Многоуровневый коммутатор что это

Обновлено: 03.07.2024

Многослойная переключатель (MLS) представляет собой компьютер , сетевое устройство , который переключает на уровне OSI 2 , как обычный сетевой коммутатор и обеспечивает дополнительные функции на более высоких слоях OSI .

Технологии коммутации имеют решающее значение для проектирования сети , поскольку в большинстве случаев они позволяют отправлять трафик только туда, где это необходимо, с использованием быстрых аппаратных методов. Коммутация использует различные типы сетевых коммутаторов . Стандартный коммутатор известен как коммутатор уровня 2 и обычно встречается практически в любой локальной сети. Коммутаторы уровня 3 или 4 требуют передовых технологий (см. Управляемый коммутатор ), стоят дороже и поэтому обычно встречаются только в более крупных локальных сетях или в специальных сетевых средах.

Содержание

Многослойный переключатель

Многоуровневая коммутация сочетает в себе технологии коммутации уровней 2, 3 и 4 и обеспечивает высокоскоростную масштабируемость с малой задержкой. Многоуровневая коммутация может перемещать трафик на проводной скорости, а также обеспечивать маршрутизацию уровня 3. Нет никакой разницы в производительности между пересылкой на разных уровнях, потому что маршрутизация и коммутация основаны на аппаратном обеспечении - решения о маршрутизации принимаются специализированными ASIC с помощью памяти с адресацией по содержимому .

Многоуровневая коммутация может принимать решения о маршрутизации и коммутации на основе следующих

  • MAC-адрес в кадре канала данных
  • Поле протокола в кадре канала данных
  • IP-адрес в заголовке сетевого уровня
  • Поле протокола в заголовке сетевого уровня
  • Номера портов в заголовке транспортного уровня

MLS аппаратно реализуют QoS . Многоуровневый коммутатор может устанавливать приоритеты пакетов с помощью 6-битной кодовой точки дифференцированных услуг (DSCP). Эти 6 бит изначально использовались для типа службы . Следующие 4 сопоставления обычно доступны в MLS:

  • От уровня OSI 2, 3 или 4 до IP DSCP (для IP-пакетов) или IEEE 802.1p
  • От IEEE 802.1p к IP DSCP
  • От IP DSCP к IEEE 802.1p
  • Из VLAN IEEE 802.1p в выходную очередь порта.

MLS также могут маршрутизировать IP-трафик между VLAN, как обычный маршрутизатор . Маршрутизация обычно осуществляется так же быстро, как и переключение (со скоростью провода ).

Коммутация уровня 2

Коммутация уровня 2 использует MAC-адрес сетевых интерфейсных карт (NIC) хоста, чтобы решить, куда пересылать кадры. Коммутация уровня 2 является аппаратной, что означает, что коммутаторы используют специализированные интегральные схемы (ASIC) для создания и поддержки информационной базы пересылки, а также для выполнения пересылки пакетов на проводной скорости. Коммутатор уровня 2 можно рассматривать как многопортовый мост .

Коммутация уровня 2 очень эффективна, поскольку не требует модификации кадра. Инкапсуляция пакета изменяется только тогда, когда пакет данных проходит через разную среду (например, от Ethernet к FDDI). Коммутация уровня 2 используется для подключения рабочих групп и сегментации сети (разделения доменов конфликтов ). Это позволяет создать более плоскую сеть с большим количеством сетевых сегментов, чем в традиционных сетях, соединенных концентраторами повторителей и маршрутизаторами.

Коммутаторы уровня 2 имеют те же ограничения, что и мосты. Мосты разделяют домены коллизий, но сеть остается одним большим широковещательным доменом, что может вызвать проблемы с производительностью и ограничить размер сети. Широковещательная и многоадресная рассылка, а также медленная сходимость связующего дерева могут вызывать серьезные проблемы по мере роста сети. Из-за этих проблем коммутаторы уровня 2 не могут полностью заменить маршрутизаторы. Мосты хороши, если сеть построена по правилу 80/20 : пользователи проводят 80 процентов своего времени в своем локальном сегменте.

Коммутация уровня 3

Коммутатор уровня 3 может выполнять некоторые или все функции, обычно выполняемые маршрутизатором. Однако большинство сетевых коммутаторов ограничены поддержкой одного типа физической сети, обычно Ethernet, тогда как маршрутизатор может поддерживать разные типы физических сетей на разных портах.

Коммутация уровня 3 основана исключительно на IP-адресе (получателя), хранящемся в заголовке IP-дейтаграммы (коммутация уровня 4 может использовать другую информацию в заголовке). Разница между коммутатором уровня 3 и маршрутизатором заключается в том, как устройство принимает решение о маршрутизации. Традиционно маршрутизаторы используют микропроцессоры для программного принятия решений о пересылке, в то время как коммутатор выполняет только аппаратную коммутацию пакетов (с помощью специализированных ASIC с помощью памяти с адресацией по содержимому ). Однако многие маршрутизаторы теперь имеют расширенные аппаратные функции, помогающие пересылать.

Основным преимуществом коммутаторов уровня 3 является возможность более низкой задержки в сети, поскольку пакет может маршрутизироваться без дополнительных сетевых переходов к маршрутизатору. Например, подключение двух отдельных сегментов (например, VLAN ) с маршрутизатором к стандартному коммутатору уровня 2 требует передачи кадра коммутатору (первый переход L2), затем маршрутизатору (второй переход L2), где пакет внутри кадра передается. маршрутизируется (переход L3), а затем передается обратно коммутатору (третий переход L2). Коммутатор уровня 3 выполняет ту же задачу без необходимости в маршрутизаторе (и, следовательно, в дополнительных переходах), принимая решение о маршрутизации самостоятельно, т. Е. Пакет направляется в другую подсеть и одновременно переключается на сетевой порт назначения.

Поскольку многие коммутаторы уровня 3 обладают той же функциональностью, что и традиционные маршрутизаторы, их можно использовать в качестве более дешевых замен с меньшими задержками в некоторых сетях. Коммутаторы уровня 3 могут выполнять следующие действия, которые также могут выполняться маршрутизаторами:

  • определять пути на основе логической адресации
  • проверить и пересчитать контрольные суммы заголовка уровня 3
  • проверить и обновить поле времени жизни (TTL)
  • обрабатывать и отвечать на любую информацию о вариантах
  • обновить менеджеры Simple Network Management Protocol (SNMP) информацией базы управляющей информации (MIB)

Преимущества коммутации уровня 3 включают следующее:

  • быстрая аппаратная пересылка пакетов с малой задержкой
  • более низкая стоимость порта по сравнению с обычными маршрутизаторами
  • учет потока
  • Качество обслуживания (QoS)

IEEE разработал иерархическую терминологию, которая полезна при описании процессов пересылки и коммутации. Сетевые устройства без возможности пересылки пакетов между подсетями называются конечными системами (ES, единичные ES), тогда как сетевые устройства с такими возможностями называются промежуточными системами (IS). IS далее подразделяются на те, которые взаимодействуют только в пределах своего домена маршрутизации (внутридоменные IS), и те, которые взаимодействуют как внутри, так и между доменами маршрутизации (междоменные IS). Домен маршрутизации обычно рассматривается как часть объединенной сети под общим административным полномочием и регулируется определенным набором административных указаний. Домены маршрутизации также называют автономными системами.

Общая возможность уровня 3 - это осведомленность о многоадресной IP-рассылке через отслеживание IGMP . Благодаря этому коммутатор уровня 3 может повысить эффективность, доставляя трафик группы многоадресной рассылки только на те порты, к которым подключенное устройство сигнализировало, что оно хочет прослушивать эту группу.

Коммутаторы уровня 3 обычно поддерживают IP-маршрутизацию между VLAN, настроенными на коммутаторе. Некоторые коммутаторы уровня 3 поддерживают протоколы маршрутизации, которые маршрутизаторы используют для обмена информацией о маршрутах между сетями.

Коммутация уровня 4

Используя коммутацию уровня 4, сетевой администратор может настроить коммутатор уровня 4 для определения приоритетов трафика данных по приложениям. Информация уровня 4 также может использоваться для принятия решений о маршрутизации. Например, расширенные списки доступа могут фильтровать пакеты на основе номеров портов уровня 4. Другой пример - учетная информация, собранная по открытым стандартам с помощью sFlow .

Коммутатор уровня 4 может использовать информацию из протоколов транспортного уровня для принятия решений о пересылке. В основном это относится к возможности использовать номера портов источника и назначения в протоколах TCP и UDP, чтобы разрешать, блокировать и устанавливать приоритеты связи.

Коммутатор уровней 4–7, веб-переключатель или переключатель содержимого

Некоторые коммутаторы могут использовать информацию о пакетах вплоть до уровня OSI 7; их можно назвать переключателями уровней 4-7, переключатели контента , переключатели служб контента , веб-переключатели или переключатели приложений.

Некоторые приложения требуют, чтобы повторяющиеся запросы от клиента направлялись на один и тот же сервер приложений. Поскольку клиент, как правило, не знает, с каким сервером он разговаривал ранее, переключатели контента определяют понятие «липкости». Например, запросы с одного и того же исходного IP-адреса каждый раз направляются на один и тот же сервер приложений. Прикрепление также может быть основано на идентификаторах SSL , и некоторые переключатели контента могут использовать файлы cookie для обеспечения этой функции.

Балансировщик нагрузки уровня 4

Маршрутизатор работает на транспортном уровне и принимает решения о том, куда отправлять пакеты. Современные маршрутизаторы с балансировкой нагрузки могут использовать разные правила для принятия решений о том, куда направлять трафик. Это может быть основано на наименьшей нагрузке или самом быстром времени ответа , или просто на балансировке запросов к нескольким адресатам, предоставляющим одни и те же услуги. Это также метод резервирования , поэтому, если одна машина не работает, маршрутизатор не будет отправлять на нее трафик.

Маршрутизатор также может иметь возможность NAT с учетом портов и транзакций и выполняет форму преобразования портов для отправки входящих пакетов на одну или несколько машин, которые скрыты за одним IP-адресом.

Слой 7

Коммутаторы уровня 7 могут распределять нагрузку на основе унифицированных указателей ресурсов (URL-адресов) или с помощью какой-либо специальной техники для распознавания транзакций на уровне приложения. Коммутатор уровня 7 может включать в себя веб-кеш и участвовать в сети доставки контента (CDN).

Уровни коммутаторов 1, 2, 3, 4: значение и отличие

Начнем, пожалуй, с самых основ, чтобы разобраться, откуда вообще возникло понятие уровня сетевого устройства.

В системе OSI присутствует 7 градаций обработки информации.

Расшифруем, что это значит, применительно к различного рода системам и приложениям.

  1. Физический — элементарная передача «нулей» и «единиц», а также света, тока, радиоволн от источника к получателю. Ни о какой фильтрации и защите сигналов речи не идет.
  2. Канальный — на этом этапе информация передается фрагментарно, кадрами, при помощи идентификаторов передачи — МАС-адресов, состоящих из 48 бит.
  3. Сетевой на этом этапе к функционалу добавляется «маршрутизация», с назначением источнику и получателю IP-адресов. Чтобы перекодировать IP в MAC и наоборот, задействуют протокол ARP.
  4. Транспортный — обеспечивает передачу данных по сети благодаря протоколам TCP и UDP в зависимости от требований конечного получателя.
  5. Сеансовый — занимается созданием и разрывом сессий. Примером работы могут послужить, например, банковские приложения, которые самостоятельно выходят из учетной записи, если пользователь в течении нескольких минут не предпринимает действий. Также эта ступень отвечает за обмен данными в реальном времени и синхронизацию. Яркий пример подобного процесса — видеоконференция между двумя людьми или целой группой, где каждый участник должен в одно и то же время получать синхронную дорожку видео и звука.
  6. Представление — или преобразование форматов, а также кодирование и сжатие графических, текстовых, прочих данных. Устройства и приложения из этой категории отвечают за возможность прочтения информации, отправленной от одного пользователя к другому. Пример: пересылка текста в кодировке ASCII будет прочитана при необходимости в UTF-8. Также к процессам типа L6 относится архивирование и распаковка информации, шифрование и дешифровка, для которых используются системы защиты данных.
  7. Приложения — например, сетевые службы, которые позволяют заниматься серфингом интернета конечному потребителю. Иными словами, сюда относятся все интерфейсы, которые позволяют человеку взаимодействовать с устройствами при помощи инструментов управления.

Функционал устройств коммутации также организован в соответствии с этой моделью. Об этом поговорим ниже.

Что означают уровни коммутаторов L1, L2, L3, L4 и так далее…

Фактически, классические коммутаторы не поднимаются выше третьего уровня — L3. И то, эти устройства можно назвать полноценными маршрутизаторами с поправкой на функционал. Но мы пойдем по классической иерархии и обсудим подробно, как работает сетевое оборудование в соответствии с моделью OSI.



Сетевое оборудование 1 уровня (L1)

Устройства L1 работают на физической ступени. Иными словами, способны обрабатывать различные электрические сигналы от хоста к конечному потребителю и преобразовывать импульсы в логические нули и единицы. Исходя из этого, можно сказать, что обозначение «коммутатор первого уровня» не вполне корректно. К сетевому оборудованию из категории L1 относятся почти почившие ныне концентраторы, репитеры и повторители. Максимально дешевые в эксплуатации изделия с нулевой защитой трафика и такой же функциональностью. В чем отличие этих устройств от свитчей вы можете прочесть в этой статье.

Коммутаторы 2 уровня (L2)

На этом этапе к физическому подключается канальный, т.е. адресный уровень. При этом вся информация, как упоминалось выше, распространяется по сети с помощью кадров (фреймов). Все данные разбиваются на логические блоки определенного размера, чтобы коммутирующему устройству было проще распределить поток. Для адресации используется привязка МАС-адреса подключаемого оборудования к конкретному порту. Это упрощает отправку пакетов и делает канал защищенным.

Коммутаторы 3 уровня (L3)

На этом этапе возможности сетевого оборудования типа L2 дополняются функцией IP-маршрутизации. В сочетании с MAC-адресами, передача пакетов по оптимальной траектории становится еще быстрее, безопаснее и удобнее. Коммутатор просчитывает путь отправки пакета с данными, как GPS-навигатор — маршрут автомобиля перед поездкой. Именно поэтому этот функционал устройства называют маршрутизацией.

Коммутаторы 4 уровня (L4)

На этой ступени к функционалу L2 и L3 добавляется виртуализация (Virtual IP, VIP). VIP-адрес автоматически или вручную конфигурируется для отдельного сервера или группы серверов. Такой адрес также регистрируется через DNS-системы, как и обычный «физический» IP. Каждый коммутатор, ориентированный на 4-й тип обработки информации, поддерживает еще одну таблицу значений, где связаны исходный IP, исходный TCP и выбранный сервер. Подобным образом внутри крупной компании решают проблему с превышением нагрузки на отдельные сервера и перенаправлением трафика.

Отличия коммутаторов 2 и 3 уровня

Как было сказано выше, физическая отправка трафика происходит на первых трех ступенях. Первую отбрасываем по причине морального устаревания и остаются две — второй и третий, разница между которыми состоят в следующем:

  • модели коммутаторов второго уровняотправляют данные только по MAC-адресу порта-получателя, игнорируя все остальное порты. При этом устройство не просчитывает путь, по которому следует фрейм, что способно привести к перепадам нагрузки и заторам на разных участках сети.
  • Модели Layer 3 — осуществляют статическую или динамическую маршрутизацию трафика, поскольку располагают таблицами MAC и IP-адресов. Плюс обладают возможностью объединения нескольких устройств внутри одной или многих VLAN-сетей.

Таким образом, главное, чем отличаются коммутаторы второго и третьего уровня — наличие функции маршрутизации, которая обеспечивает связь внутри VLAN — виртуальной локальной вычислительной сети — с направлением пакетов по оптимальному маршруту без потерь и задержек с учетом нагрузки на сеть.

Ничего удивительного в том, что модели коммутаторов третьего уровня стоят дороже, чем их предшественники, поскольку за счет функции маршрутизации делают передачу данных значительно быстрее, безопаснее и эффективнее. Из сопутствующих полезных функций можно также назвать:

  • автоматическое маркирование трафика по IP-адресу;
  • высокая защита данных;
  • стекирование.

Помимо всего прочего управляемые маршрутизирующие коммутаторы уровня L3 обладают большей мощностью и высокой пропускной способностью, так как зачастую используются в качестве коммутаторов агрегации и ядра, что требует улучшенных характеристик. Однако далеко не всем бывает нужен расширенный функционал, за который требуется платить достаточно высокую цену. Тем, кого не устраивает перспектива переплачивать за L3, но возможностей L2 недостаточно, рынок сетевого оборудования предлагает компромиссный вариант — L2+

Разница между L2 и L2+

Layer 2+ (3 Lite) — это коммутационное оборудование второй ступени с расширенным функционалом. В качестве опций в устройствах L2+ могут присутствовать некоторые функции layer 3.

  • отслеживание DHCP - протокола динамической настройки узла для защиты от атак;
  • маршрутизация между сетями VLAN, с использованием статических маршрутов;
  • объединение ряда свитчей в стек, чтобы увеличит число портов;
  • и другие.

Иными словами, когда коммутирующее оборудование поддерживает лишь на статическую маршрутизацию, его относят к категории L2+ иначе называемое L3 Lite. Зачастую такого выбора оказывается достаточно для адекватного функционирования сети по критериям безопасности, эффективности и надежности. Коммутаторы L2+ оптимальны для компромиссного решения задач и позволяют поддержать хороший баланс цены и возможностей.

Заключение

Выбор коммутирующего оборудования зависит от многих параметров: его доступного функционала, характеристик и параметров сети. Уровни коммутатора в данном контексте можно рассматривать как один из критериев, по которому может осуществляться такой выбор, поскольку описывает возможности всей группы устройств в целом. Если у вас еще остались вопросы, вы можете задать их нашим специалистам, которые помогут подобрать сетевое оборудование в зависимости от ваших потребностей.

Соответствуют ли ваши коммутаторы требованиям, которые постоянно меняются? Если вы поймете различия между сетевыми коммутаторами разных типов, то сможете выбрать подходящее решение, которое будет полезно и сейчас, и в будущем. При выборе коммутаторов вам нужно оценить разные категории коммутаторов, а также их особые преимущества.

Сетевые Ethernet-коммутаторы делятся на две основные категории: с модульной и с фиксированной конфигурацией. По мере развития этой сферы появляются новые разновидности сетевых коммутаторов, однако основные категории остаются неизменными.

Модульные коммутаторы

Модульные коммутаторы — это коммутаторы, к которым по мере необходимости можно добавлять модули расширения. Это гибкое решение для тех, кто хочет расширять свою сеть. Модули расширения могут подключаться в виде приложений (межсетевой экран, беспроводная связь, сетевой анализ) и модулей для дополнительных интерфейсов, источников питания или вентиляторов для охлаждения.

Сетевые Ethernet-коммутаторы с фиксированной конфигурацией

Коммутаторы с фиксированной конфигурацией — это коммутаторы с фиксированным количеством портов. Как правило, возможность расширения у таких коммутаторов отсутствует.

Коммутаторы с фиксированной конфигурацией, в свою очередь, делятся на неуправляемые коммутаторы, интеллектуальные коммутаторы и управляемые коммутаторы уровня 2 и уровня 3.

Неуправляемые коммутаторы

Неуправляемый коммутатор достаточно подключить к источнику питания — и он сразу начнет работать. Выполнять предварительную настройку не требуется. Обычно неуправляемые коммутаторы подходят для подключения, к которому предъявляются базовые требования. Их часто используют для домашних сетей или там, где требуется всего несколько дополнительных портов, например на рабочем месте, в лаборатории или конференц-зале.

Коммутаторы этой категории — самые бюджетные: понадобятся только базовая коммутация второго уровня и подключение. Это оптимальное решение, например, если нужно несколько дополнительных портов на рабочем месте, в лаборатории, конференц-зале или даже дома.

На рынке представлены неуправляемые коммутаторы, которые также выполняют диагностику кабеля, обнаруживают петли трафика, назначают приоритеты трафику с помощью настроек QoS по умолчанию, помогают экономить на электроэнергии благодаря технологии Energy Efficient Ethernet (EEE) и даже PoE (Power over Ethernet). Но, как понятно из названия, управлять и изменять конфигурации таких коммутаторов практически невозможно. Достаточно их подключить — и они сразу, без предварительной настройки, готовы к работе.

Интеллектуальные коммутаторы

Коммутаторы этой категории продолжают развиваться. В целом эти коммутаторы поддерживают некоторые функции управления, контроля качества обслуживания и безопасности, при этом они хуже масштабируются и предлагают меньше возможностей по сравнению с управляемыми коммутаторами. Но интеллектуальные коммутаторы более доступны по цене. Выполнять их развертывание можно по периметру большой сети (если в ее основе — управляемые коммутаторы), в инфраструктуре небольших сетей или для несложных функций.

Возможности этой категории интеллектуальных коммутаторов значительно различаются. Все эти устройства оснащены интерфейсом для управления, который обычно проще, чем у управляемых коммутаторов.

Интеллектуальные коммутаторы позволяют сегментировать сеть на рабочие группы, создавая сети VLAN, но количество таких сетей и узлов (MAC-адресов) меньше, чем у управляемого коммутатора.

Также они обеспечивают определенную степень защиты, например с помощью аутентификации конечных точек по протоколу 802.1x (в некоторых случаях с ограничением списка контроля доступа), хотя уровни управления и детализации не отличаются от тех, что предоставляет управляемый коммутатор.

Более того, интеллектуальные коммутаторы достаточно универсальны: они поддерживают базовые функции обеспечения качества обслуживания (QoS), что упрощает распределение приоритетов для пользователей и приложений на основании протокола 802.1q/TOS/DSCP.

Полностью управляемые коммутаторы уровней 2 и 3

Управляемые коммутаторы предоставляют самый широкий спектр функций и гарантируют самую удобную работу с приложениями, самый высокий уровень безопасности, самый точный контроль и управление сетью, а коммутаторы с фиксированной конфигурацией — максимальную масштабируемость. Именно поэтому управляемые коммутаторы часто внедряют в качестве коммутаторов агрегации/доступа в очень крупных сетях или в качестве коммутаторов уровня ядра в относительно небольших сетях. Управляемые коммутаторы должны поддерживать и коммутацию второго уровня, и IP-маршрутизацию третьего уровня, хотя некоторые из них поддерживают только коммутацию второго уровня.

В плане безопасности управляемые коммутаторы защищают на уровне передачи данных (при перенаправлении пользовательского трафика), контроля (при передаче трафика между сетевыми устройствами, чтобы пользовательский трафик достигал места назначения) и управления (трафик, используемый для управления самой сетью или устройством). Кроме того, управляемые коммутаторы осуществляют контроль насыщения сети, защиту от DoS-атак и другие функции.

Функции списка контроля доступа позволяют настроить отбрасывание пакетов, ограничение скорости, зеркалирование или внесение данных о трафике в журнал по адресам второго уровня, адресам третьего уровня, номерам портов TCP/UDP, типу разъема Ethernet, флагам ICMP или TCP и т. д.

Управляемые коммутаторы поддерживают множество функций, с помощью которых они обеспечивают свою защиту и защиту сети от намеренных или непреднамеренных DoS-атак. К таким функциям относятся динамическая проверка ARP, перехват DHCP-трафика для сетей IPv4, защита на уровне первого транзитного перехода для сетей IPv6 с функцией RA Guard, обнаружение соседа, установка связи между соседями и т. д.

Среди других возможностей обеспечения безопасности — частные сети VLAN для защиты сообщества пользователей или изоляции устройств, а также безопасное управление (загрузки через SCP, веб-аутентификация, авторизация и учет по протоколу Radius или TACACS и т. д.). Назначение политик для уровня управления (CoPP) с целью защиты ЦП коммутатора и более обширной поддержки протокола 802.1x (учет времени, назначение динамической VLAN, уровень порта/хоста и т. д.).

У этих устройств много вариантов масштабирования, поэтому вы можете, к примеру, создавать множество сетей VLAN (для рабочих групп), устройств (таблицы MAC-адресов), IP-маршрутов и политик ACL для безопасности и функций QoS на основе потоков.

Для обеспечения максимальной доступности сети и времени бесперебойной работы управляемые маршрутизаторы поддерживают резервирование третьего уровня по протоколу VRRP (протокол резервирования виртуального маршрутизатора), большое количество групп агрегации каналов (для масштабируемости и отказоустойчивости), а также функции защиты второго уровня, например STRG и BPDU.

А возможности обеспечения качества обслуживания (QOS) и многоадресной рассылки намного шире, чем у интеллектуальных коммутаторов. Управляемые коммутаторы поддерживают отслеживание IGMP и MLD с функциями оптимизации многоадресного трафика IPv4/v6 в локальной сети, предотвращение перегрузок TCP, 4 или 8 очередей для сортировки трафика по важности, настройку или маркирование трафика по второму уровню (802.1p) или третьему уровню (DSCP/TOS), а также ограничение трафика по скорости.

Другие особенности

Помимо различий в категориях коммутаторов стоит учитывать и другие особенности, в том числе скорость передачи данных сетевого коммутатора, количество портов, питание через Ethernet и возможности стекирования.

Скорость передачи данных сетевого коммутатора

Сетевые коммутаторы могут различаться по скорости передачи данных. Доступны коммутаторы с фиксированной конфигурацией стандарта Fast Ethernet (10/100 Мбит/с), Gigabit Ethernet (10/100/1000 Мбит/с), Ten Gigabit (10/100/1000/10000 Мбит/с) и даже 40/100 Гбит/с. На некоторых коммутаторах также доступна многогигабайтная технология. Она обеспечивает скорость передачи более 1 гигабайта, если используются кабели категории 5e/6. У коммуникаторов есть несколько портов каскадирования и портов нисходящего канала. Порты нисходящего канала устанавливают подключение к конечным пользователям, а порты каскадирования — к другим коммутаторам или сетевой инфраструктуре.

Количество портов

Сетевые коммутаторы различаются по размеру. Коммутаторы с фиксированной конфигурацией обычно оснащены 5, 8, 10, 16, 24, 28, 48 и 52 портами. Это может быть комбинация разъемов SFP/SFP+ для подключения оптоволоконного кабеля, но чаще используются медные порты с разъемами RJ-45 спереди для установки подключения на расстоянии до 100 метров. Оптоволоконные модули SFP позволяют установить подключение на расстоянии до 40 километров.

Поддержка технологии электропитания по сети Ethernet

Технология питания через Ethernet (PoE) обеспечивает питание устройства (например, IP-телефоны, IP-камеры видеонаблюдения или точки беспроводного доступа) по тому же кабелю, что и для передачи данных. Одно из преимуществ технологии PoE — это гибкость: вы можете разместить конечные устройства в любой части помещения, даже там, где сложно подвести питание через розетку. Например, точку беспроводного доступа можно разместить прямо в стене или потолке.

Коммутаторы подают питание по нескольким стандартам: IEEE 802.3af подает питание до 15,4 Вт на порт коммутатора, а IEEE 802.3at (также известный как PoE+) подает питание до 30 Вт на порт коммутатора. Для большинства конечных устройств подходит стандарт 802.3af, но для некоторых устройств (например, видеотелефонов и точек доступа с несколькими радиомодулями) требуется более высокая мощность. Некоторые модели коммутаторов Cisco также поддерживают технологию универсального питания PoE (UPoE) или PoE 60 Вт, которая подает мощность до 60 Вт на порт коммутатора. Новый стандарт PoE 802.3bt обеспечивает более высокую мощность для работы приложений нового поколения.

Чтобы выбрать подходящий коммутатор, определите, какая мощность вам нужна. При подключении к настольным компьютерам или устройствам другого типа, не требующим технологии PoE, самым выгодным решением будут коммутаторы без поддержки PoE.

Стекируемые и автономные коммутаторы

По мере расширения сети вам понадобится больше коммутаторов, чтобы обеспечить сетевое подключение для устройств, количество которых увеличивается. Если вы используете автономные коммутаторы, каждый из них нужно контролировать и настраивать по отдельности.

В отличие от них стекируемые коммутаторы облегчают управление и улучшают доступ к сети. Вместо того, чтобы настраивать, контролировать и устранять неполадки каждого из восьми коммутаторов с 48 портами, вы можете использовать стекируемые коммутаторы, которые позволят контролировать все восемь устройств как одно. Если все восемь коммутаторов (всего 384 порта) являются стекируемыми, они работают как один коммутатор с одним агентом SNMP/RMON, одним доменом связующего дерева, одним интерфейсом командной строки или веб-интерфейсом, то есть одним уровнем управления. Вы также можете создать группы агрегации каналов, которые охватывают несколько устройств в стеке и зеркалируют порты для передачи трафика от одного устройства в стеке к другому, либо настроить охват ACL/QoS для всех устройств. Такой подход дает значительные преимущества при эксплуатации.

Обратите внимание: некоторые продукты, представленные на рынке, называются стекируемыми, но поддерживают только один интерфейс пользователя или интерфейс централизованного управления для доступа по отдельности к каждому коммутатору. То есть это не стекирование, а кластеризация. В таком случае вам придется настраивать каждую функцию (ACL, QoS, зеркалирование портов и т. д.) на каждом коммутаторе отдельно.

Стекирование дает и другие преимущества. Вы можете подключить компоненты стека в кольцо: если порт или кабель выйдет из строя, стек автоматически выполнит перенаправление, чтобы обойти неработающий элемент. Чаще всего это занимает всего микросекунду. Вы также можете добавлять или отключать компоненты стека, автоматически распознавать их и добавлять в стек.

Как выбрать сетевой коммутатор

Сейчас, во время всевозможных гаджетов и электронных девайсов, которые переполняют среду обитания обычного человека, актуальна проблема – как эти все интеллектуальные устройства увязать между собой. Почти в любой квартире есть телевизор, компьютер/ноутбук, принтер, сканер, звуковая система, и хочется как-то скоординировать их, а не перекидывать бесконечное количество информации флешками, и при этом не запутаться в бесконечных километрах проводов. Та же самая ситуация касается офисов – с немалым количеством компьютеров и МФУ, или других систем, где нужно увязать разных представителей электронного сообщества в одну систему. Вот тут и возникает идея построения локальной сети. А основа грамотно организованной и структурированной локальной сети – сетевой коммутатор.

ОПРЕДЕЛЕНИЕ

Коммутатор, или свитч - прибор, объединяющий несколько интеллектуальных устройств в локальную сеть для обмена данными. При получении информации на один из портов, передает ее далее на другой порт, на основании таблицы коммутации или таблицы MAC-адресов. При этом процесс заполнения таблицы идет не пользователем, а самим коммутатором, в процессе работы – при первом сеансе передачи данных таблица пуста, и изначально коммутатор ретранслирует пришедшую информацию на все свои порты. Но в процессе работы он запоминает пути следования информации, записывает их к себе в таблицу и при последующих сеансах уже отправляет информацию по определенному адресу. Размер таблицы может включать от 1000 до 16384 адресов.


Для построения локальных сетей используются и другие устройства – концентраторы (хабы) и маршрутизаторы (роутеры). Сразу, во избежание путаницы, стоит указать на различия между ними и коммутатором.

Концентратор (он же хаб) – является прародителем коммутатора. Время использования хабов фактически ушло в прошлое, из-за следующего неудобства: если информация приходила на один из портов хаба, он тут же ретранслировал ее на другие, «забивая» сеть лишним трафиком. Но изредка они еще встречаются, впрочем, среди современного сетевого оборудования выглядят, как самоходные кареты начала 20-го века среди электрокаров современности.


Маршрутизаторы – устройства, с которыми часто путают коммутаторы из-за похожего внешнего вида, но у них более обширный спектр возможностей работы, и ввиду с этим более высокая стоимость. Это своего рода сетевые микрокомпьютеры, с помощью которых можно полноценно настроить сеть, прописав все адреса устройств в ней и наложив логические алгоритмы работы – к примеру, защиту сети.


Коммутаторы и хабы чаще всего используются для организации локальных сетей, маршрутизаторы – для организации сети, связанной с выходом в интернет. Однако следует заметить, что сейчас постепенно размываются границы между коммутаторами и маршрутизаторами – выпускаются коммутаторы, которые требуют настройки и работают с прописываемыми адресами устройств локальной сети. Они могут выполнять функции маршрутизаторов, но это, как правило, дорогостоящие устройства не для домашнего использования.

Самый простой и дешевый вариант конфигурации домашней локальной сети средних размеров (с количеством объектов более 5), с подключением к интернету, будет содержать и коммутатор, и роутер:


ОСОБЕННОСТИ РАБОТЫ

При покупке коммутатора нужно четко понимать – зачем он вам, как будете им использоваться, как будете его обслуживать. Чтобы выбрать устройство, оптимально отвечающее вашим целям, и не переплатить лишних денег, рассмотрим основные параметры коммутаторов:

  • Вид коммутатора– управляемый, неуправляемый и настраиваемый.
    – не поддерживают протоколы сетевого управления. Наиболее просты, не требуют особых настроек, стоят недорого: от 440 до 2990 рублей. Оптимальное решение для маленькой локальной сети. Со сборкой локальной сети на их основе справится даже человек, далекий от этих дел – требуется лишь купить сам коммутатор, кабели необходимой длины для подключения оборудования (лучше, в виде патч-корда, т.е. «с вилками» в сборе – не забудьте перед покупкой осмотреть оборудование, к которому будет подключаться кабель, и уточнить, какой именно тип разъема вам понадобится), ну и собрать саму сеть. Простейшая настройка описана в документации к устройству. – поддерживают протоколы сетевого управления, обладают более сложной конструкцией, предлагают более широкий функционал – с помощью WEB-интерфейса или специализированных программ ими можно управлять, прописывая параметры подключенной к ним сети, приоритеты отдельных устройств и пр. Именно этот тип коммутаторов может заменять маршрутизаторы. Цена на такие устройства колеблется в диапазоне от 2499 до 14490 рублей. Данный вид коммутаторов представляет интерес для специализированных локальных сетей – видеонаблюдение, промышленная сеть, офисная сеть. – устройства, которые поддерживают некоторые настройки (к примеру – конфигурирование VLAN (создание подгрупп)), но все равно во многом уступают управляемым коммутаторам. Настраиваемые коммутаторы могут быть как управляемыми, так и неуправляемыми.
  • Размещение коммутатора – может быть трех типов:
    – компактное устройство, которое можно просто разместить на столе;– небольшое устройство, которое, как правило, можно расположить как на столе, так и на стене – для последнего предусмотрены специальные пазы/крепления; – устройство с предусмотренными пазами для монтажа в стойку сетевого оборудования, но которое, как правило, также можно расположить на столе.
  • Базовая скорость передачи данных – скорость, с которой работает каждый из портов устройства. Как правило, в параметрах коммутатора указывается сразу несколько цифр, к примеру: 10/100Мбит/сек – это означает, что порт может работать и со скоростью 10Мбит/сек, и 100Мбит/сек, автоматически подстраиваясь под скорость источника данных. Представлены модели с базовой скоростью:
    ;; .
  • Общее количество портов коммутатора – один из основных параметров, в принципе именно он больше всего влияет конфигурацию локальной сети, т.к. от него зависит, какой количество оборудования вы сможете подключить. Диапазон лежит в пределах от 5 до 48 портов. Коммутаторы с количеством портов 5-15 наиболее интересны для построения маленькой домашней сети, устройства с количеством портов от 15 до 52 ориентированы уже на более серьезные конфигурации.


  • Количество портов со скоростью 1Гбит/сек – порты, поддерживающие скорость 100Мбит/сек, бывает до 48;
  • Количество портов со скоростью 1Гбит/сек – порты, поддерживающие скорость 1Гбит/сек – что особенно актуально для высокоскоростной передачи данных, бывает до 48;
  • Поддержка РоЕ – если такой параметр есть, то означает, что подключенное к порту с этой опцией устройство можно питать по сетевому кабелю (витой паре), при этом никакого влияния на передающийся сигнал информации не оказывается. Функция особенно привлекательна для подключения устройств, к которым нежелательно, либо невозможно подводить дополнительный кабель питания – к примеру, для WEB-камер.
  • SFP-порты – порты коммутатора для связи с устройствами более высокого уровня, либо с другими коммутаторами. По сравнению с обычными портами могут поддерживать передачу данных на более дальние расстояния (стандартный порт с RJ-45 разъемом и подключенным кабелем «витая пара» поддерживает передачу в пределах 100м). Такой порт не оснащен приемо-передатчиком, это только слот, к которому можно подключить SFP-модуль, представляющий из себя внешний приемо-передатчик для подключения нужного кабеля – оптического, витой пары.


  • Скорость обслуживания пакетов – характеристика, обозначающая производительность оборудования, и измеряющаяся в миллионах пакетов в секунду – Мррs. Как правило, подразумеваются пакеты размеров 64 байта (уточняется производителем). Величина этой характеристики различных устройств лежит в пределах от 1,4 до 71,4 Мррs.

ОБЛАСТЬ ПРИМЕНЕНИЯ

Область применения коммутаторов широка, самые распространенные сферы применения:

  • маленькая домашняя локальная сеть, включающая, к примеру, несколько компьютеров, принтер, телевизор и музыкальный центр (при условии, что все оборудование поддерживает сетевое подключение);


  • локальная сеть предприятия/офиса, с большим количеством компьютеров и офисной техники;


  • системы «умный дом» – с подключением огромного множества датчиков, контролирующих все по желанию хозяина – начиная с котла отопления, и заканчивая крышкой унитаза;


  • системы видеонаблюдения – если система велика, камер много, то помимо контроллера для подключения всех камер целесообразно использовать коммутатор;


  • промышленные локальные сети, объединяющие датчики, контролирующие процесс производства и диспетчерские центры, откуда идет непосредственное управление технологическим процессом.


СТОИМОСТЬ

Ценовой разброс различных устройств велик – от 440 до 27999 рублей.

От 440 до 1000 рублей обойдутся простые устройства неуправляемого типа, с общим количеством портов до 5 штук, с наличием у некоторых устройств портов 1 Гбит/сек.

В сегменте от 1000 до 10000 рублей будут устройства как управляемого, так и не управляемого типов, с количеством портов до 24 портов, с возможностью РоЕ, с наличием SFP-порта.

За стоимость от 10000 до 27999 рублей вы сможете приобрести высокопроизводительное устройство, для высокоемких сетей.

Читайте также: