Как написать свой первый linux device driver часть 3

Обновлено: 04.07.2024

Руководство → Пишем свой драйвер под Linux

То, что мы сегодня создадим, корректнее будет назвать LKM (Linux Kernel Module или загрузочный модуль ядра). Стоит сказать, что драйвер – это одна из разновидностей LKM.

Писать модуль мы будем под ядра линейки 2.6. LKM для 2.6 отличается от 2.4. Я не буду останавливаться на различиях, ибо это не входит в рамки поста.

Мы создадим символьное устройство /dev/test, которое будет обрабатываться нашим модулем. Хочу сразу оговориться, что размещать символьное устройство не обязательно в каталоге /dev, просто это является частью «древнего магического ритуала».

Немного теории

Если кратко, то LKM – это объект, который содержит код для расширения возможностей уже запущенного ядра Linux. Т.е. работает он в пространстве ядра, а не пользователя. Так что не стоит экспериментировать на рабочем сервере. В случае ошибки, закравшейся в модуль, получите kernel panic. Будем считать, что я вас предупредил.

Модуль ядра должен иметь как минимум 2 функции: функцию инициализации и функцию выхода. Первая вызывается во время загрузки модуля в пространство ядра, а вторая, соответственно, при выгрузке его. Эти функции задаются с помощью макроопределений: module_init и module_exit.

Стоит сказать несколько слов о функции printk(). Основное назначение этой функции — реализация механизма регистрации событий и предупреждений. Иными словами эта функция для записи в лог ядра некой информации.

Т.к. драйвер работает в пространстве ядра, но он отграничен от адресного пространства пользователя. А нам хотелось бы иметь возможность вернуть некий результат. Для этого используется функция put_user(). Она как раз и занимается тем, что перекидывает данные из пространства ядра в пользовательское.

Хочу ещё сказать пару слов о символьных устройствах.

Выполните команду ls -l /dev/sda*. Вы увидите что-то вроде:
brw-rw---- 1 root disk 8, 0 2010-10-11 10:23 /dev/sda
brw-rw---- 1 root disk 8, 1 2010-10-11 10:23 /dev/sda1
brw-rw---- 1 root disk 8, 2 2010-10-11 10:23 /dev/sda2
brw-rw---- 1 root disk 8, 5 2010-10-11 10:23 /dev/sda5

Между словом «disk» и датой есть два числа разделённых запятой. Первое число называют старшим номером устройства. Старший номер указывает на то, какой драйвер используется для обслуживания данного устройства. Каждый драйвер имеет свой уникальный старший номер.

Файлы устройства создаются с помощью команты mknod, например: mknod /dev/test c 12. Этой командой мы создадим устройство /dev/test и укажем для него старший номер (12).

Я не буду сильно углубляться в теорию, т.к. кому интересно – тот сможет сам почитать про это подробнее. Я дам ссылку в конце.

Прежде чем начать

  • insmod – добавить модуль в ядро
  • rmmod – соответственно, удалить
  • lsmod – вывести список текущих модулей
  • modinfo – вывести информацию о модуле

В debian/ubuntu их можно легко поставить так (к примеру для 2.6.26-2-686):

Либо собрать пакет для вашего текущего ядра самим: fakeroot make-kpkg kernel_headers

Исходник

Сборка модуля

obj-m += test.o
all:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules
clean:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

И проверить его работоспособность:


Посмотрим что у нас получилось:

drwxr-xr-x 3 root root 4096 Окт 21 12:32.
drwxrwxrwt 12 root root 4096 Окт 21 12:33…
-rw-r--r-- 1 root root 219 Окт 21 12:30 demo.sh
-rw-r--r-- 1 root root 161 Окт 21 12:30 Makefile
-rw-r--r-- 1 root root 22 Окт 21 12:32 modules.order
-rw-r--r-- 1 root root 0 Окт 21 12:32 Module.symvers
-rw-r--r-- 1 root root 2940 Окт 21 12:30 test.c
-rw-r--r-- 1 root root 10364 Окт 21 12:32 test.ko
-rw-r--r-- 1 root root 104 Окт 21 12:32 .test.ko.cmd
-rw-r--r-- 1 root root 717 Окт 21 12:32 test.mod.c
-rw-r--r-- 1 root root 6832 Окт 21 12:32 test.mod.o
-rw-r--r-- 1 root root 12867 Окт 21 12:32 .test.mod.o.cmd
-rw-r--r-- 1 root root 4424 Окт 21 12:32 test.o
-rw-r--r-- 1 root root 14361 Окт 21 12:32 .test.o.cmd
drwxr-xr-x 2 root root 4096 Окт 21 12:32 .tmp_versions

Теперь посмотрим информацию о только что скомпилированном модуле:


Ну и наконец установим модуль в ядро:


Посмотрим есть ли наш модуль с списке:

И что попало в логи:

[829528.598922] Test module is loaded!
[829528.598926] Please, create a dev file with 'mknod /dev/test c 249 0'.

Наш модуль подсказываем нам что нужно сделать.

Последуем его совету:


Ну и наконец проверим работает ли наш модуль:

Наш модуль не поддерживает приём данных со стороны пользователя:


bash: echo: ошибка записи: Недопустимый аргумент

Посмотрим что что скажет модуль на наши действия:

[829528.598922] Test module is loaded!
[829528.598926] Please, create a dev file with 'mknod /dev/test c 249 0'.
[829747.462715] Sorry, this operation isn't supported.


И посмотрим что он нам скажет на прощание:

[829528.598922] Test module is loaded!
[829528.598926] Please, create a dev file with 'mknod /dev/test c 249 0'.
[829747.462715] Sorry, this operation isn't supported.
[829893.681197] Test module is unloaded!

Удалим файл устройства, что бы он нас не смущал:

Заключение

Дальнейшее развитие этой «заготовки» зависит только от вас. Можно превратить её в настоящий драйвер, который будет предоставлять интерфейс к вашему девайсу, либо использовать для дальнейшего изучения ядра Linux.

Только что в голову пришла совершенно безумная идея сделать sudo через файл устройства. Т.е. посылаем в /dev/test команду и она выполняется от имени root.

В предыдущих статьях (один, два) мы определили понятие символьного устройства и написали простейший пример символьного драйвера. Последняя часть посвещена проверки его работоспособности. На Хабре уже есть примеры как можно протестировать драйвер, например: тык.

Я попытаюсь рассмотреть данный вопрос чуть подробнее, надеюсь, вам понравится.

Сборка модуля ядра

Для того чтобы собрать наш модуль, нам понадобится написать маленький Makefile. Прочитать, что такое Makefile, можно тут: раз, два, три. Также я писал как-то пример Makefile для студентов, можно посомтреть тут: клик.

Если вкратце, то Makefile это набор инструкций для программы make, а make это утилита, автоматизирующая процесс преобразования файлов из одной формы в другую. После беглого знакомства с Makefile можно посмотреть на код:

Давайте взгялнем на команду:

Она начинается со смены каталога (в моем случае на: /lib/modules/4.4.0-93-generic/build), в этом каталоге находятся исходные тексты ядра, а также Makefile, который утилита make прочитает. Переменная M, позволяет указать где находится наш проект и вернуться назад, по указанному в нем пути. Т.е на самом деле мы используем другой Makefile, чтобы выполнить сборку нашего модуля.

Пишем в командной строке make и получаем вывод:

После сборки, на выходе получился скомпилированный модуль fake.ko. Его то мы и будем загружать с помощью команды insmod.

Далее нужно выполнить следующую последовательность действий:

  1. Загрузить модуль в ядро
    Выполнить: sudo insmod fake.ko
  2. Проверить, с помощью команды dmesg, ожидаемый вывод модуля
    Пример: scull: register device major = 243 minor = 0
  3. Создать файл нашего устройства в файловой системе
    Пример: sudo mknod /dev/scull c 243 0
  4. Изменить права доступа
    Пример: sudo chmod 777 /dev/scull
  1. Компилируем: gcc test.c -o test
  2. Вызываем исполняемый файл: ./test
  3. Записываем в устройство: Hello world!
  4. Повторно вызываем исполняемый файл: ./test
  5. Считываем данные: scull: Hello world!

В конце предыдущей статье я проводил опрос, хочу сказать спасибо всем, кто принял в нем участие! В скором времени начну писать о процессе портирования драйверов устройств с одной версии ядра на другую.

Как написать свой первый Linux device driver. Часть 3

В предыдущих статьях (один, два) мы определили понятие символьного устройства и написали простейший пример символьного драйвера. Последняя часть посвещена проверки его работоспособности. На Хабре уже есть примеры как можно протестировать драйвер, например: тык.

Я попытаюсь рассмотреть данный вопрос чуть подробнее, надеюсь, вам понравится.

Сборка модуля ядра

Для того чтобы собрать наш модуль, нам понадобится написать маленький Makefile. Прочитать, что такое Makefile, можно тут: раз, два, три. Также я писал как-то пример Makefile для студентов, можно посомтреть тут: клик.

Если вкратце, то Makefile это набор инструкций для программы make, а make это утилита, автоматизирующая процесс преобразования файлов из одной формы в другую. После беглого знакомства с Makefile можно посмотреть на код:

Давайте взгялнем на команду:

Она начинается со смены каталога (в моем случае на: /lib/modules/4.4.0-93-generic/build), в этом каталоге находятся исходные тексты ядра, а также Makefile, который утилита make прочитает. Переменная M, позволяет указать где находится наш проект и вернуться назад, по указанному в нем пути. Т.е на самом деле мы используем другой Makefile, чтобы выполнить сборку нашего модуля.

Пишем в командной строке make и получаем вывод:

После сборки, на выходе получился скомпилированный модуль fake.ko. Его то мы и будем загружать с помощью команды insmod.

Далее нужно выполнить следующую последовательность действий:

  1. Загрузить модуль в ядро
    Выполнить: sudo insmod fake.ko
  2. Проверить, с помощью команды dmesg, ожидаемый вывод модуля
    Пример: scull: register device major = 243 minor = 0
  3. Создать файл нашего устройства в файловой системе
    Пример: sudo mknod /dev/scull c 243 0
  4. Изменить права доступа
    Пример: sudo chmod 777 /dev/scull
  1. Компилируем: gcc test.c -o test
  2. Вызываем исполняемый файл: ./test
  3. Записываем в устройство: Hello world!
  4. Повторно вызываем исполняемый файл: ./test
  5. Считываем данные: scull: Hello world!

В конце предыдущей статье я проводил опрос, хочу сказать спасибо всем, кто принял в нем участие! В скором времени начну писать о процессе портирования драйверов устройств с одной версии ядра на другую.

Подготовительные работы

Спасибо Kolyuchkin за уточнения.

Символьный драйвер (Char driver) — это, драйвер, который работает с символьными устройствами.
Символьные устройства — это устройства, к которым можно обращаться как к потоку байтов.
Пример символьного устройства — /dev/ttyS0, /dev/tty1.

К вопросу про проверсию ядра:

Драйвер представляет каждое символьное устройство структурой scull_dev, а также предостовляет интерфейс cdev к ядру.

Устройство будет представлять связный список указателей, каждый из которых указывает на структуру scull_qset.

Для наглядности посмотрите на картинку.

Для регистрации устройства, нужно задать специальные номера, а именно:

MAJOR — старший номер (является уникальным в системе).
MINOR — младший номер (не является уникальным в системе).

В ядре есть механизм, который позволяет регистрировать специализированные номера вручную, но такой подход нежелателен и лучше вежливо попросить ядро динамически выделить их для нас. Пример кода будет ниже.

После того как мы определили номера для нашего устройства, мы должны установить связь между этими номерами и операциями драйвера. Это можно сделать используя структуру file_operations.

В ядре есть специальные макросы module_init/module_exit, которые указывают путь к функциям инициализации/удаления модуля. Без этих определений функции инициализации/удаления никогда не будут вызваны.

Здесь будем хранить базовую информацию об устройстве.

Последним этапом подготовительной работы будет подключение заголовочных файлов.
Краткое описание приведено ниже, но если вы хотите копнуть поглубже, то добро пожаловать на прекрасный сайт: lxr

Инициализация

Теперь давайте посмотрим на функцию инициализации устройства.

Первым делом, вызывая alloc_chrdev_region мы регистрируем диапазон символьных номеров устройств и указываем имя устройства. После вызовом MAJOR(dev) мы получаем старший номер.
Далее проверяется вернувшееся значение, если оно является кодом ошибки, то выходим из функции. Стоит отметить, что при разработке реального драйвера устройства следует всегда проверять возвращаемые значения, а также указатели на любые элементы (NULL?).

Если вернувшееся значение не является кодом ошибки, продолжаем выполнять инициализацию.
Выделяем память, делая вызов функции kmalloc и обязательно проверяем указатель на NULL.

Стоит упомянуть, что вместо вызова двух функций kmalloc и memset, можно использовать один вызов kzalloc, который выделят область памяти и инициализирует ее нулями.

Продолжаем инициализацию. Главная здесь функция — это scull_setup_cdev, о ней мы поговорим чуть ниже. MKDEV служит для хранения старший и младших номеров устройств.

Возвращаем значение или обрабатываем ошибку и удаляем устройство.

Выше были представлены структуры scull_dev и cdev, которые реализуют интерфейс между нашим устройством и ядром. Функция scull_setup_cdev выполняет инициализацию и добавление структуры в систему.

Как написать свой первый linux device driver часть 3

Хабр

Хабр

Хабр запись закреплена

Как написать свой первый Linux device driver. Часть 3

В предыдущих статьях (один, два) мы определили понятие символьного устройства и написали простейший пример символьного драйвера. Последняя часть посвещена проверки его работоспособности. На Хабре уже есть примеры как можно протестировать драйвер, например: тык.

Я попытаюсь рассмотреть данный вопрос чуть подробнее, надеюсь, вам понравится.

Удаление

Функция scull_cleanup_module вызывается при удалении модуля устройства из ядра.
Обратный процесс инициализации, удаляем структуры устройств, освобождаем память и удаляем выделенные ядром младшие и старшие номера.

Как написать свой первый Linux device driver

Как написать свой первый Linux device driver, изображение №1

Цель данной статьи — показать принцип реализации драйверов устройств в системе Linux, на примере простого символьного драйвера.

Для меня же, главной целью является подвести итог и сформировать базовые знания для написания будущих модулей ядра, а также получить опыт изложения технической литературы для публики, т.к. через полгода я буду выступать со своим дипломным проектом (да я студент).

Это моя первая статья, пожалуйста не судите строго!

Получилось слишком много букв, поэтому я принял решение разделить статью на три части:

Часть 1 — Введение, инициализация и очистка модуля ядра.
Часть 2 — Функции open, read, write и trim.
Часть 3 — Пишем Makefile и тестируем устройство.

Перед вступлением, хочу сказать, что здесь будут изложены базовые вещи, более подробная информация будет изложена во второй и последней части данной статьи.

Цель данной статьи — показать принцип реализации драйверов устройств в системе Linux, на примере простого символьного драйвера.

Для меня же, главной целью является подвести итог и сформировать базовые знания для написания будущих модулей ядра, а также получить опыт изложения технической литературы для публики, т.к. через полгода я буду выступать со своим дипломным проектом (да я студент).

Это моя первая статья, пожалуйста не судите строго!

Получилось слишком много букв, поэтому я принял решение разделить статью на три части:

Часть 1 — Введение, инициализация и очистка модуля ядра.
Часть 2 — Функции open, read, write и trim.
Часть 3 — Пишем Makefile и тестируем устройство.

Перед вступлением, хочу сказать, что здесь будут изложены базовые вещи, более подробная информация будет изложена во второй и последней части данной статьи.

Подготовительные работы

Спасибо Kolyuchkin за уточнения.

Символьный драйвер (Char driver) — это, драйвер, который работает с символьными устройствами.
Символьные устройства — это устройства, к которым можно обращаться как к потоку байтов.
Пример символьного устройства — /dev/ttyS0, /dev/tty1.

К вопросу про про версию ядра:

Драйвер представляет каждое символьное устройство структурой scull_dev, а также предоставляет интерфейс cdev к ядру.

Устройство будет представлять связный список указателей, каждый из которых указывает на структуру scull_qset.

Для наглядности посмотрите на картинку.

Как написать свой первый Linux device driver, изображение №1

Для регистрации устройства, нужно задать специальные номера, а именно:

MAJOR — старший номер (является уникальным в системе).
MINOR — младший номер (не является уникальным в системе).

В ядре есть механизм, который позволяет регистрировать специализированные номера вручную, но такой подход нежелателен и лучше вежливо попросить ядро динамически выделить их для нас. Пример кода будет ниже.

После того как мы определили номера для нашего устройства, мы должны установить связь между этими номерами и операциями драйвера. Это можно сделать используя структуру file_operations.

В ядре есть специальные макросы module_init/module_exit, которые указывают путь к функциям инициализации/удаления модуля. Без этих определений функции инициализации/удаления никогда не будут вызваны.

Здесь будем хранить базовую информацию об устройстве.

Последним этапом подготовительной работы будет подключение заголовочных файлов.
Краткое описание приведено ниже, но если вы хотите копнуть поглубже, то добро пожаловать на прекрасный сайт: lxr

Инициализация

Теперь давайте посмотрим на функцию инициализации устройства.

Первым делом, вызывая alloc_chrdev_region мы регистрируем диапазон символьных номеров устройств и указываем имя устройства. После вызовом MAJOR(dev) мы получаем старший номер.
Далее проверяется вернувшееся значение, если оно является кодом ошибки, то выходим из функции. Стоит отметить, что при разработке реального драйвера устройства следует всегда проверять возвращаемые значения, а также указатели на любые элементы (NULL?).

Если вернувшееся значение не является кодом ошибки, продолжаем выполнять инициализацию.

Выделяем память, делая вызов функции kmalloc и обязательно проверяем указатель на NULL.

Стоит упомянуть, что вместо вызова двух функций kmalloc и memset, можно использовать один вызов kzalloc, который выделят область памяти и инициализирует ее нулями.

Продолжаем инициализацию. Главная здесь функция — это scull_setup_cdev, о ней мы поговорим чуть ниже. MKDEV служит для хранения старший и младших номеров устройств.

Возвращаем значение или обрабатываем ошибку и удаляем устройство.

Выше были представлены структуры scull_dev и cdev, которые реализуют интерфейс между нашим устройством и ядром. Функция scull_setup_cdev выполняет инициализацию и добавление структуры в систему.

Удаление

Функция scull_cleanup_module вызывается при удалении модуля устройства из ядра.
Обратный процесс инициализации, удаляем структуры устройств, освобождаем память и удаляем выделенные ядром младшие и старшие номера.

В этой статье сначала описывается пример драйвера, который можно протестировать и запустить, а затем обсуждаются элементы шаблона драйвера в Linux и процесс выполнения от приложения к драйверу в Linux. Я считаю, что описание от мелкого до глубокого, от конкретных примеров до абстрактной теории, для начинающих легче начать с двери, управляемой Linux.

1. Простой пример драйвера

Файл драйвера hello.c

Файл драйвера в основном включает в себя функции hello_open, hello_write, hello_init, hello_exit. Тестовый пример не дает модулю драйвера практическую функцию, а только печатает журнал, чтобы сообщить консоли некоторую отладочную информацию, чтобы мы могли понять выполнение драйвера ,

При печати с использованием printk добавление «KERN_EMERG» к параметрам может обеспечить вывод информации для печати на консоль. Поскольку printk print разделен на 8 уровней, верхний уровень выводится на консоль, а нижний уровень выводится в файл журнала.

Makefile требуется для компиляции драйвера

Для компиляции файла драйвера необходим подходящий make-файл, потому что при компиляции драйвера нужно знать файл заголовка ядра, правила компиляции и т. Д.

Тестовый верхний код приложения hellotest.c

В верхнем тестовом случае сначала откройте файл устройства, а затем запишите данные на устройство. Таким образом, будут вызваны соответствующие функции xxx_open и xxx_write в драйвере, и информация о печати драйвера может быть использована для определения, действительно ли соответствующая функция выполняется должным образом.

Во-вторых, пример теста диска

Общий метод тестирования состоит в том, чтобы скомпилировать драйвер и тестовое приложение верхнего уровня, загрузить драйвер и вызвать драйвер через приложение верхнего уровня и, наконец, выгрузить драйвер.

1. Скомпилируйте драйвер

Создайте команду, напрямую вызовите Makefile для компиляции hello.c и, наконец, сгенерируйте «hellomodule.ko».

2. Скомпилируйте приложение верхнего уровня

С помощью этой команды вы можете скомпилировать приложение hellotest верхнего уровня.

3. Загрузите драйвер

Когда insmod загружает драйвер, вызывается функция hello_init (), и распечатанная отладочная информация выглядит следующим образом.


Кроме того, вы можете увидеть загруженные модули в "/ proc / devices".


4. Создайте узел

Хотя драйвер hellomodule.ko был загружен, и загруженный модуль HelloModule также отображается в файле / proc / devices, этот модуль не может использоваться, поскольку в каталоге устройств / dev нет соответствующего файла устройства. Поэтому вам необходимо создать узел устройства.

Номер основного устройства модуля HelloModule в / proc / devices равен 231. Когда узел создается, файл устройства / dev / hellodev подключается к номеру основного устройства. Таким образом, когда приложение манипулирует файлом / dev / hellodev, оно обнаружит модуль HelloModule.


  • Устройство в / proc / devices генерируется драйвером, оно может генерировать мажор для mknod в качестве параметра. Содержимое этого файла показывает модули, которые в настоящее время смонтированы в системе. Когда загружается драйвер HelloModule, соответствующий файл устройства не генерируется для абстрактной инкапсуляции устройства для доступа к приложениям верхнего уровня.
  • Устройство в / dev добавляется mknod, и пользователь получает доступ к драйверу через это имя устройства. Я думал, что файлы в / dev можно рассматривать как абстрактный пакет аппаратных модулей, и все устройства в Linux были упакованы в виде файлов.

5. Вызов драйвера приложения верхнего уровня

Приложение hellotest сначала открывает файл "/ dev / hellodev", а затем записывает переменную val в этот файл. В течение этого периода будут вызваны функции hello_open и hello_write в базовом драйвере. Ниже приведены результаты работы hellotest.


6. Удалите драйвер

Когда insmod удаляет драйвер, он вызывает функцию hello_exit (), и печатная информация об отладке выглядит следующим образом.


Суммируйте последовательность операций модуля:

(1) Зарегистрируйте модуль с помощью команды insmod

(2) Создайте файл устройства «xxx» в каталоге / dev с помощью команды mknod и установите соединение с модулем через основной номер устройства.

(3) Прикладной уровень управляет базовым модулем через файл устройства / dev / xxx

Три, диск шаблон

Понимание структуры драйвера с точки зрения макроса, а затем доведение до совершенства функции драйвера из деталей - это основной этап разработки драйвера. К основным элементам шаблона драйвера относятся заголовочные файлы, функции инициализации, функции выхода и информация об авторских правах. Обычно используемые элементы расширения предназначены для добавления некоторых функциональных функций для улучшения функций базового драйвера.

1. Заголовочные файлы

init.h определяет функции, связанные с инициализацией и выходом драйвера
kernel.h определяет часто используемые прототипы функций и определения макросов
module.h определяет функции, переменные и макросы, связанные с модулем ядра

2. Функция инициализации

Когда драйвер загружается в ядро, эта функция инициализации будет выполняться автоматически.

Функция инициализации используется для инициализации модуля, как следует из названия. Обычно используемая функция заключается в регистрации функции через register_chrdev. Ядро выделяет часть памяти (массив) для хранения набора функций символьного устройства.Функция register_chrdev заполнит содержимое hello_flops в позиции HELLO_MAJOR этого массива, которое должно зарегистрировать адрес функции функции HelloModule для набора памяти управления устройством.


3. Выход из функции

Когда драйвер удален, функция выхода будет выполнена автоматически, выполнив некоторые понятные задачи.

При загрузке драйвера мы регистрировали соответствующие функции функции модуля в памяти устройства управления. При удалении драйвера необходимо очистить пространство памяти, занимаемое этим модулем. Таким образом, при регистрации других устройств остается больше места для выбора.

Метафора изображения заключается в том, что при выгрузке диска одежда снимается с вешалки, так что вешалка становится пустой.

4. Информация об авторских правах

Ядро Linux выпущено в соответствии с GPL, и драйвер Linux также должен предоставлять информацию об авторских правах, в противном случае система выдаст предупреждение при загрузке в ядро.

5. Функциональная функция

В-четвертых, процесс выполнения от приложения верхнего уровня до драйвера нижнего уровня

1. Иерархическая структура системы Linux


Многоуровневая структура системы Linux: прикладной уровень ----> библиотека ----> ядро ​​----> драйвер ----> аппаратное устройство.

2. Процесс выполнения от приложения верхнего уровня до драйвера нижнего уровня

Возьмем функцию "open (" / dev / hellodev ", O_RDWR)" в качестве примера для иллюстрации.

(1) Приложение использует функцию открытия, предоставляемую библиотекой, чтобы открыть файл устройства, представляющий hellodev.

(2) Библиотека выполняет swi-инструкцию в соответствии с параметрами, переданными функцией open, что приведет к сбоям в работе процессора и попаданию в ядро.

(3) Функция обработки исключений ядра находит соответствующий драйвер в соответствии с этими параметрами.

(4) Выполните соответствующий драйвер.

(5) Верните дескриптор файла в библиотеку, а затем в приложение.

3. Характеристики исполнения водителя

В отличие от прикладных программ, драйвер никогда не запускается активно, он пассивен: он инициализируется в соответствии с требованиями прикладной программы, а чтение и запись выполняется в соответствии с требованиями прикладной программы. Драйвер загружается в ядро, просто говоря ядру: «Я здесь, я могу выполнять эти задания», и когда эти задания запускаются, это зависит от приложения.

Драйвер работает в «пространстве ядра», которое является частью «доверия» системы. Ошибки драйвера могут привести к сбою всей системы.

«Полное руководство по разработке приложений для встроенного Linux»

Читайте также: