Что такое контекст процесса linux

Обновлено: 05.07.2024

Оригинал: All You Need To Know About Processes in Linux [Comprehensive Guide]
Автор: Aaron Kili
Дата публикации: 31 марта 2017 года
Перевод: А. Кривошей
Дата перевода: август 2017 г.

В этой статье мы дадим базовое понимание процессов и кратко рассмотрим управление процессами в Linux с помощью специальных команд.
Процесс относится к выполнению программы - он представляет собой запущенный экземпляр программы, составленный из инструкций, данных, считанных из файлов, других программ, или полученных от пользователя.

Типы процессов

В Linux есть два основных типа процессов:

Процессы переднего плана (также известны как интерактивные процессы) - они инициализируются и контролируются в терминальной сессии. Другими словами, для запуска таких процессов в системе должен находиться пользователь, они не запускаются автоматически как часть системных служб.
Фоновые процессы (также известны как неинтерактивные/автоматические процессы) - не подключены к терминалу. Они не ждут ввода от пользователя.

Что такое демоны

Это специальные типы фоновых процессов, которые запускаются при загрузке системы и остаются запущенными в виде служб, они не завершаются. Демоны запускаются как системные задачи, спонтанно. Тем не менее, пользователь может контролировать их через процесс init.

процессы в linux

Создание процессов в Linux

Обычно новый процесс создается уже существующим процессом, который делает в памяти свою точную копию. Дочерний процесс получает то же окружение, что и его родительский процесс, отличается только номер ID.

Есть два распространенных способа создания нового процесса в Linux:

1. С помощью функции System(). Этот способ сравнительно прост, однако неэффективен и создает определенные риски с точки зрения безопасности.
2. С помощью функций fork() и exec() - более продвинутая техника с точки зрения гибкости, скорости и безопасности.

Как Linux идентифицирует процессы?

Поскольку Linux - многопользовательская система, и различные пользователи могут одновременно запускать разные программы, каждый запущенный экземпляр программы должен получать уникальный идентификатор от ядра системы.
Программы идентифицируются по ID процесса (PID), а также по ID родительского процесса (PPID), поэтому процессы можно разделить на следующие категории:

Родительские процессы - это процессы, которые в процессе работы создают другие процессы.
Дочерние процессы - это процессы, созданные другими процессами.

Процесс Init

Процесс Init - это родительский процесс для всех процессов в системе, это первая программа, которая исполняется при загрузке системы Linux; он управляет всеми другими процессами в системе. Init запускается непосредственно ядром системы, поэтому он в принципе не имеет родительского процесса.

Процесс Init всегда получает ID 1. Он функционирует как приемный родитель для всех осиротевших процессов.

Для определения ID процесса можно использовать команду pidof:

определение ID процесса

Найти ID процесса и ID родительского процесса для системной оболочки можно с помощью команд:

поиск родительского ID процесса

Запуск процессов в Linux

При старте команды или программы (например cloudcmd – CloudCommander), она запускает процесс в системе. Вы можете запустить процесс переднего плана (интерактивный), как показано ниже, он подключится к терминалу и пользователь сможет взаимодействовать с ним:

запуск процесса

Фоновые процессы в Linux

Для запуска фонового процесса (неинтерактивного) используется символ &, при этом процесс не сможет читать ввод от пользователя, пока не будет перемещен на передний план.

запуск фонового процесса

Для продолжения выполнения приостановленного в фоне процесса, используется команда bg:

Для перевода процесса из фонового режима на передний план используется команда fg вместе с ID:

перевод процесса из фонового режима на передний план

Состояние процесса в Linux

В зависимости от различных обстоятельств состояние процесса во время работы может меняться. В Linux процесс может находиться в следующих состояниях:

Running (работа) - процесс работает (он является текущим процессом в системе) или готов к работе (ждет выделения ресурсов процессора).
Waiting (ожидание) - в этом состоянии процесс ждет события, которое должно запустить его, или выделения системных ресурсов.
Кроме того, ядро системы делит процессы в состоянии ожидания на два типа: перываемые процессы, состояние ожидания которых может быть прервано сигналом, и непрерываемые, состояние ожидания которых может быть прервано только аппаратным способом.
Stopped (остановка) - в этом состоянии процесс останавливает работу, обычно после получения соответствующего сигнала. Например, процесс может быть остановлен для отладки.
Zombie (зомби) - процесс мертв, то есть он был остановлен, но в системе осталась выполняемая им задача.

Как просмотреть активные процессы в Linux

В Linux есть несколько утилит для просмотра запущенных в системе процессов, наиболее широко известны команды ps и top:

1. Команда ps

Она выводит информацию о выбранных активных процессах, как показано ниже.

ps

2. top – утилита системного мониторинга

top - это мощная утилита, которая позволяет в режиме реального времени просматривать список запущенных процессов, как показано ниже:

top

3. glances – утилита системного мониторинга

glances - это сравнительно новая утилита для мониторинга активности системы с продвинутыми возможностями:

glances

Есть также еще несколько полезных программ, которые вы можете использовать для просмотра списка активных процессов, почитать о них можно по ссылкам ниже.

Управление процессами в Linux

В Linux также имеются команды для управления процессами, например kill, pkill, pgrep и killall. Ниже приведено несколько примеров их использования:

команды для управления процессами

Если вы хотите подробно изучить использование этих команд, информация по ссылкам ниже.

Обратите внимание, что с их помощью вы можете завршать зависшие приложения, которые тормозят вашу систему.

Отправка сигналов процессу

Фундаментальный способ управления процессами в Linux - это отправка им сигналов, которых имеется достаточно много. Посмотреть список всех сигналов можно с помощью команды:

сигналы

Для отправки сигналов процессу используются описанные выше команды kill, pkill или pgrep. Однако программа ответит на сигнал, только если она запрограммирована распознавать такой сигнал.

Большинство сигналов предназначены для использования системой или программистами при написании кода. Следующие сигналы могут быть полезны пользователю:

SIGHUP 1 – отправляется процессу при закрытии контролирующего его терминала.
SIGINT 2 – отправляется процессу контролирующим его терминалом, если пользователь прерывает работу процесса клавишами [Ctrl+C].
SIGQUIT 3 – отправляется процессу, если пользователь посылает сигнал выхода из программы [Ctrl+D].
SIGKILL 9 – этот сигнал немедленно завершает (убивает) процесс без выполнения любых операций очистки файлов, логов и т.д.
SIGTERM 15 – это сигнал завершения работы программы (он по умоланию отправляется командой kill).
SIGTSTP 20 – отправляется процессу контролирующим его терминалом с запросом на остановку (terminal stop); инициируется при нажатии [Ctrl+Z].

Ниже приведены примеры использования команд kill для завершения работы Firefox при его зависании с использованием PID:

Для завершения программы с использованием ее названия используются команды pkill или killall:

Изменение приоритета процесса

В Linux все активные процессы имеют определенное значение приоритета (nice). Процессы с более высоким приоритетом обычно получают больше процессорного времени, чем процессы с более низким приоритетом.

Однако пользователь с привилегиями root может менять приоритет с помощью команд nice и renice.
В выводе команды top столбец NI отображает значения nice для процессов.

Вы можете использовать команду nice, чтобы задать значение nice процесса. Не забывайте, что обычный пользователь может присвоить процессу значение nice от 0 до 20, только если это процесс ему принадлежит.
Отрицательные значения nice может использовать только пользователь root.

Для понижения приоритета процесса используется команда renice:

Другие статьи об управлении процессами в Linux вы найдете на странице "Процессы в Linux-системе".

Контекст процесса включает в себя содержимое адресного пространства задачи, выделенного процессу, а также содержимое относящихся к процессу аппаратных регистров и структур данных ядра. С формальной точки зрения, контекст процесса объединяет в себе пользовательский контекст, регистровый контекст и системный контекст (*). Пользовательский контекст состоит из команд и данных процесса, стека задачи и содержимого совместно используемого пространства памяти в виртуальных адресах процесса. Те части виртуального адресного пространства процесса, которые периодически отсутствуют в оперативной памяти вследствие выгрузки или замещения страниц, также включаются в пользовательский контекст.

  • Счетчика команд, указывающего адрес следующей команды, которую будет выполнять центральный процессор; этот адрес является виртуальным адресом внутри пространства ядра или пространства задачи.
  • Регистра состояния процессора (PS), который указывает аппаратный статус машины по отношению к процессу. Регистр PS, например, обычно содержит подполя, которые указывают, является ли результат последних вычислений нулевым, положительным или отрицательным, переполнен ли регистр с установкой бита переноса и т.д. Операции, влияющие на установку регистра PS, выполняются для отдельного процесса, потому-то в регистре PS и содержится аппаратный статус машины по отношению к процессу. В других имеющих важное значение подполях регистра PS указывается текущий уровень прерывания процессора, а также текущий и предыдущий режимы выполнения процесса (режим ядра/задачи). По значению подполя текущего режима выполнения процесса устанавливается, может ли процесс выполнять привилегированные команды и обращаться к адресному пространству ядра.
  • Указателя вершины стека, в котором содержится адрес следующего элемента стека ядра или стека задачи, в соответствии с режимом выполнения процесса. В зависимости от архитектуры машины указатель вершины стека показывает на следующий свободный элемент стека или на последний используемый элемент. От архитектуры машины также зависит направление увеличения стека (к старшим или младшим адресам), но для нас сейчас эти вопросы несущественны.
  • Регистров общего назначения, в которых содержится информация, сгенерированная процессом во время его выполнения. Чтобы облегчить последующие объяснения, выделим среди них два регистра - регистр 0 и регистр 1 - для дополнительного использования при передаче информации между процессами и ядром.
  • Запись в таблице процессов, описывающая состояние процесса (раздел 6.1) и содержащая различную управляющую информацию, к которой ядро всегда может обратиться.
  • Часть адресного пространства задачи, выделенная процессу, где хранится управляющая информация о процессе, доступная только в контексте процесса. Общие управляющие параметры, такие как приоритет процесса, хранятся в таблице процессов, поскольку обращение к ним должно производиться за пределами контекста процесса.
  • Записи частной таблицы областей процесса, общие таблицы областей и таблицы страниц, необходимые для преобразования виртуальных адресов в физические, в связи с чем в них описываются области команд, данных, стека и другие области, принадлежащие процессу. Если несколько процессов совместно используют общие области, эти области входят составной частью в контекст каждого процесса, поскольку каждый процесс работает с этими областями независимо от других процессов. В задачи управления памятью входит идентификация участков виртуального адресного пространства процесса, не являющихся резидентными в памяти.
  • Стек ядра, в котором хранятся записи процедур ядра, если процесс выполняется в режиме ядра. Несмотря на то, что все процессы пользуются одними и теми же программами ядра, каждый из них имеет свою собственную копию стека ядра для хранения индивидуальных обращений к функциям ядра. Пусть, например, один процесс вызывает функцию creat и приостанавливается в ожидании назначения нового индекса, а другой процесс вызывает функцию read и приостанавливается в ожидании завершения передачи данных с диска в память. Оба процесса обращаются к функциям ядра и у каждого из них имеется в наличии отдельный стек, в котором хранится последовательность выполненных обращений. Ядро должно иметь возможность восстанавливать содержимое стека ядра и положение указателя вершины стека для того, чтобы возобновлять выполнение процесса в режиме ядра. В различных системах стек ядра часто располагается в пространстве процесса, однако этот стек является логически-независимым и, таким образом, может помещаться в самостоятельной области памяти. Когда процесс выполняется в режиме задачи, соответствующий ему стек ядра пуст.
  • Динамическая часть системного контекста процесса, состоящая из нескольких уровней и имеющая вид стека, который освобождается от элементов в порядке, обратном порядку их поступления. На каждом уровне системного контекста содержится информация, необходимая для восстановления предыдущего уровня и включающая в себя регистровый контекст предыдущего уровня.

(*) Используемые в данном разделе термины "пользовательский контекст" (user-level context), "регистровый контекст" (register context), "системный контекст" (system-level context) и "контекстные уровни" (context layers) введены автором.

Ядро помещает контекстный уровень в стек при возникновении прерывания, при обращении к системной функции или при переключении контекста процесса. Контекстный уровень выталкивается из стека после завершения обработки прерывания, при возврате процесса в режим задачи после выполнения системной функции, или при переключении контекста. Таким образом, переключение контекста влечет за собой как помещение контекстного уровня в стек, так и извлечение уровня из стека: ядро помещает в стек контекстный уровень старого процесса, а извлекает из стека контекстный уровень нового процесса. Информация, необходимая для восстановления текущего контекстного уровня, хранится в записи таблицы процессов.

На Рисунке 6.8 изображены компоненты контекста процесса. Слева на рисунке изображена статическая часть контекста. В нее входят: пользовательский контекст, состоящий из программ процесса (машинных инструкций), данных, стека и разделяемой памяти (если она имеется), а также статическая часть системного контекста, состоящая из записи таблицы процессов, пространства процесса и записей частной таблицы областей (информации, необходимой для трансляции виртуальных адресов пользовательского контекста). Справа на рисунке изображена динамическая часть контекста. Она имеет вид стека и включает в себя несколько элементов, хранящих регистровый контекст предыдущего уровня и стек ядра для текущего уровня. Нулевой контекстный уровень представляет собой пустой уровень, относящийся к пользовательскому контексту; увеличение стека здесь идет в адресном пространстве задачи, стек ядра недействителен. Стрелка, соединяющая между собой статическую часть системного контекста и верхний уровень динамической части контекста, означает то, что в таблице процессов хранится информация, позволяющая ядру восстанавливать текущий контекстный уровень процесса.

Рисунок 6.8. Компоненты контекста процесса

Процесс выполняется в рамках своего контекста или, если говорить более точно, в рамках своего текущего контекстного уровня. Количество контекстных уровней ограничивается числом поддерживаемых в машине уровней прерывания. Например, если в машине поддерживаются разные уровни прерываний для программ, терминалов, дисков, всех остальных периферийных устройств и таймера, то есть 5 уровней прерывания, то, следовательно, у процесса может быть не более 7 контекстных уровней: по одному на каждый уровень прерывания, 1 для системных функций и 1 для пользовательского контекста. 7 уровней будет достаточно, даже если прерывания будут поступать в "наихудшем" из возможных порядков, поскольку прерывание данного уровня блокируется (то есть его обработка откладывается центральным процессором) до тех пор, пока ядро не обработает все прерывания этого и более высоких уровней.

Несмотря на то, что ядро всегда исполняет контекст какого-нибудь процесса, логическая функция, которую ядро реализует в каждый момент, не всегда имеет отношение к данному процессу. Например, если возвращая данные, дисковое запоминающее устройство посылает прерывание, то прерывается выполнение текущего процесса и ядро обрабатывает прерывание на новом контекстном уровне этого процесса, даже если данные относятся к другому процессу. Программы обработки прерываний обычно не обращаются к статическим составляющим контекста процесса и не видоизменяют их, так как эти части не связаны с прерываниями.

Как уже говорилось ранее, ядро сохраняет контекст процесса, помещая в стек новый контекстный уровень. В частности, это имеет место, когда система получает прерывание, когда процесс вызывает системную функцию или когда ядро выполняет переключение контекста. Каждый из этих случаев подробно рассматривается в этом разделе.

6.4.1 Прерывания и особые ситуации

  1. Сохраняет текущий регистровый контекст выполняющегося процесса и создает в стеке (помещает в стек) новый контекстный уровень.
  2. Устанавливает "источник" прерывания, идентифицируя тип прерывания (например, прерывание по таймеру или от диска) и номер устройства, вызвавшего прерывание (например, если прерывание вызвано дисковым запоминающим устройством). При возникновении прерывания система получает от машины число, которое использует в качестве смещения в таблице векторов прерывания. Содержимое векторов прерывания в разных машинах различно, но, как правило, в них хранится адрес программы обработки прерывания, соответствующей источнику прерывания, и указывается путь поиска параметра для программы. В качестве примера рассмотрим таблицу векторов прерывания, приведенную на Рисунке 6.9. Если источником прерывания явился терминал, ядро получает от аппаратуры номер прерывания, равный 2, и вызывает программу обработки прерываний от терминала, именуемую ttyintr.
  1. Вызов программы обработки прерывания. Стек ядра для нового контекстного уровня, если рассуждать логически, должен отличаться от стека ядра предыдущего контекстного уровня. В некоторых разработках стек ядра текущего процесса используется для хранения элементов, соответствующих программам обработки прерываний, в других разработках эти элементы хранятся в глобальном стеке прерываний, благодаря чему обеспечивается возврат из программы без переключения контекста.
  2. Программа завершает свою работу и возвращает управление ядру. Ядро исполняет набор машинных команд по сохранению регистрового контекста и стека ядра предыдущего контекстного уровня в том виде, который они имели в момент прерывания, после чего возобновляет выполнение восстановленного контекстного уровня. Программа обработки прерываний может повлиять на поведение процесса, поскольку она может внести изменения в глобальные структуры данных ядра и возобновить выполнение приостановленных процессов. Однако, обычно процесс продолжает выполняться так, как если бы прерывание никогда не происходило.

Рисунок 6.10. Алгоритм обработки прерываний

На Рисунке 6.10 кратко изложено, каким образом ядро обрабатывает прерывания. С помощью использования в отдельных случаях последовательности машинных операций или микрокоманд на некоторых машинах достигается больший эффект по сравнению с тем, когда все операции выполняются программным обеспечением, однако имеются узкие места, связанные с числом сохраняемых контекстных уровней и скоростью выполнения машинных команд, реализующих сохранение контекста. По этой причине определенные операции, выполнения которых требует реализация системы UNIX, являются машинно-зависимыми.

На Рисунке 6.11 показан пример, в котором процесс запрашивает выполнение системной функции (см. следующий раздел) и получает прерывание от диска при ее выполнении. Запустив программу обработки прерывания от диска, система получает прерывание по таймеру и вызывает уже программу обработки прерывания по таймеру. Каждый раз, когда система получает прерывание (или вызывает системную функцию), она создает в стеке новый контекстный уровень и сохраняет регистровый контекст предыдущего уровня.

6.4.2 Взаимодействие с операционной системой через вызовы системных функций

Такого рода взаимодействие с ядром было предметом рассмотрения в предыдущих главах, где шла речь об обычном вызове функций. Очевидно, что обычная последовательность команд обращения к функции не в состоянии переключить выполнения процесса с режима задачи на режим ядра. Компилятор с языка Си использует библиотеку функций, имена которых совпадают с именами системных функций, иначе ссылки на системные функции в пользовательских программах были бы ссылками на неопределенные имена. В библиотечных функциях обычно исполняется команда, переводящая выполнение процесса в режим ядра и побуждающая ядро к запуску исполняемого кода системной функции. В дальнейшем эта команда именуется "внутренним прерыванием операционной системы". Библиотечные процедуры исполняются в режиме задачи, а взаимодействие с операционной системой через вызов системной функции можно определить в нескольких словах как особый случай программы обработки прерывания. Библиотечные функции передают ядру уникальный номер системной функции одним из машинно-зависимых способов - либо как параметр внутреннего прерывания операционной системы, либо через отдельный регистр, либо через стек - а ядро таким образом определяет тип вызываемой функции.

Рисунок 6.11. Примеры прерываний

Обрабатывая внутреннее прерывание операционной системы, ядро по номеру системной функции ведет в таблице поиск адреса соответствующей процедуры ядра, то есть точки входа системной функции, и количества передаваемых функции параметров (Рисунок 6.12). Ядро вычисляет адрес (пользовательский) первого параметра функции, прибавляя (или вычитая, в зависимости от направления увеличения стека) смещение к указателю вершины стека задачи (аналогично для всех параметров функции). Наконец, ядро копирует параметры задачи в пространство процесса и вызывает соответствующую процедуру, которая выполняет системную функцию. После исполнения процедуры ядро выясняет, не было ли ошибки. Если ошибка была, ядро делает соответствующие установки в сохраненном регистровом контексте задачи, при этом в регистре PS обычно устанавливается бит переноса, а в нулевой регистр заносится номер ошибки. Если при выполнении системной функции не было ошибок, ядро очищает в регистре PS бит переноса и заносит возвращаемые функцией значения в регистры 0 и 1 в сохраненном регистровом контексте задачи. Когда ядро возвращается после обработки внутреннего прерывания операционной системы в режим задачи, оно попадает в следующую библиотечную инструкцию после прерывания. Библиотечная функция интерпретирует возвращенные ядром значения и передает их программе пользователя.

Рисунок 6.12. Алгоритм обращения к системным функциям

В качестве примера рассмотрим программу, которая создает файл с разрешением чтения и записи в него для всех пользователей (режим доступа 0666) и которая приведена в верхней части Рисунка 6.13. Далее на рисунке изображен отредактированный фрагмент сгенерированного кода программы после компиляции и дисассемблирования (создания по объектному коду эквивалентной программы на языке ассемблера) в системе Motorola 68000. На Рисунке 6.14 изображена конфигурация стека для системной функции создания. Компилятор генерирует программу помещения в стек задачи двух параметров, один из которых содержит установку прав доступа (0666), а другой - переменную "имя файла" (**). Затем из адреса 64 процесс вызывает библиотечную функцию creat (адрес 7a), аналогичную соответствующей системной функции. Адрес точки возврата из функции 6a, этот адрес помещается процессом в стек. Библиотечная функция creat засылает в регистр 0 константу 8 и исполняет команду прерывания (trap), которая переключает процесс из режима задачи в режим ядра и заставляет его обратиться к системной функции. Заметив, что процесс вызывает системную функцию, ядро выбирает из регистра 0 номер функции (8) и определяет таким образом, что вызвана функция creat. Просматривая внутреннюю таблицу, ядро обнаруживает, что системной функции creat необходимы два параметра; восстанавливая регистровый контекст предыдущего уровня, ядро копирует параметры из пользовательского пространства в пространство процесса. Процедуры ядра, которым понадобятся эти параметры, могут найти их в определенных местах адресного пространства процесса. По завершении исполнения кода функции creat управление возвращается программе обработки обращений к операционной системе, которая проверяет, установлено ли поле ошибки в пространстве процесса (то есть имела ли место во время выполнения функции ошибка); если да, программа устанавливает в регистре PS бит переноса, заносит в регистр 0 код ошибки и возвращает управление ядру. Если ошибок не было, в регистры 0 и 1 ядро заносит код завершения. Возвращая управление из программы обработки обращений к операционной системе в режим задачи, библиотечная функция проверяет состояние бита переноса в регистре PS (по адресу 7): если бит установлен, управление передается по адресу 13c, из нулевого регистра выбирается код ошибки и помещается в глобальную переменную errno по адресу 20, в регистр 0 заносится -1, и управление возвращается на следующую после адреса 64 (где производится вызов функции) команду. Код завершения функции имеет значение -1, что указывает на ошибку в выполнении системной функции. Если же бит переноса в регистре PS при переходе из режима ядра в режим задачи имеет нулевое значение, процесс с адреса 7 переходит по адресу 86 и возвращает управление вызвавшей программе (адрес 64); регистр 0 содержит возвращаемое функцией значение.

Рисунок 6.13. Системная функция creat и сгенерированная программа ее выполнения в системе Motorola 68000

Рисунок 6.14. Конфигурация стека для системной функции creat

Несколько библиотечных функций могут отображаться на одну точку входа в список системных функций. Каждая точка входа определяет точные синтаксис и семантику обращения к системной функции, однако более удобный интерфейс обеспечивается с помощью библиотек. Существует, например, несколько конструкций системной функции exec, таких как execl и execle, выполняющих одни и те же действия с небольшими отличиями. Библиотечные функции, соответствующие этим конструкциям, при обработке параметров реализуют заявленные свойства, но в конечном итоге, отображаются на одну и ту же функцию ядра.

(**) Очередность, в которой компилятор вычисляет и помещает в стек параметры функции, зависит от реализации системы.

6.4.3 Переключение контекста

Если обратиться к диаграмме состояний процесса (Рисунок 6.1), можно увидеть, что ядро разрешает производить переключение контекста в четырех случаях: когда процесс приостанавливает свое выполнение, когда он завершается, когда он возвращается после вызова системной функции в режим задачи, но не является наиболее подходящим для запуска, или когда он возвращается в режим задачи после завершения ядром обработки прерывания, но так же не является наиболее подходящим для запуска. Как уже было показано в главе 2, ядро поддерживает целостность и согласованность своих внутренних структур данных, запрещая произвольно переключать контекст. Прежде чем переключать контекст, ядро должно удостовериться в согласованности своих структур данных: то есть в том, что сделаны все необходимые корректировки, все очереди выстроены надлежащим образом, установлены соответствующие блокировки, позволяющие избежать вмешательства со стороны других процессов, что нет излишних блокировок и т.д. Например, если ядро выделяет буфер, считывает блок из файла и приостанавливает выполнение до завершения передачи данных с диска, оно оставляет буфер заблокированным, чтобы другие процессы не смогли обратиться к буферу. Но если процесс исполняет системную функцию link, ядро снимает блокировку с первого индекса перед тем, как снять ее со второго индекса, и тем самым предотвращает возникновение тупиковых ситуаций (взаимной блокировки).

Ядро выполняет переключение контекста по завершении системной функции exit, поскольку в этом случае больше ничего не остается делать. Кроме того, переключение контекста допускается, когда процесс приостанавливает свою работу, поскольку до момента возобновления может пройти немало времени, в течение которого могли бы выполняться другие процессы. Переключение контекста допускается и тогда, когда процесс не имеет преимуществ перед другими процессами при исполнении, с тем, чтобы обеспечить более справедливое планирование процессов: если по выходе процесса из системной функции или из прерывания обнаруживается, что существует еще один процесс, который имеет более высокий приоритет и ждет выполнения, то было бы несправедливо оставлять его в ожидании.

Процедура переключения контекста похожа на процедуры обработки прерываний и обращения к системным функциям, если не считать того, что ядро вместо предыдущего контекстного уровня текущего процесса восстанавливает контекстный уровень другого процесса. Причины, вызвавшие переключение контекста, при этом не имеют значения. На механизм переключения контекста не влияет и метод выбора следующего процесса для исполнения.

Рисунок 6.15. Последовательность шагов, выполняемых при переключении контекста

Текст программы, реализующей переключение контекста в системе UNIX, из всех программ операционной системы самый трудный для понимания, ибо при рассмотрении обращений к функциям создается впечатление, что они в одних случаях не возвращают управление, а в других - возникают непонятно откуда. Причиной этого является то, что ядро во многих системных реализациях сохраняет контекст процесса в одном месте программы, но продолжает работу, выполняя переключение контекста и алгоритмы диспетчеризации в контексте "прежнего" процесса. Когда позднее ядро восстанавливает контекст процесса, оно возобновляет его выполнение в соответствии с ранее сохраненным контекстом. Чтобы различать между собой те случаи, когда ядро восстанавливает контекст нового процесса, и когда оно продолжает исполнять ранее сохраненный контекст, можно варьировать значения, возвращаемые критическими функциями, или устанавливать искусственным образом текущее значение счетчика команд.

На Рисунке 6.16 приведена схема переключения контекста. Функция save_context сохраняет информацию о контексте исполняемого процесса и возвращает значение 1. Кроме всего прочего, ядро сохраняет текущее значение счетчика команд (в функции save_context) и значение 0 в нулевом регистре при выходе из функции. Ядро продолжает исполнять контекст "прежнего" процесса (A), выбирая для выполнения следующий процесс (B) и вызывая функцию resume_context для восстановления его контекста. После восстановления контекста система выполняет процесс B; прежний процесс (A) больше не исполняется, но он оставил после себя сохраненный контекст. Позже, когда будет выполняться переключение контекста, ядро снова изберет процесс A (если только, разумеется, он не был завершен). В результате восстановления контекста A ядро присвоит счетчику команд то значение, которое было сохранено процессом A ранее в функции save_context, и возвратит в регистре 0 значение 0. Ядро возобновляет выполнение процесса A из функции save_context, пусть даже при выполнении программы переключения контекста оно не добралось еще до функции resume_context. В конечном итоге, процесс A возвращается из функции save_context со значением 0 (в нулевом регистре) и возобновляет выполнение после строки комментария "возобновление выполнение процесса начинается отсюда".

Рисунок 6.16. Псевдопрограмма переключения контекста

6.4.4 Сохранение контекста на случай аварийного завершения

Существуют ситуации, когда ядро вынуждено аварийно прерывать текущий порядок выполнения и немедленно переходить к исполнению ранее сохраненного контекста. В последующих разделах, где пойдет речь о приостановлении выполнения и о сигналах, будут описаны обстоятельства, при которых процессу приходится внезапно изменять свой контекст; в данном же разделе рассматривается механизм исполнения предыдущего контекста. Алгоритм сохранения контекста называется setjmp, а алгоритм восстановления контекста - longjmp (***). Механизм работы алгоритма setjmp похож на механизм функции save_context, рассмотренный в предыдущем разделе, если не считать того, что функция save_context помещает новый контекстный уровень в стек, в то время как setjmp сохраняет контекст в пространстве процесса и после выхода из него выполнение продолжается в прежнем контекстном уровне. Когда ядру понадобится восстановить контекст, сохраненный в результате работы алгоритма setjmp, оно исполнит алгоритм longjmp, который восстанавливает контекст из пространства процесса и имеет, как и setjmp, код завершения, равный 1.

6.4.5 Копирование данных между адресным пространством системы и адресным пространством задачи

До сих пор речь шла о том, что процесс выполняется в режиме ядра или в режиме задачи без каких-либо перекрытий (пересечений) между режимами. Однако, при выполнении большинства системных функций, рассмотренных в последней главе, между пространством ядра и пространством задачи осуществляется пересылка данных, например, когда идет копирование параметров вызываемой функции из пространства задачи в пространство ядра или когда производится передача данных из буферов ввода-вывода в процессе выполнения функции read. На многих машинах ядро системы может непосредственно ссылаться на адреса, принадлежащие адресному пространству задачи. Ядро должно убедиться в том, что адрес, по которому производится запись или считывание, доступен, как будто бы работа ведется в режиме задачи; в противном случае произошло бы нарушение стандартных методов защиты и ядро, пусть неумышленно, стало бы обращаться к адресам, которые находятся за пределами адресного пространства задачи (и, возможно, принадлежат структурам данных ядра). Поэтому передача данных между пространством ядра и пространством задачи является "дорогим предприятием", требующим для своей реализации нескольких команд.

Рисунок 6.17. Пересылка данных из пространства задачи в пространство ядра в системе VAX

На Рисунке 6.17 показан пример реализованной в системе VAX программы пересылки символа из адресного пространства задачи в адресное пространство ядра. Команда prober проверяет, может ли байт по адресу, равному (регистр указателя аргумента + 4), быть считан в режиме задачи (режиме 3), и если нет, ядро передает управление по адресу eret, сохраняет в нулевом регистре -1 и выходит из программы; при этом пересылки символа не происходит. В противном случае ядро пересылает один байт, находящийся по указанному адресу, в регистр 0 и возвращает его в вызывающую программу. Пересылка 1 символа потребовала пяти команд (включая вызов функции с именем fubyte).

(***) Эти алгоритмы не следует путать с имеющими те же названия библиотечными функциями, которые могут вызываться непосредственно из пользовательских программ (см. [SVID 85]). Однако действие этих функций похоже.

Материал этой статьи ни в коем случае не претендует на полноту. Более подробно о процессах вы можете прочитать в книгах, посвященных программированию под UNIX.

Процессы. Системные вызовы fork() и exec(). Нити.

Процесс в Linux (как и в UNIX) - это программа, которая выполняется в отдельном виртуальном адресном пространстве. Когда пользователь регистрируется в системе, автоматически создается процесс, в котором выполняется оболочка (shell), например, /bin/bash.

В Linux поддерживается классическая схема мультипрограммирования. Linux поддерживает параллельное (или квазипараллельное при наличии только одного процессора) выполнение процессов пользователя. Каждый процесс выполняется в собственном виртуальном адресном пространстве, т.е. процессы защищены друг от друга и крах одного процесса никак не повлияет на другие выполняющиеся процессы и на всю систему в целом. Один процесс не может прочитать что-либо из памяти (или записать в нее) другого процесса без <разрешения> на то другого процесса. Санкционированные взаимодействия между процессами допускаются системой.

Ядро предоставляет системные вызовы для создания новых процессов и для управления порожденными процессами. Любая программа может начать выполняться только если другой процесс ее запустит или произойдет какое-то прерывание (например, прерывание внешнего устройства).

В связи с развитием SMP (Symmetric Multiprocessor Architectures) в ядро Linux был внедрен механизм нитей или потоков управления (threads). Нить - это процесс, который выполняется в виртуальной памяти, используемой вместе с другими нитями процесса, который обладает отдельной виртуальной памятью.

Если интерпретатору (shell) встречается команда, соответствующая выполняемому файлу, интерпретатор выполняет ее, начиная с точки входа (entry point). Для С-программ entry point - это функция main. Запущенная программа тоже может создать процесс, т.е. запустить какую-то программу и ее выполнение тоже начнется с функции main.

Для создания процессов используются два системных вызова: fork() и exec. fork() создает новое адресное пространство, которое полностью идентично адресному пространству основного процесса. После выполнения этого системного вызова мы получаем два абсолютно одинаковых процесса - основной и порожденный. Функция fork() возвращает 0 в порожденном процессе и PID (Process ID - идентификатор порожденного процесса) - в основном. PID - это целое число.
Теперь, когда мы уже создали процесс, мы можем запустить программу с помощью вызова exec. Параметрами функции exec является имя выполняемого файла и, если нужно, параметры, которые будут переданы этой программе. В адресное пространство порожденного с помощью fork() процесса будет загружена новая программа и ее выполнение начнется с точки входа (адрес функции main).

В качестве примера рассмотрим этот фрагмент программы

  1. Выделяется память для описателя нового процесса в таблице процессов
  2. Назначается идентификатор процесса PID
  3. Создается логическая копия процесса, который выполняет fork() - полное копирование содержимого виртуальной памяти родительского процесса, копирование составляющих ядерного статического и динамического контекстов процесса-предка
  4. Увеличиваются счетчики открытия файлов (порожденный процесс наследует все открытые файлы родительского процесса).
  5. Возвращается PID в точку возврата из системного вызова в родительском процессе и 0 - в процессе-потомке.

Общая схема управления процессами
Каждый процесс может порождать полностью идентичный процесс с помощью fork(). Родительский процесс может дожидаться окончания выполнения всех своих процессов-потомков с помощью системного вызова wait.
В любой момент времени процесс может изменить содержимое своего образа памяти, используя одну из разновидностей вызова exec. Каждый процесс реагирует на сигналы и, естественно, может установить собственную реакцию на сигналы, производимые операционной системой. Приоритет процесса может быть изменен с помощью системного вызова nice.

Сигнал - способ информирования процесса ядром о происшествии какого-то события. Если возникает несколько однотипных событий, процессу будет подан только один сигнал. Сигнал означает, что произошло событие, но ядро не сообщает сколько таких событий произошло.

  1. окончание порожденного процесса (например, из-за системного вызова exit (см. ниже))
  2. возникновение исключительной ситуации
  3. сигналы, поступающие от пользователя при нажатии определенных клавиш.

Установить реакцию на поступление сигнала можно с помощью системного вызова signal
func = signal(snum, function);

snum - номер сигнала, а function - адрес функции, которая должна быть выполнена при поступлении указанного сигнала. Возвращаемое значение - адрес функции, которая будет реагировать на поступление сигнала. Вместо function можно указать ноль или единицу. Если был указан ноль, то при поступлении сигнала snum выполнение процесса будет прервано аналогично вызову exit. Если указать единицу, данный сигнал будет проигнорирован, но это возможно не для всех процессов.

С помощью системного вызова kill можно сгенерировать сигналы и передать их другим процессам.
kill(pid, snum);
где pid - идентификатор процесса, а snum - номер сигнала, который будет передан процессу. Обычно kill используется для того, чтобы принудительно завершить (<убить>) процесс.
Pid состоит из идентификатора группы процессов и идентификатора процесса в группе. Если вместо pid указать нуль, то сигнал snum будет направлен всем процессам, относящимся к данной группе (понятие группы процессов аналогично группе пользователей). В одну группу включаются процессы, имеющие общего предка, идентификатор группы процесса можно изменить с помощью системного вызова setpgrp. Если вместо pid указать -1, ядро передаст сигнал всем процессам, идентификатор пользователя которых равен идентификатору текущего выполнения процесса, который посылает сигнал.

Сигналы (точнее их номера) описаны в файле singnal.h

Для нормального завершение процесса используется вызов
exit(status);
где status - это целое число, возвращаемое процессу-предку для его информирования о причинах завершения процесса-потомка.
Вызов exit может задаваться в любой точке программы, но может быть и неявным, например при выходе из функции main (при программировании на C) оператор return 0 будет воспринят как системный вызов exit(0);

Перенаправление ввода/вывода

Практически все операционные системы обладают механизмом перенаправления ввода/вывода. Linux не является исключением из этого правила. Обычно программы вводят текстовые данные с консоли (терминала) и выводят данные на консоль. При вводе под консолью подразумевается клавиатура, а при выводе - дисплей терминала. Клавиатура и дисплей - это, соответственно, стандартный ввод и вывод (stdin и stdout). Любой ввод/вывод можно интерпретировать как ввод из некоторого файла и вывод в файл. Работа с файлами производится через их дескрипторы. Для организации ввода/вывода в UNIX используются три файла: stdin (дескриптор 1), stdout (2) и stderr(3).

Символ > используется для перенаправления стандартного вывода в файл.
Пример:
$ cat > newfile.txt Стандартный ввод команды cat будет перенаправлен в файл newfile.txt, который будет создан после выполнения этой команды. Если файл с этим именем уже существует, то он будет перезаписан. Нажатие Ctrl + D остановит перенаправление и прерывает выполнение команды cat.

Символ < используется для переназначения стандартного ввода команды. Например, при выполнении команды cat < file.txt в качестве стандартного ввода будет использован файл file.txt, а не клавиатура.

Символ >> используется для присоединения данных в конец файла (append) стандартного вывода команды. Например, в отличие от случая с символом >, выполнение команды cat >> newfile.txt не перезапишет файл в случае его существования, а добавит данные в его конец.

Команды для управления процессами

Предназначена для вывода информации о выполняемых процессах. Данная команда имеет много параметров, о которых вы можете прочитать в руководстве (man ps). Здесь я опишу лишь наиболее часто используемые мной:

Параметр Описание
-a отобразить все процессы, связанных с терминалом (отображаются процессы всех пользователей)
-e отобразить все процессы
-t список терминалов отобразить процессы, связанные с терминалами
-u идентификаторы пользователей отобразить процессы, связанные с данными идентификаторыми
-g идентификаторы групп отобразить процессы, связанные с данными идентификаторыми групп
-x отобразить все процессы, не связанные с терминалом

Например, после ввода команды ps -a вы увидите примерно следующее:

Для вывода информации о конкретном процессе мы можем воспользоваться командой:

Программа top

Предназначена для вывода информации о процессах в реальном времени. Процессы сортируются по максимальному занимаемому процессорному времени, но вы можете изменить порядок сортировки (см. man top). Программа также сообщает о свободных системных ресурсах.

Изменение приоритета процесса - команда nice

nice [-коэффициент понижения] команда [аргумент]

Команда nice выполняет указанную команду с пониженным приоритетом, коэффициент понижения указывается в диапазоне 1..19 (по умолчанию он равен 10). Суперпользователь может повышать приоритет команды, для этого нужно указать отрицательный коэффициент, например . Если указать коэффициент больше 19, то он будет рассматриваться как 19.

nohup - игнорирование сигналов прерывания

nohup команда [аргумент]

nohup выполняет запуск команды в режиме игнорирования сигналов. Не игнорируются только сигналы SIGHUP и SIGQUIT.

kill - принудительное завершение процесса

kill [-номер сигнала] PID

где PID - идентификатор процесса, который можно узнать с помощью команды ps.

Команды выполнения процессов в фоновом режиме - jobs, fg, bg

Команда jobs выводит список процессов, которые выполняются в фоновом режиме, fg - переводит процесс в нормальные режим (<на передний план> - foreground), а bg - в фоновый. Запустить программу в фоновом режиме можно с помощью конструкции команда &

Читайте также: