программы, с физическим должно быть осуществлено до начала выполнения оператора или в момент его выполнения. Таким образом, привязка инструкций и данных к памяти в принципе может быть сделана на следующих шагах [Silberschatz, 2002].

Эта система запоминающих устройств работает как единое ЗУ с большой емкостью (за счет внешних ЗУ) и высоким быстродействием (за счет внутренних ЗУ).

Микропроцессорная память – высокоскоростная память небольшой емкости, входящая в МП и используемая АЛУ для хранения операндов и промежуточных результатов вычислений. КЭШ-память – это буферная, не доступная для пользователя память, автоматически используемая компьютером для ускорения операций с информацией, хранящейся в медленно действующих запоминающих устройствах. Для ускорения операций с основной памятью организуется регистровая КЭШ-память внутри микропроцессора (КЭШ-память первого уровня) или вне микропроцессора на материнской плате (КЭШ-память второго уровня); для ускорения операций с дисковой памятью организуется КЭШ-память на ячейках электронной памяти.

Внутренняя память состоит из ПЗУ (ROM – Read Only Memory) и ОЗУ (RAM – Random Access Memory – память с произвольным доступом). ПЗУ состоит из установленных на материнской плате микросхем и используется для хранения неизменяемой информации: загрузочных программ операционной системы (ОС), программ тестирования устройств компьютера и некоторых драйверов базовой системы ввода-вывода (BIOS – Base Input-Output System) и др. Из ПЗУ можно только считывать информацию, емкость ПЗУ – сотни Кбайт. Это энергонезависимая память, – при отключении ЭВМ информация сохраняется.

Внешняя память относится к внешним устройствам ЭВМ и используется для долговременного хранения любой информации, которая может потребоваться. В ВЗУ хранится программное обеспечение ЭВМ. Внешняя память: НЖМД и ЖМД, НГМД и ГМД (магнитный диск), стример (НМЛ – накопитель на магнитной ленте), оптические накопители для CD-ROM и DVD-дисков. [4]

Информационная структура внешней памяти – файловая. Наименьшей именуемой единицей является файл, – наименованная совокупность однородных данных. Информация в файле состоит из битов и байтов, но они не имеют адресов, так как носитель (магнитный диск) не дискретный. [5]

В связи с тем, что локально обрабатываемые данные могут возникать в динамике вычислений и не обязательно сконцентрированы в одной об­ласти при статическом размещении в основной памяти, буферную память организуют как ассоциативную, в которой данные содержатся в совокуп­ности с их адресом в основной памяти. Такая буферная память получила название кэш-памяти. Кэш-память позволяет гибко согласовывать струк­туры данных, требуемые в динамике вычислений, со статическими струк­турами данных основной памяти.

Кэш имеет совокупность строк (cache-lines), каждая из которых состо­ит из фиксированного количества адресуемых единиц памяти (байтов, слов) с последовательными адресами. Типичный размер строки: 16, 64, 128, 256 байтов.

Наиболее часто используются три способа организации кэш-памяти, отличающиеся объемом аппаратуры, требуемой для их реализации. Это так называемые кэш-память с прямым отображением (direct-mapped cache), частично ассоциативная кэш-память (set-associative cache) и ассоциатив­ная кэш-память (fully associative cache). [3]

При использовании кэш-памяти с прямым отображением адрес пред­ставляется как набор трех компонент, составляющих группы старших, средних и младших разрядов адреса, соответственно тега, номера строки, смещения. Например, при 16-разрядном адресе старшие 5 разрядов могут представлять тег, следующие 7 разрядов - номер строки и последние 4 раз­ряда - смещение в строке. В этом случае строка состоит из 16 адресуемых единиц памяти, всего строк в кэше 128. Кэш-память с прямым отображе­нием представляет собой набор строк, каждая из которых содержит ком­поненту тег и элементы памяти строки, адрес которых идентифицируется смещением относительно начала строки. При этом устанавливается однозначное соответствие между адресом элемента памяти и возможным расположением этого

элемента памяти в кэше, а именно: элемент памяти всегда располагается в строке, задавае­мой компонентой "номер строки" адреса, и находится на позиции строки, задаваемой компонентой "смещение" адреса. [2]

Наличие элемента данных по запрашиваемому адресу в кэше опреде­ляется значением тега. Если тег строки кэш-памяти равен компоненте "тег" адреса, то элемент данных содержится в кэш-памяти.

Иначе необходима подкачка в кэш-память строки, с заданным в адресе тегом.

Так как для определения наличия нужной строки данных в кэш-памя­ти требуется только одно сравнение тегов заданной строки и адреса, а само замещение строк выполняется по фиксированному местоположению, то объем оборудования, необходимый для реализации этого типа кэш-памя­ти, достаточно мал.

Недостатки этой организации - очевидны. Если программа использует поочередно элементы памяти из одной строки, но с различными значения­ми тегов, то это вызывает при каждом обращении замену строки с обра­щением к данным основной памяти.

Ассоциативная кэш-память использует двухкомпонентное представле­ние адреса: группа старших разрядов трактуется как тег, а группа млад­ших разрядов - как смещение в строке.

Нахождение строки в кэше определяется совпадением тега-строки со зна­чением тега адреса. Количество строк в кэше может быть произвольным (естественное ограничение - количество возможных значений тегов). По­этому при определении нахождения требуемой строки в кэш-памяти необ­ходимо сравнение тега адреса с тегами всех строк кэша. Если выполнять это последовательно, строка за строкой, то время выполнения сравнений будет непозволительно большим. Поэтому сравнение выполняется параллельно во всех строках с использованием принципов построения ассоциативной памяти, что и дало название этому способу организации кэш-памяти.

При отсутствии необходимой строки в кэш-памяти одна из его строк должна быть заменена на требуемую. Используются разнообразные алго­ритмы определения заменяемой строки, например циклический, замена наиболее редко используемой строки, замена строки, к которой дольше всего не было обращений, и другие.[1]

Частично-ассоциативная кэш-память комбинирует оба вышеописан­ных подхода: кэш-память состоит из набора ассоциативных блоков кэш-памяти. Средняя компонента адреса задает в отличие от прямо адресуе­мой кэш-памяти не номер строки, а номер одного из ассоциативных бло­ков. При поиске данных ассоциативное сравнение тегов выполняется толь­ко для набора блоков (возможна организация кэша, когда таких наборов несколько), номер которого совпадает со средней компонентой адреса. По количеству n строк в наборе кэш-память называется n -входовой.

Соответствие между данными в оперативной памяти и кэш-памяти обес­печивается внесением изменений в те области оперативной памяти, для которых данные в кэш-памяти подверглись модификации. Соответствие данных обеспечивается параллельно с основными вычислениями. Суще­ствует несколько способов его реализации (и, соответственно, несколько режимов работы кэш-памяти).

Один способ предполагает внесение изменений в оперативную память сразу после изменения данных в кэше. При этом процессор простаивает в ожидании завершения записи в основную память. В основной памяти под­держивается правильная копия данных кэша, и при замене строк не требу­ется никаких дополнительных действий. Кэш-память, работающая в та­ком режиме, называется памятью со сквозной записью (write - through).

Другой способ предполагает отображение изменений в основной па­мяти только в момент вытеснения строки данных из кэша. Если данные по адресу памяти, в который необходимо произвести запись, находятся в кэш-памяти, то идет запись только в кэш-память. При отсутствии данных в кэш-памяти производится запись в основную память. Такой режим рабо­ты кэша получил название обратной записи (write-back).

Существуют также промежуточные варианты (buffed write though), при которых запросы на изменение в основной памяти буферизуются и не за­держивают процессор на время операции записи в память. Эта запись вы­полняется по мере возможности доступа контроллера кэш-памяти к ос­новной памяти.

Кэш-память с обратной записью (write-back) создает меньшую нагрузку на шину процессора и обеспечивает большую производительность, однако контрол­лер для write-back кэша значительно сложнее.

Контроллер кэша отслеживает адреса памяти, выдаваемые процессо­ром, и если адрес соответствует данным, содержащимся в одной из строк кэша, то отмечается "попадание в кэш", и данные из кэша направляются в процессор. Если данных в кэше не оказывается, то фиксируется "промах", и инициируются действия по доставке в кэш из памяти требуемой строки. В ряде процессоров, выполняющих одновременно совокупность команд, допускается несколько промахов, прежде чем будет запущен механизм за­мены строк. [2]

Рассуждения о том, какой способ организации кэш-памяти более пред­почтителен, должны учитывать особенности генерации программ компи­лятором, а также использование программистом при подготовке програм­мы сведений о работе компилятора и контроллера кэш-памяти. То есть более простой способ организации кэш-памяти, поддерживаемый компи­лятором, при исполнении программ, написанных в соответствии с неко­торыми правилами, обусловленными особенностями компиляции и орга­низации кэш-памяти, может дать лучший результат, чем сложный способ организации кэш-памяти.

Так как области памяти программ и данных различны и к ним проис­ходит одновременный доступ, то для повышения параллелизма при рабо­те с памятью делают отдельные кэши команд и данных. [4]

Данная работа была посвящена исследованию вопросов иерархии памяти и кэшированию. Нами были рассмотрены уровни, структура и функции иерархии памяти. Мы выяснили, что иерархическое построение памяти компьютера позволяет снизить стоимость подсистемы памяти компьютера, так как те данные, которые нужны чаще, хранятся в быстродействующей (и более дорогостоящей) памяти, в то время как большой объем редко используемых данных можно хранить в относительно дешевой внешней памяти. Иерархия памяти относится к тем особенностям архитектуры компьютеров, которые имеет огромное значение для повышения их производительности (сглаживание разницы между скоростью работы процессора и временем выборки из памяти). Основные уровни: регистры, кэш-память, оперативная память, дисковая память. Время выборки по уровням памяти от дисковой памяти к регистрам уменьшается, стоимость в пересчете на 1 слово (байт) растет. В настоящее время, подобная иерархия поддерживается даже на персональных компьютерах.

А так же рассмотрели принципы работы и виды кэш-памяти. Кэш – это память с большей скоростью доступа, предназначенная для ускорения обращения к данным, содержащимся постоянно в памяти с меньшей скоростью доступа (далее «основная память»). Кэширование применяется ЦПУ, жёсткими дисками, браузерами и веб-серверами. Основная идея кэш-памяти проста: в ней находятся слова, которые чаще всего используются. Если процессору нужно какое-нибудь слово, сначала он обращается к кэш-памяти. Только в том случае, если слова там нет, он обращается к основной памяти. Если значительная часть слов находится в кэш-памяти, среднее время доступа значительно сокращается.

Кэш состоит из набора записей. Каждая запись ассоциирована с элементом данных или блоком данных (небольшой части данных), которая является копией элемента данных в основной памяти. Каждая запись имеет идентификатор, определяющий соответствие между элементами данных в кэше и их копиями в основной памяти.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1 Майер, Р.В. Информатика: Кодирование информации. Принципы работы ЭВМ. [Текст] / Учебн. пособ. для вузов.// Р.В. Майер – М.: ФАИР – ПРЕСС, 2004. – 24 c.

2 Шнитман, В. Архитектура процессоров UltraSPARC. [Текст]/ В. Шнитман // Открытые системы №2, 1996.– c. 5

3 Таненбаум, Э. Современные операционные системы. 3-е изд. [Текст]/ – СПб.: Питер, 2002.–1120 с.

4 Трофимова, И.П. Системы обработки и хранения информации: Учеб. для вузов. [Текст] / И.П. Трофимова – М.: Высш. шк., 1989. – 191 c.

5 Бикташев, Р.А. , Князьков, В.С. Многопроцессорные системы. Архитектура, топология, анализ производительности: Учебное пособие. [Текст]/– Пенза: Пенз. гос. ун-т, 2003. –105 c.

Иерархическая структура памяти является традиционным решением проблемы хранения больших объемов данных . Иерархия памяти строится на нескольких уровнях. причем верхний уровень меньше по объему, быстрей и имеет большую стоимомть.Выделяют несколько уровней иерархии:

1) Сверхоперативный уровень. К нему относятся: регистры управляющего и операционного блока процессора, сверхоперативная память, буферная память, управляющая память.

Регистровая память предназначена для временного хранения информации, используется для хранения управляющих и служебных кодов, а также информации, к которой наиболее часто обращается процессор при выполнении программ.

Сверхоперативная память – имеет тоже назначение и служит для хранения операндов, данных и служебной информации необходимой процессору

Буферная память (КЭШ) –размещается между основной памятью и процессором.. Основное назначение – кратковременное хранение и выдача активной информации процессору, что сокращает число обращений к ОП, скорость работы которой меньше скорости работы КЭШ памяти.

Различают КЭШ первого и второго уровня. КЭШ первого уровня интегрирован с блоком предварительной выборки команд и данных ЦП и служит для хранения наиболее часто используемых команд. Кэш второго уровня служит буфером между ОП и процессором.

2) Оперативный уровень. служит для хранения информации, непосредственно участвующей в вычислительном процессе. Из ОЗУ в процессор поступают коды и операнды, над которыми производятся предусмотренные программой операции. Из процессора в ОЗУ направляются данные для хранения промежуточных и конечных результатов обработки информации.

3) Внешняя память служит для хранения больших объемов информации в течении продолжительного времени. Обычно внешняя память не имеет непосредственно связи с процессором. Внешняя память обладает сравнительно низким быстродействием и большой емкостью.

Методы управления памятью.Все методы управления памятью делятся на 2 класса:

1) Методы распределения ОП без использования дискового пространства- с фиксированными разделами, динамическими разделами, перемещаемыми разделами.

2) Методы распределения памяти с использованием дискового пространства- страничное распределение, сегментное распределение, сегментно-страничное распределение.

Распределение памяти фиксированными разделами. Вся ОП делится на определенные число разделов фиксированной величины. Очередной процесс, поступивший на выполнении, ставится в общую очередь. Когда раздел освобождается очередной процесс подгружается в ОП. Подсистема управления памятью выполняет следующие задачи: Сравнение размеров поступившей на выполнение программы с размерами свободной памяти, выбор подходящего раздела, загрузка программы и настройка адресов.

Распределение памяти разделами переменной величины.Вначале работы ЭВМ вся ОП свободна, поступившей на выполнение задачи выделяется необходимый объем ОЗУ. Если достаточный объем памяти отсутствует, задача не принимается и становится в очередь. После завершения задачи память освобождается и на это место может быть загружена другая задача.

Основным недостатком данного метода является фрагментация памяти- наличие многих несмежных областей памяти малого размера, в который нельзя поместить ни одну из пришедших на выполнение программ, хотя суммарный объем памяти позволяет это сделать.

Распределение памяти перемещаемыми разделами. Одним из методов борьбы с фрагментацией является перемещение занятых участков в одну сторону.. В этом случае к функциям ОС добавляется задача копирования содержимого раздела в памяти одного места в другое, с корректировкой таблиц свободных и занятых областей. Такая процедура называется сжатием. Сжатие может выполняться либо при каждом завершении задачи, либо тогда, когда для вновь поступившей задачи нет свободного раздела.

Читайте также: