Какой метод пересылки пакетов применяется маршрутизатором для принятия решений по коммутации

Обновлено: 06.07.2024

Мостовые соединения (bridging) являются фундаментальной частью стандартов для локальных сетей IEEE. Мост был разработан с целью уменьшения количества коллизий в локальных сетях, которые изначально использовали разделяемую среду передачи, увеличения диаметра сети, а также поддержки различных протоколов сетевого уровня. Мост делил локальную сеть на два (или более) сегмента и выполнял фильтрацию кадров на основе их МАС-адресов назначения. Прежде чем переслать кадры из одного сегмента в другой, он анализировал их и передавал только в том случае, если такая передача действительно была необходима, то есть МАС-адрес рабочей станции назначения принадлежал другому сегменту.

Стандарты IEEE определяют мостовые соединения для всех технологий локальных сетей. Например, в сетях Token Ring используется алгоритм мостовой передачи с маршрутизацией от источника (source route bridging), определенный в Секции 9 стандарта IEEE 802.2, в сетях Ethernet используется алгоритм прозрачного моста (transparent bridge), который определен стандартом IEEE 802.1D.

В настоящее время основным строительным блоком для создания локальных сетей являются коммутаторы (коммутаторы Ethernet, т.к. Ethernet является основной технологией локальных сетей). Коммутатор представляет собой многопортовый мост и также функционирует на канальном уровне модели OSI. Основное отличие коммутатора от моста заключается в том, что он производительнее, может устанавливать одновременно несколько соединений между разными парами портов и поддерживает множество дополнительных возможностей, отвечающих общепринятым стандартам. Наиболее распространенными и широко используемыми в настоящее время функциями коммутаторов являются:

  • виртуальные локальные сети (VLAN);
  • семейство протоколов Spanning Tree – IEEE 802.1D, 802.1w, 802.1s;
  • статическое и динамическое по протоколу IEEE 802.1ad агрегирование каналов Ethernet;
  • обеспечение качества обслуживания QoS;
  • функции обеспечения безопасности, включая аутентификацию 802.1Х, функции Port Security, IP-MAC-Port Binding и т.д.;
  • SNMP-управление и др.

Помимо перечисленных функций коммутаторы могут поддерживать протоколы маршрутизации и играть роль маршрутизаторов локальной сети. В этом случае их называют коммутаторами 3-го уровня.

В данной статье мы рассмотрим основные методы коммутации в сетях.

Что такое коммутация?

В традиционных телефонных сетях, связь абонентов между собой выполняется с помощью коммутации каналов связи. В начале коммутация телефонных каналов связи выполнялась вручную, далее коммутацию выполняли автоматические телефонные станции (АТС).

Аналогичный принцип используется и в вычислительных сетях. В качестве абонентов выступают территориально удаленные вычислительные машины в компьютерной сети. Физически не представляется возможным предоставить каждому компьютеру свою собственную не коммутируемую линию связи, которой они пользовались бы в течении всего времени. Поэтому практически во всех компьютерных сетях всегда используется какой-либо способ коммутации абонентов (рабочих станций), выполняющий возможность доступа к существующим каналам связи для нескольких абонентов, для обеспечения одновременно нескольких сеансов связи.

Коммутация — это процесс соединения различных абонентов коммуникационной сети через транзитные узлы. Коммуникационные сети должны обеспечивать связь своих абонентов между собой. Абонентами могут выступать ЭВМ, сегменты локальных сетей, факс-аппараты или телефонные собеседники.

Рабочие станции подключаются к коммутаторам с помощью индивидуальных линий связи, каждая из которых используется в любой момент времени только одним, закрепленным за этой линией, абонентом. Коммутаторы соединяются между собой с использованием разделяемых линии связи (используются совместно несколькими абонентами).

Рассмотрим три основные наиболее распространенные способы коммутации абонентов в сетях:


Коммутация каналов

Коммутация каналов подразумевает образование непрерывного составного физического канала из последовательно соединенных отдельных канальных участков для прямой передачи данных между узлами. Отдельные каналы соединяются между собой специальной аппаратурой - коммутаторами, которые могут устанавливать связи между любыми конечными узлами сети. В сети с коммутацией каналов перед передачей данных всегда необходимо выполнить процедуру установления соединения, в процессе которой и создается составной канал.

Коммутаторы, а также соединяющие их каналы должны обеспечивать одновременную передачу данных нескольких абонентских каналов. Для этого они должны быть высокоскоростными и поддерживать какую-либо технику мультиплексирования абонентских каналов.

Достоинства и недостатки коммутации каналов:

  • Постоянная и известная скорость передачи данных
  • Правильная последовательность прихода данных
  • Низкий и постоянный уровень задержки передачи данных через сеть
  • Возможен отказ сети в обслуживании запроса на установление соединения
  • Нерациональное использование пропускной способности физических каналов, в частности невозможность применения пользовательской аппаратуры, работающей с разной скоростью. Отдельные части составного канала работают с одинаковой скоростью, так как сети с коммутацией каналов не буферизуют данные пользователей
  • Обязательная задержка перед передачей данных из-за фазы установления соединения


Коммутация пакетов

Коммутация пакетов - это особый способ коммутации узлов сети, который специально создавался для наилучшей передачи компьютерного трафика (пульсирующего трафика). Опыты по разработке самых первых компьютерных сетей, в основе которых лежала техника коммутации каналов, показали, что этот вид коммутации не предоставляет возможности получить высокую пропускную способность вычислительной сети. Причина крылась в пульсирующем характере трафика, который генерируют типичные сетевые приложения.


Коммутаторы пакетной сети отличаются от коммутаторов каналов тем, что они имеют внутреннюю буферную память для временного хранения пакетов, если выходной порт коммутатора в момент принятия пакета занят передачей другого пакета.

Что же такое коммутатор? Согласно определению IDC «коммутатор — это устройство, конструктивно выполненное в виде концентратора и действующее как высокоскоростной многопортовый мост; встроенный механизм коммутации позволяет осуществлять сегментирование локальной сети и выделять полосу пропускания конечным станциям в сети».

Другими словами, коммутаторы 2-го уровня являются по сути обычными очень быстрыми многопортовыми мостами на основе стандарта IEEE 802.1d.

Концепция работы коммутатора 2-го уровня очень проста. Рассмотрим в качестве примера функционирование узла А (рис. 1.). Любой кадр, отправленный узлом А и имеющий адрес получателя в узле на сегменте Бета (например, Q), приходит в порт 1 коммутатора 2-го уровня и выходит из порта 2, чтобы быть полученным узлом Q. Этот процесс называется ретрансляцией (forwarding). Говорят, что кадр ретранслирован, если он получен одним портом коммутатора 2-го уровня и передан через другой.

Кадр, переданный узлом А и имеющий адрес получателя, который соответствует узлу В, естественно, приходит и на узел В, и на коммутатор 2-го уровня. Тем не менее коммутатор 2-го уровня знает, что узлы А и В находятся в одном сегменте, поэтому кадр не ретранслируется. Данный процесс называется фильтрацией (filtering). Говорят, что кадр отфильтрован, если он получен одним портом коммутатора и не ретранслирован другим.

Обратите внимание, что, мы используем термин «кадр», а не «пакет». Коммутатор — это устройство уровня 2, которое оперирует кадрами, а не пакетами как повторитель. Коммутатор работает с кадрами и понимает адреса MAC. Повторитель работает только с пакетами, в которых содержатся кадры. Порт коммутатора, как и узла, является обычным сетевым интерфейсом со средствами MAC. Фактически коммутатор представляет собой узел, обладающий несколькими сетевыми интерфейсами.

В литературе и технических описаниях коммутаторов и некоторых сетевых устройств часто говорят, что они работают (коммутируют или маршрутизируют трафик) на полной скорости канала (wire speed). Что это значит? Предположим, в ходе тестирования выяснилось, что устройство маршрутизирует 20 потоков Ethernet на полной скорости канала. Следовательно, оно маршрутизирует пакеты с такой же скоростью, с какой они поступали по 20 каналам Ethernet. При размере пакета 64 байт мы получаем скорость маршрутизации около 297 тыс. пакетов в секунду.

Важно подчеркнуть, что если маршрутизатор работает на скорости канала, то бессмысленно говорить о том, что он работает медленно.

В этом случае производительность маршрутизации определяется не скоростью работы устройства, а пропускной способностью каналов связи.

Для ретрансляции кадров из одного сегмента ЛВС в другой коммутатор может использовать следующие способы коммутации:

    Cut-Through (сквозная коммутация);

Каждый из этих способов имеет свои преимущества и недостатки.

Технология коммутации 2-го уровня обеспечивает высокую производительность, позволяет строить достаточно сложные сети, являющиеся широковещательными доменами (областями).

Классическая маршрутизация

Главное различие между маршрутизатором и коммутатором 2-го уровня состоит не в производительности, а в способе принятия решения о ретрансляции. Маршрутизаторы используют для этой цели заголовок протокола, а не кадра. Как мы уже говорили ранее, разные сетевые технологии работают на различных уровнях модели OSI. Повторители являются устройствами уровня 1, мосты и коммутаторы — устройствами уровня 2, а маршрутизаторы — устройствами уровня 3.

При традиционной технологии каждый пакет обрабатывается маршрутизатором индивидуально, при этом устройство выполняет четко определенную последовательность операций, к тому же такие операции, как просмотр таблицы маршрутов, формирование нового MAC-адреса, уменьшение поля TTL и т.д., являются обязательными. Некоторые маршрутизаторы обладают дополнительными функциями, например фильтрацией. Выполнение основных и дополнительных операций отнимает много времени. В результате многие сетевые администраторы больших распределенных сетей со значительной нагрузкой довольно неохотно активизируют дополнительные функции обработки пакетов на маршрутизаторах. Рис. 2 иллюстрирует традиционную схему обработки пакетов.

И коммутаторы, и мосты, и маршрутизаторы соединены с сетью обычным сетевым интерфейсом. Тем не менее маршрутизатор работает не так, как коммутатор. Каждый узел, нуждающийся в передаче данных по маршрутизованной сети, должен участвовать в процессе, отправляя необходимые дейтаграммы непосредственно маршрутизатору. Коммутатор же получает все кадры сети вне зависимости от их назначения, а ретранслирует только кадры, предназначенные другим сегментам.

Большое преимущество маршрутизаторов перед коммутаторами и мостами состоит в том, что маршрутизированная сеть хорошо масштабируется. Под масштабируемостью в данном случае понимается способность маршрутизованной сети быть достаточно большой и сложной и в то же время работать должным образом, обеспечивать нужную производительность и оставаться управляемой. Сеть с коммутаторами (мостами) в отличие от нее масштабируется плохо.

Маршрутизованные сети могут быть исключительно сложными, намного сложнее сетей с мостами. Колоссальной маршрутизованной сетью, которая соединяет миллионы компьютеров всего мира, является Internet. Такие сети хорошо масштабируются именно благодаря наличию маршрутизаторов. Сети с коммутаторами (или мостами) не масштабируются при достижении определенного размера по следующим причинам:

    широковещательные кадры занимают слишком большую часть полосы пропускания;

Коммутаторы и мосты хорошо подходят для сегментирования отдельных областей коллизий. В сети с коммутаторами однопунктовые кадры распространяются только по тем сегментам, которые необходимы для доставки кадра от отправителя к получателю. А в сети с мостами широковещательный кадр, переданный одним узлом, должен быть получен всеми узлами. Когда размер сети с мостами возрастает, то все большая часть общего сетевого трафика становится широковещательной, оставляя все меньше места для кадров, несущих полезную информацию. Другими словами, чем больше широковещательных кадров, тем меньше показатель использования сети. Тем самым устанавливается практический предел размеру сети с мостами или переключателями.

Сеть с коммутаторами должна также оставаться остовным деревом. Это означает, что один коммутатор должен быть первичным, или корневым, мостом (root bridge). Если корневой мост выходит из строя, то оставшиеся должны восстановить остовное дерево. В больших сетях с мостами это отнимает много времени и часто становится причиной катастрофы, поскольку сеть с мостами не может иметь активных избыточных связей. Трудно представить, что Internet зависит от единственного устройства!

Так как маршрутизаторы не пропускают широковещательных кадров и поддерживают множественные активные связи, то именно с их помощью можно решить указанные проблемы. Подобно тому, как мосты и переключатели используются для объединения нескольких областей коллизий, маршрутизаторы применяются для объединения широковещательных областей. На рис. 3 показано пять BD (broadcast domain — широковещательная область, ЛВС), соединенных тремя маршрутизаторами. Слово FAST обозначает связь Fast Ethernet, а слово SLOW — связь Ethernet. Связи, обозначенные словом WAN, работают еще медленнее.

Любой узел маршрутизованной сети может взаимодействовать с любым другим, однако широковещательные кадры никогда не покидают той ЛВС, где они возникли, и не используют полосы пропускания других локальных сетей. В отличие от ЛВС с коммутаторами (мостами), маршрутизованные сети поддерживают множественные активные пути между сегментами. Маршрутизаторы осуществляют это, всегда пересылая дейтграмму по наилучшему пути. Определение наилучшего пути дать очень сложно. Некоторые пути могут быть, например, быстрыми, а следовательно, предпочтительными. Тем не менее если один из таких быстрых путей перегружен, то маршрутизатор может выбрать для дейтаграммы альтернативный путь. Маршрутизаторы, запоминая топологию маршрутов, решают и проблему петель, от которой страдают сети с коммутаторами и мостами. Один из самых существенных недостатков классической маршрутизации — ее чрезвычайно низкая производительность, что делает ее малопригодной для современных высокоскоростных сетей.

Протоколы маршрутизации

Сущность маршрутизации

В пересылаемых по сетям пакетах данных содержится большой объем информации; увы, она ничего не говорит о том, каким образом данный пакет должен найти свой путь в хитросплетении маршрутизаторов, коммутаторов и других устройств в корпоративной глобальной сети. Пакету каким-то образом следует указать путь к цели. Протоколы маршрутизации помогают пакетам найти не только верную, но и самую короткую дорогу к станции назначения. Это экономит и время, и деньги.

Планируя глобальную сеть, связывающую пользователей, серверы и мэйнфреймы, администратору приходится решать множество серьезных проблем, одной из которых является проблема выбора протокола маршрутизации. В настоящее время существует несколько протоколов, обеспечивающих эффективную передачу данных. Администратору сети придется выбрать тот протокол, который наилучшим образом соответствует потребностям его компании; главнейшим критерием выбора является размер сети.

Протоколы маршрутизации определяют топологию сети и сохраняют информацию о ней в таблице маршрутизации. Если маршрутизатор не применяет протокол маршрутизации, он хранит статические маршруты или использует отдельный протокол на каждом интерфейсе. Обычно маршрутизаторы работают с одним протоколом маршрутизации.

Таблица маршрутизации, иногда называемая базой данных маршрутизации, — это набор маршрутов, используемых маршрутизатором в данный момент. Строки таблицы маршрутизации содержат по крайней мере следующую информацию:

    действительный адрес или множество действительных адресов в сети;

Информация о маршрутизации содержит метрику, то есть меру времени или расстояния, и несколько отметок о времени. Информация о пересылке включает в себя данные о выходном интерфейсе и адрес следующей системы по пути. Обычно маршрутизаторы хранят данные о нескольких возможных следующих транзитных маршрутизаторах в одной строке таблицы.

Протоколы маршрутизации выполняют две важнейшие функции.

Во-первых, с их помощью определяется оптимальный путь передачи пакета по сети. Обычно избирается путь, обеспечивающий минимальное время доставки при максимальной надежности. Как правило, это путь с минимальным числом транзитных узлов; передача данных в обход загруженных участков (с целью избежания заторов) — исключение из этого правила.

Протокол маршрутизации предполагает постоянный сбор информации о состоянии маршрутов и обновление таблиц маршрутизации при изменении топологии сети вследствие отказов или перегрузок. Таким образом, таблицы маршрутизации всегда содержат точную информацию о топологии сети.

Во-вторых, функцией протоколов маршрутизации является передача пакетов по сети. Получая очередной пакет, маршрутизатор считывает адрес назначения из заголовка пакета и определяет, в каком направлении (через какой узел) следует осуществить дальнейшую передачу пакета. Для принятия такого решения используется информация из таблицы маршрутизации.

Протокол маршрутизации может работать только тогда, когда формат пакетов соответствует одному из маршрутизируемых протоколов (routable protocol) — не путать с протоколами маршрутизации (routing protocols). Примеры маршрутизируемых протоколов — IP, IPX, Xerox Network System. Маршрутизируемые протоколы задают формат пакетов, в которые данные упаковываются для передачи по сети, а протоколы маршрутизации обеспечивают передачу этих пакетов, определяя путь их следования по адресам назначения, приведенным в полях заголовка.

Планируя сеть, следует использовать только один стандартный маршрутизируемый протокол. Некоторые маршрутизаторы могут работать с несколькими протоколами, однако применение разных протоколов в одной и той же сети снижает ее производительность и усложняет работу администраторов сети.

Например, такие протоколы, как NetBEUI или LAT, являются немаршрутизируемыми и не способны обеспечивать функции сетевого уровня. Конечно, данные в формате NetBEUI или LAT можно пересылать по глобальной сети, но для этого надо либо инкапсулировать их с использованием маршрутизируемого протокола (например, IP), либо организовать мост между маршрутизаторами. В последнем случае дорогостоящие ресурсы маршрутизатора применяются для организации мостового соединения, что снижает общую производительность сети. По-видимому, наилучшим выходом из положения оказывается IP-инкапсулирование, однако время передачи данных возрастает — на сей раз из-за увеличения накладных расходов. Следовательно, лучше всего вообще отказаться от использования немаршрутизируемых протоколов.

Протоколы, используемые при создании таблицы маршрутизации, можно разделить на три категории:

    протоколы длины вектора расстояния;

Классификация протоколов маршрутизации показана на рис. 4.

Протоколы длины вектора — простейший и наиболее распространенный тип протоколов маршрутизации. Большинство используемых сегодня протоколов этого типа ведет свое начало от протокола Routing Information Protocol компании Xerox (иногда они даже так и называются). Протоколы данного класса включают IP RIP, IPX RIP, протокол управления таблицей маршрутизации AppleTalk RTMP и Cisco Interior Gateway Routing Protocol.

Подобные проблемы могут быть решены усовершенствованным алгоритмом, который называется алгоритм диффузионного обновления (DUAL). При этом маршрутизаторы используют алгоритм длины вектора для составления карты путей между ними и DUAL для широковещательного объявления об обслуживаемых ими локальных сетях. Информация об изменениях в топологии также рассылается по всей сети. Примером такого усовершенствованного протокола может служить Cisco Enhanced IGRP.

Недостатком таких протоколов состояния каналов, как OSPF, IS-IS и NLSP, является их сложность и высокие требования к памяти. Они трудны в реализации и нуждаются в значительном объеме памяти для хранения объявлений о состоянии каналов. При всем своем превосходстве над ранними протоколами длины вектора их реальное преимущество перед DUAL далеко не очевидно.

Рассмотрим более подробно наиболее популярные протоколы маршрутизации: протокол маршрутной информации (Routing Information Protocol, RIP), протокол предпочтения кратчайшего пути (Open Shortest Path First, OSPF), «транзитная система — транзитная система» (Intermediate System-to-Intermediate System, IS-IS). У каждого из перечисленных протоколов свои достоинства, однако администратору сети придется выбрать из них какой-нибудь один — тот, что более всего подходит для нужд его сети.

Протокол маршрутизации RIP

Протокол RIP очень популярен среди тех, кто имеет отношение к Internet. Это протокол с использованием алгоритма длины вектора, где маршрут определяется исходя из расстояния (числа транзитных узлов) на пути следования данных до точки назначения. RIP известен довольно давно — впервые он появился в 1982 году как часть набора протоколов TCP/IP в версии UNIX, предложенной Berkley Software Distribution. В настоящее время RIP служит основой для многих других протоколов маршрутизации, например для протокола маршрутизации AppleTalk. Другие компании (Novell и Banyan, кстати говоря, в их числе) также разработали протоколы на основе RIP. По существу, компании Microsoft удалось расширить возможности Windows NT для работы в глобальных сетях именно за счет поддержки маршрутизации пакетов на основе RIP.

В маршрутизаторе, работающем с RIP, вся информация хранится в виде таблицы маршрутизации, содержащей следующие поля:

    пункт назначения (в нем перечислены все конечные, в смысле адреса, локальные сети);

Таблица маршрутизации RIP содержит информацию о наилучшем пути к месту назначения. После получения новых данных от другого узла старая информация стирается, и на ее место записывается новая.

В соответствии с протоколом RIP каждый маршрутизатор автоматически посылает (примерно раз в 30 секунд) своим соседям пакет типа «ответ» со своей таблицей маршрутизации. Для передачи больших таблиц маршрутизации требуется несколько пакетов. Помимо этого в протоколе RIP предусмотрено, чтобы каждый маршрутизатор следил за тем, сколько времени прошло с момента получения последнего ответа; если ответ от кого-нибудь из соседей не поступает в течение длительного времени (обычно 90 секунд), соответствующий путь удаляется из таблицы маршрутизации данного устройства, а все соседи извещаются об этом событии.

В протоколе RIP предусмотрен ряд мер, призванных повысить стабильность работы протокола. Среди них: лимит числа промежуточных узлов (hop-count limit), временный отказ от приема информации (hold-down) и расщепление горизонта (split horizon). Лимит на число промежуточных узлов позволяет предотвратить зацикливание пакета при пересылке. Данный лимит в RIP равен 15, откуда следует, что этот протокол годится только для не слишком больших сетей. (Во второй версии протокола RIP это ограничение снято, и количество промежуточных узлов может достигать 255.)

Основным недостатком RIP является не слишком высокая функциональность: он не годится для больших сетей и не может эффективно определять альтернативные маршруты.

Протокол маршрутизации OSPF

Для замены RIP Группа инженерной поддержки (IETF) разработала протокол OSPF; предполагается, что новый протокол обеспечит лучшую поддержку TCP/IP. Протокол OSPF, основанный на алгоритме предпочтения кратчайшего пути, был разработан Болтом, Беранеком и Ньюменом (Кембридж, шт. Массачусетс) для сети ARPANet в 1978 году. Благодаря своей функциональности OSPF быстро приобретает черты отраслевого стандарта. Данный протокол обеспечивает поддержку нужд крупных вычислительных сетей: обслуживание запросов на специальные услуги, работу с несколькими протоколами сетевого уровня, а также аутентификацию. OSPF способен осуществлять эффективную маршрутизацию пакетов с учетом изменений топологии сети, соответствующим образом меняя путь прохождения сетевого трафика. Кроме того, накладные расходы на пересылку данных об изменении топологии в OSPF меньше: рассылке подлежит не таблица маршрутизации в целом, а только информация об изменениях. OSPF иногда называют протоколом на основе распределенных баз данных, хотя правильнее его называть протоколом маршрутизации на основе данных о состоянии каналов связи (link state routing protocol). Термин «link state routing protocol» означает, что в OSPF поддерживается топологическая база данных, где хранится информация о состоянии каналов связи в автономной сети. Данная информация используется для вычисления кратчайшего пути передачи пакета.

В настоящее время многие компании выпускают маршрутизаторы, поддерживающие OSPF.

OSPF работает с запросами верхнего уровня [Type of Service (ToS) или Quality of Service (QoS)], содержащимися в заголовке пакетов IP. Вычисление кратчайшего пути в OSPF осуществляется на основе информации, содержащейся в ToS. Всего насчитывается восемь комбинаций битов ToS, описывающих все возможные сочетания уровней задержки, пропускной способности и надежности связи. OSPF в состоянии подобрать путь таким образом, чтобы удовлетворить любую из этих восьми комбинаций. Например, если в ToS указано, что данный пакет должен быть передан с малой задержкой, высокой пропускной способностью и малой надежностью, то OSPF-маршрутизатор подберет путь передачи, как можно лучше отвечающий всем этим требованиям. OSPF — открытый стандарт, его описание приводится в документе RFC 1427.

Коммута́ция — процесс соединения абонентов коммуникационной сети через транзитные узлы.

Коммуникационные сети должны обеспечивать связь своих абонентов между собой. Абонентами могут выступать ЭВМ, сегменты локальных сетей, факс-аппараты или телефонные собеседники. Как правило, в сетях общего доступа невозможно предоставить каждой паре абонентов собственную физическую линию связи, которой они могли бы монопольно «владеть» и использовать в любое время. Поэтому в сети всегда применяется какой-либо способ коммутации абонентов, который обеспечивает разделение имеющихся физических каналов между несколькими сеансами связи и между абонентами сети.

Каждый абонент соединен с коммутаторами индивидуальной линией связи, закрепленной за этим абонентом. Линии связи протянутые между коммутаторами разделяются несколькими абонентами, то есть используются совместно.

Общий термин “коммутация ”применяется для четырех различных технологий: Конфигурационной коммутации; Коммутации кадров; Коммутации ячеек; Преобразования между кадрами и ячейками.

В основе конфигурационной коммутации лежит нахождение соответствия между конкретным портом коммутатора и определенным сегментом сети. Это соответствие может программно настраиваться при подключении или перемещении пользователей в сети.

В технологии АТМ также применяется коммутация, но в ней единицы коммутации носят название ячеек. Преобразование между кадрами и ячейками позволяет станциям в сети Ethernet, Token Ring и т.д. непосредственно взаимодействовать с устройствами АТМ. Эта технология применяется при эмуляции локальной сети.

Виды коммутации

Существует три принципиально различные схемы коммутации абонентов в сетях:

Принцип работы Hub'а

Сетевой концентратор или хаб (жарг. от англ. hub — центр деятельности) — сетевое устройство, предназначенное для объединения нескольких устройств Ethernet в общий сегмент сети. Устройства подключаются при помощи витой пары, коаксиального кабеля или оптоволокна.

Термин концентратор (хаб) применим также к другим технологиям передачи данных: USB, FireWire и пр.

В настоящее время хабы почти не выпускаются — им на смену пришли сетевые коммутаторы (свитчи), выделяющие каждое подключённое устройство в отдельный сегмент. Сетевые коммутаторы ошибочно называют «интеллектуальными концентраторами».

Концентратор работает на физическом уровне сетевой модели OSI, повторяет приходящий на один порт сигнал на все активные порты. В случае поступления сигнала на два и более порта одновременно возникает коллизия, и передаваемые кадры данных теряются. Таким образом, все подключённые к концентратору устройства находятся в одном домене коллизий. Концентраторы всегда работают в режиме полудуплекса, все подключённые устройства Ethernet разделяют между собой предоставляемую полосу доступа.

Многие модели концентраторов имеют простейшую защиту от излишнего количества коллизий, возникающих по причине одного из подключённых устройств. В этом случае они могут изолировать порт от общей среды передачи. По этой причине, сетевые сегменты, основанные на витой паре, гораздо стабильнее в работе сегментов на коаксиальном кабеле, поскольку в первом случае каждое устройство может быть изолировано концентратором от общей среды, а во втором случае несколько устройств подключаются при помощи одного сегмента кабеля, и, в случае большого количества коллизий, концентратор может изолировать лишь весь сегмент.

В последнее время концентраторы используются достаточно редко, вместо них получили распространение коммутаторы — устройства, работающие на канальном уровне модели OSI и повышающие производительность сети путём логического выделения каждого подключённого устройства в отдельный сегмент, домен коллизии.

Принцип работы Switch'а (коммутатора)

Сетевой коммутатор или свитч (жарг. от англ. switch — переключатель) — устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного сегмента сети.

Коммутатор работает на канальном уровне модели OSI, и потому в общем случае может только объединять узлы одной сети по их MAC-адресам. Коммутаторы были разработаны с использованием мостовых технологий и часто рассматриваются как многопортовые мосты.

Коммутатор хранит в памяти таблицу коммутации (хранящуюся в ассоциативной памяти), в которой указывается соответствие MAC-адреса узла порту коммутатора. При включении коммутатора эта таблица пуста, и он работает в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом коммутатор анализирует кадры (фреймы) и, определив MAC-адрес хоста-отправителя, заносит его в таблицу. Впоследствии, если на один из портов коммутатора поступит кадр, предназначенный для хоста, MAC-адрес которого уже есть в таблице, то этот кадр будет передан только через порт, указанный в таблице. Если MAC-адрес хоста-получателя не ассоциирован с каким-либо портом коммутатора, то кадр будет отправлен на все порты. Со временем коммутатор строит полную таблицу для всех своих портов, и в результате трафик локализуется. Стоит отметить малую латентность (задержку) и высокую скорость пересылки на каждом порту интерфейса.

Режимы коммутации

Существует три способа коммутации. Каждый из них — это комбинация таких параметров, как время ожидания и надёжность передачи.

  1. С промежуточным хранением (Store and Forward). Коммутатор читает всю информацию в кадре, проверяет его на отсутствие ошибок, выбирает порт коммутации и после этого посылает в него кадр.
  2. Сквозной (cut-through). Коммутатор считывает в кадре только адрес назначения и после выполняет коммутацию. Этот режим уменьшает задержки при передаче, но в нём нет метода обнаружения ошибок.
  3. Бесфрагментный (fragment-free) или гибридный. Этот режим является модификацией сквозного режима. Передача осуществляется после фильтрации фрагментов коллизий (кадр размером 64 байта обрабатываются по технологии store-and-forward, остальные по технологии cut-through).

Латентность, связанная с «принятием коммутатором решения», добавляется к времени, которое требуется кадру для входа на порт коммутатора и выхода с него и вместе с ним определяет общую задержку коммутатора.

Принцип работы Router'а (маршрутизатора)

Маршрутиза́тор или роутер, рутер (от англ. router), — сетевое устройство, на основании информации о топологии сети и определённых правил принимающее решения о пересылке пакетов сетевого уровня (уровень 3 модели OSI) между различными сегментами сети.

Обычно маршрутизатор использует адрес получателя, указанный в пакетах данных, и определяет по таблице маршрутизации путь, по которому следует передать данные. Если в таблице маршрутизации для адреса нет описанного маршрута, пакет отбрасывается.

Существуют и другие способы определения маршрута пересылки пакетов, когда, например, используется адрес отправителя, используемые протоколы верхних уровней и другая информация, содержащаяся в заголовках пакетов сетевого уровня. Нередко маршрутизаторы могут осуществлять трансляцию адресов отправителя и получателя, фильтрацию транзитного потока данных на основе определённых правил с целью ограничения доступа, шифрование/дешифрование передаваемых данных и т.д.

Таблица маршрутизации содержит информацию, на основе которой маршрутизатор принимает решение о дальнейшей пересылке пакетов. Таблица состоит из некоторого числа записей — маршрутов, в каждой из которых содержится адрес сети получателя, адрес следующего узла, которому следует передавать пакеты и некоторый вес записи — метрика. Метрики записей в таблице играют роль в вычислении кратчайших маршрутов к различным получателям. В зависимости от модели маршрутизатора и используемых протоколов маршрутизации, в таблице может содержаться некоторая дополнительная служебная информация. Например:

Читайте также: