Ms windows это однозадачная ос многозадачная ос сетевая ос

Обновлено: 07.07.2024

Операционная система – это комплекс программ, обеспечивающих управление работой компьютера и его взаимодействие с пользователем.

С точки зрения человека операционная система служит посредником между человеком, электронными компонентами компьютера и прикладными программами. Она позволяет человеку запускать программы, передавать им и получать от них всевозможные данные, управлять работой программ, изменять параметры компьютера и подсоединённых к нему устройств, перераспределять ресурсы. Работа на компьютере фактически является работой с его операционной системой. При установке на компьютер только операционной системы (ОС) ничего содержательного на компьютере также сделать не удастся. Для ввода и оформления текстов, рисования графиков, расчёта зарплаты или прослушивания лазерного диска нужны специальные прикладные программы. Но и без ОС ни одну прикладную программу запустить невозможно.

Операционная система решает задачи, которые можно условно разделить на две категории:

  • во-первых, управление всеми ресурсами компьютера;
  • во-вторых, обмен данными между устройствами компьютера, между компьютером и человеком.

Кроме того, именно ОС обеспечивает возможность индивидуальной настройки компьютера: ОС определяет, из каких компонентов собран компьютер, на котором она установлена, и настраивает сама себя для работы именно с этими компонентами.

Ещё не так давно работы по настройке приходилось выполнять пользователю вручную, а сегодня производители компонентов компьютерной техники разработали протокол plug-and-play (включил - заработало). Этот протокол позволяет операционной системе в момент подключения нового компонента получить информацию о новом устройстве, достаточную для настройки ОС на работу с ним.

Операционные системы для ПК различаются по нескольким параметрам. В частности, ОС бывают:

  • однозадачные и многозадачные ;
  • однопользовательские и многопользовательские ;
  • сетевые и несетевые .

Кроме того, операционная система может иметь командный или графический многооконный интерфейс (или оба сразу).

Однозадачные операционные системы позволяют в каждый момент времени решать только одну задачу. Такие системы обычно позволяют запустить одну программу в основном режиме.

Многозадачные системы позволяют запустить одновременно несколько программ, которые будут работать параллельно.

Главным отличием многопользовательских систем от однопользовательских является наличие средств защиты информации каждого пользователя от несанкционированного доступа других пользователей. Следует заметить, что не всякая многозадачная система является многопользовательской, и не всякая однопользовательская ОС является однозадачной.

В последние годы фактическим стандартом стал графический многооконный интерфейс, где требуемые действия и описания объектов не вводятся в виде текста, а выбираются из меню, списков файлов и т.д.

В настоящее время, с появлением мощных компьютеров, широкое распространение получили два типа ОС. К первому типу относятся достаточно похожие ОС семейства Windows компании Microsoft. Они многозадачные и имеют многооконный графический интерфейс. На рынке персональных компьютеров с Windows конкурируют ОС типа UNIX . Это многозадачная многопользовательская ОС с командным интерфейсом. В настоящее время разработаны расширения UNIX, обеспечивающие многооконный графический интерфейс. UNIX развивалась в течение многих лет разными компаниями, но до недавнего времени она не использовалась на персональных компьютерах, т.к. требует очень мощного процессора, весьма дорога и сложна, её установка и эксплуатация требуют высокой квалификации. В последние годы ситуация изменилась. Компьютеры стали достаточно мощными, появилась некоммерческая, бесплатная версия системы UNIX для персональных компьютеров - система Linux . По мере роста популярности этой системы в ней появились дополнительные компоненты, облегчающие её установку и эксплуатацию. Немалую роль в росте популярности Linux сыграла мировая компьютерная сеть Internet. Хотя освоение Linux гораздо сложнее освоения систем типа Windows, Linux - более гибкая и в то же время бесплатная система, что и привлекает к ней многих пользователей.

Существуют и другие ОС. Известная компания Apple производит компьютеры Macintosh с современной ОС MacOS . Эти компьютеры используются преимущественно издателями и художниками. Фирма IBM производит ОС OS/2 . Операционная система OS/2 такого же класса надёжности и защиты, как и Windows NT.

Классификация операционных систем

В настоящее время существует большое разнообразие ОС. Они классифицируются по следующим признакам:

- по количеству пользователей, одновременно обслуживаемых системой;

- по числу процессов, которые могут одновременно выполняться под управлением ОС;

- по типу доступа пользователя к компьютеру;

- по типу средств вычислительной техники, для управления ресурсами которых система предназначена.

В соответствии с первым признаком различают однопользовательские и многопользовательские ОС. Многопользовательские системы поддерживают одновременную работу на компьютере нескольких пользователей (конечно, за различными терминалами).

Второй признак делит ОС на однозадачные и многозадачные. Заметим, что если система многопользовательская, то обычно она и многозадачная, но не наоборот.

В соответствии с третьим признаком ОС делятся на:

- системы с пакетной обработкой , когда из программ, подлежащих выполнению, формируется пакет, который предъявляется компьютеру. В этом случае пользователи непосредственно с ОС не взаимодействуют. Данный тип ОС предназначен для наиболее эффективного использования ресурсов компьютера;

- системы разделения времени , обеспечивающие одновременный диалоговый (интерактивный) доступ к компьютеру нескольких пользователей через терминалы. Ресурсы компьютера выделяются при этом каждому пользователю “по очереди” в соответствии с той или иной дисциплиной обслуживания. Этот тип ОС предназначен для обеспечения удобства работы группы пользователей;

- системы реального времени , которые должны обеспечивать гарантированное время ответа на внешние события. Такие ОС служат для управления внешними по отношению к компьютеру процессами и объектами.

По четвертому признаку ОС делятся на однопроцессорные, многопроцессорные, сетевые и распределенные .

ОС не могут, как правило, предоставить пользователям возможности, которыми не обладает компьютер. Они в состоянии только эффективно использовать аппаратные средства компьютера. Поэтому мы сначала перечислим возможные режимы работы ПЭВМ., чтобы понять, какими типами ОС они могут комплектоваться.

В настоящее время ПЭВМ поддерживают спектр режимов работы , среди которых:

- однопользовательский многопрограммный , или просто многопрограммный режим;

- многопользовательский многопрограммный , или просто многопрограммный режим;

- система виртуальных машин (дальнейшее развитие мультипрограммирования, основным признаком которого является возможность одновременной нескольких ОС, что уже отмечалось).

С точки зрения работы микропроцессора режимы 2 и 3 близки друг другу, но для обеспечения последнего необходимо наличие нескольких терминалов (дисплеев и клавиатур). Многопрограммные режимы могут реализовываться как на одно-, так и на многопроцессорных ПЭВМ.

Для поддержки перечисленных режимов работы ПЭВМ существуют следующие типы ОС:

- однопользовательские однозадачные , или просто однозадачные ;

- однопользовательские многозадачные , или просто многозадачные ;

- многопользовательские многозадачные , или просто многопользовательские.

Для обеспечения работы ПЭВМ в режиме системы виртуальных машин необходим монитор виртуальных машин.

При рассмотрении режимов работы ПЭВМ и ОС не случайно использовались различные термины - соответственно “программа” и “задача”. Без дополнительных пояснений здесь не обойтись, что мы сейчас и сделаем.

На аппаратном уровне случаи одновременного выполнения последовательностей команд нескольких программ или одной программы неразличимы. Понятие же “задача” вообще не вводится, а посему можно использовать лишь термин “программа”, понимая под многопрограммностью способность одновременного (при наличии одного процессора - только попеременного) выполнения нескольких последовательностей команд.

На уровне же ОС дело обстоит несколько иначе: считается, что система организует выполнение задачи, формируемой из самой программы или из логически законченного фрагмента программы. Поэтому в данном случае правомерно говорить об одно- или многозадачности. Однако следует иметь в виду, что многозадачность бывает разная. Простейшим случаем многозадачности является поддержка одновременного нескольких программ без возможности разбиения программы на несколько задач. “Чистая” же многозадачность предполагает обеспечение такой возможности. Это дополнительно требует наличия в составе ОС средств для взаимодействия и синхронизации процессов. В связи с различными видами многозадачности применительно к ОС иногда употребляют термины многопрограммность для обозначения простейшего случая многозадачности и собственно “ многопрограммность ” для обозначения полностью реализованного многозадачного режима. Мы же будем употреблять только термин “ многозадачность ”, понимая его в широком смысле. В целях конкретизации при этом будет использоваться понятие “ гранула параллелизма ”, которой может являться программа целиком, процесс (задача) как часть программы или даже цепочка команд в рамках процесса.

Дополнительно заметим, что многопользовательская ОС должна быть многозадачной (иначе нельзя будет обслуживать нескольких пользователей одновременно), хотя последняя возможность в отдельности каждому пользователю может и не предоставляться.

Для многопользовательских и многозадачных ОС важным показателем является дисциплина обслуживания . В соответствие с этим различают вытесняющий и согласующий режимы многозадачной работы.

При вытесняющей организации выделением задачам процессорного времени занимается исключительно ОС. Примерами такого режима являются квантование , когда каждой задаче процессор выделяется по очереди, причем на фиксированный промежуток времени, и приоритетное обслуживание . Вытеснение поддерживают ОС OS/2 и UNIX, а также интерфейсная система DESQview.

В случае согласующейся организации каждая задача, получившая управление, сама определяет, когда ей отдать процессор другой системе. Иначе говоря, здесь инициатива исходит не от ОС, а главным образом от самой задачи. Согласование применяется в сетевой ОС фирмы Novell, а также в интерфейсной системе MS Windows.

В общем случае согласование эффективнее и надежнее вытеснения, так как позволяет самой программе выбирать удобный и безопасный метод своего прерывания. Однако при этом ни одна из программ не должна узурпировать процессор, добровольно отказываясь от монопольного его использования.

Очевидно, однозадачная ОС может быть поставлена на поддерживающую любой режим работы ПЭВМ, что и делается многими пользователями. Однако, на что уже обращалось внимание читателя, современные мощные ПЭВМ имеют такие ресурсы, которые не могут быть эффективно использованы одним пользователем даже в многопрограммном режиме. На таких машинах целесообразнее применять многопользовательские ОС.

Для IBM - совместимых ПЭВМ разработаны и используются следующие классы ОС:

- ОС семейства DOS;

- ОС семейства MS WINDOWS (WINDOWS 95 и WINDOWS 98);

- ОС семейства NT;

- ОС семейства OS/2;

- ОС семейства UNIX.

Наибольшее распространение в настоящее время имеют представители семейства интерфейсных многооконных операционных систем MS WINDOWS (WINDOWS 95 и WINDOWS 98). Применяются операционные системы семейства DOS. Многие пользователи применяют операционные системы семейства UNIX и сетевые операционные системы Windows NT. Операционная система OS/2 не получила широкого распространения. Данное соотношение в ближайшие годы сохранится. Основные характеристики операционных систем семейств DOS, OS/2 и UNIX сведены в табл. 4.1. Сделаем относительно нее следующие замечания:

некоторые UNIX - подобные системы являются менее требовательными к ресурсам ПЭВМ и способны функционировать на ПЭВМ менее мощных классов;

можно использовать и меньший, чем указано, объем ОЗУ, однако при этом некоторые программы могут оказаться неработоспособными, а эффективность ОС снизится.

В данной лекции говорится о наиболее важных этапах создания ОС Windows наряду с эволюцией операционных систем, структуре системы, а также вводятся некоторые ключевые понятия.

Из курсов по теории ОС (см., например, [ Карпов ] , [ Столлингс ] ) известно, что операционная система является базисной системной программой. Обычно аппаратно- программное обеспечение типовой вычислительной системы представляют в виде набора слоев ( рис. 1.1), при этом операционной системе соответствует слой между оборудованием компьютера и остальным программным обеспечением. Такое расположение позволяет ОС обеспечивать возможность рационального использования оборудования компьютера удобным для пользователя образом путем создания среды для функционирования и разработки прикладных программ.

Слои программного обеспечения компьютерной системы


Рис. 1.1. Слои программного обеспечения компьютерной системы

Дружественный интерфейс между пользователем и компьютером достигается за счет абстрагирования, которое является важным методом упрощения и позволяет сконцентрироваться на взаимодействии высокоуровневых компонентов системы, игнорируя детали их реализации. В этом смысле об ОС говорят, что операционная система является абстрактной или виртуальной машиной, с которой иметь дело гораздо удобнее, нежели с низкоуровневыми элементами компьютера

Альтернативный взгляд на ОС дает представление об ОС как о менеджере ресурсов, который осуществляет упорядоченное и контролируемое распределение процессоров, памяти и других ресурсов между различными программами.

Краткая история создания ОС Windows

Первая версия описываемого ряда операционных систем - ОС Windows NT появилась в 1993 г. Краткий исторический экскурс позволяет объяснить ряд ее особенностей и отличительных черт.

Наиболее важные моменты эволюции операционных систем

Известно ( [ Карпов ] ), что операционные системы приобрели современный облик в период развития третьего поколения вычислительных машин, то есть с середины 60-х до 1980 года. В это время существенное повышение эффективности использования процессора было достигнуто за счет реализации многозадачности, в том числе вытесняющей ( preemptive ) многозадачности. Для поддержки псевдопараллельной работы нескольких программ и асинхронного режима работы внешних устройств в составе вычислительных систем были реализованы следующие программно-аппаратные новшества и подсистемы:

  • Внедрение защитных механизмов. Защита памяти позволяет изолировать конкурирующие пользовательские программы друг от друга, а появление привилегированных и непривилегированных команд - проконтролировать доступ к распределению ресурсов.
  • Реализация прерываний, оповещающих ОС о произошедших асинхронных событиях, например, о завершении операции ввода-вывода.
  • Поддержка совокупности системных вызовов для организации интерфейса между прикладной программой и ОС.
  • Реализация дисциплины планирования для организации очереди из программ в памяти и выделение процессора одной из программ.
  • Обеспечение возможности сохранения с последующим восстановлением содержимого регистров и структур данных, необходимых для выполнения программы, при переключении процессора с одной программы на другую.
  • Реализация стратегии управления памятью - чтобы упорядочить процессы размещения, замещения и выборки информации из памяти.
  • Организация хранения информации на внешних носителях в виде файлов и обеспечение доступа к конкретному файлу только определенным категориям пользователей.
  • Обеспечение программ средствами коммуникации и синхронизации.

К этому же периоду эволюции относится идея создания семейств программно совместимых машин различной архитектуры, работающих под управлением одной и той же операционной системы. Прошедший первую апробацию на IBM-360 данный процесс имеет результатом привычную на сегодня картину работы ОС Windows или Linux на компьютерах самой разной архитектуры.

В период четвертого поколения вычислительных машин (с 1980 г. до настоящего времени) наступила эра персональных компьютеров (ПК) с дружественным интерфейсом. Первоначально ПК имели ограниченные возможности и предназначались для использования одним пользователем в однопрограммном режиме, что повлекло за собой деградацию архитектуры этих ЭВМ и их операционных систем (в частности, пропала необходимость защиты файлов и памяти, планирования заданий и т.п.). Однако, по мере расширения возможностей ПК, рост сложности и разнообразия задач, решаемых на них, необходимость повышения надежности их работы привели к возрождению практически всех черт, характерных для архитектуры больших вычислительных систем.

В середине 80-х стали бурно развиваться сети компьютеров, в том числе персональных, работающих под управлением сетевых или распределенных операционных систем.

Онтогенез повторяет филогенез

В книге Таненбаума справедливо отмечено, что развитие операционных систем иллюстрирует известное из биологии правило "Онтогенез повторяет филогенез" - то есть развитие зародыша (онтогенез) повторяет эволюцию видов. Соответственно, каждый новый вид компьютера (мэйнфрейм, мини-компьютер, персональный компьютер, встроенный компьютер, смарт-карта и т.д.) проходит через одни и те же стадии развития. По мере совершенствования архитектуры, программирование на ассемблере сменяется программированием на языках высокого уровня. Затем компьютер обрастает дополнительным оборудованием, средствами поддержки многозадачности, простые операционные системы заменяются все более сложными. Попутно появляются централизованные файловые системы, виртуальная память и другие атрибуты полноценных операционных систем. Такой взгляд на эволюцию компьютерных архитектур имеет известную предсказательную силу. В частности, можно считать, что операционные системы Microsoft, начиная от MS-DOS и кончая современными версиями Windows, развивались по схожему сценарию.

Архитектурные особенности операционных систем.

В настоящее время подавляющее большинство операционных систем имеет так называемый монолитный дизайн. В этом случае компоненты операционной системы являются не самостоятельными модулями, а составными частями одной большой программы. Монолитное ядро представляет собой набор процедур, каждая из которых может вызвать каждую. Все процедуры работают в привилегированном режиме. Таким образом, монолитное ядро - это такая схема операционной системы, при которой все ее компоненты являются составными частями одной программы, используют общие структуры данных и взаимодействуют друг с другом путем непосредственного вызова процедур.

Реализация модели клиент-сервер в рамках микроядерной архитектуры


Рис. 1.2. Реализация модели клиент-сервер в рамках микроядерной архитектуры

Создание ОС Windows

Как уже отмечалось, эволюция операционных систем Microsoft является хорошей иллюстрацией тезиса о повторении онтогенезом филогенеза.

Операционные системы корпорации Microsoft можно условно разделить на три группы:

  • MS-DOS и MS-DOS+Windows 3.1,
  • так называемые потребительские ( consumer ) версии Windows (Windows 95/98/Me)
  • и предмет данного курса - линия ОС, ведущих свое начало от Windows NT (Windows NT/2000/XP/Vista).

Однозадачная 16-разрядная ОС MS-DOS была выпущена в начале 80-х годов и затем широко применялась на компьютерах с процессором x86. Вначале MS-DOS была довольно примитивна (деградация ОС), ее оболочка занималась, главным образом, обработкой командной строки, но в последующие версии было внесено много улучшений, заимствованных, главным образом, из ОС Unix. Затем под влиянием успехов дружественного графического интерфейса корпорации Apple для компьютеров Macintosh была разработана система Windows. Особенно широкое распространение получили версии Windows 3.0, 3.1 и 3.11. Первоначально это была не самостоятельная ОС, а скорее многозадачная (с невытесняющей многозадачностью) графическая оболочка MS-DOS, которая контролировала компьютер и файловую систему.

В 1995 г. была выпущена 32-разрядная ОС Windows 95, где была реализована вытесняющая многозадачность. ОС Windows 95 включала большой объем 16-разрядного кода, главным образом для обеспечения преемственности с приложениями MS-DOS. 16-разрядный код присутствовал и в последующих версиях этой серии Windows 98 и Windows Me. Другой проблемой данной версии Windows, во многом обусловленной той же причиной, была нереентерабельность существенной части кода ядра. Так, если один из потоков был занят модификацией данных в ядре, другой поток, чтобы не получить эти данные в противоречивом состоянии, вынужден был ждать, то есть не мог воспользоваться системными сервисами . Это, зачастую, сводило на нет преимущества многозадачности.

ОС Windows NT (New Technology) - новая 32-разрядная ОС, совместимая с предшествующими версиями Windows по интерфейсу. Работу над созданием системы возглавил Дэвид Катлер, один из ключевых разработчиков ОС VAX VMS . Ряд идей системы VMS присутствует в NT (см рис. 1.3). Заметна преемственность в системе управления большим адресным пространством и резидентным множеством процесса, в системе приоритетов обычных процессов и процессов реального времени, в средствах синхронизации и т.д. Вместе с тем Windows NT - это совершенно новый амбициозный проект разработки системы с учетом новейших достижений в области архитектуры микроядра. Первая версия, названная Windows NT 3.1 для соответствия популярной Windows 3.1, была выпущена в 1993 г. Коммерческого успеха добилась версия Windows NT 4.0, заимствовавшая графический интерфейс Windows 95. В начале 1999 г. была выпущена Windows NT 5.0, переименованная в Windows 2000. Следующая версия этой ОС данной серии - Windows XP появилась в 2001 г., а Windows Server 2003 - в 2003 г. В настоящее время выпущена Windows Vista, ранее известная под кодовым именем Longhorn, - новая версия Windows, продолжающая линейку Windows NT.

Сравнение архитектур ОС Windows и VAX/VMS


увеличить изображение
Рис. 1.3. Сравнение архитектур ОС Windows и VAX/VMS

Объем исходных текстов ядра ОС Windows неизвестен. По некоторым оценкам, объем ядра Windows NT 3.5 составляет приблизительно 10Мб, а с каждой новой версией ОС Windows этот объем неуклонно увеличивается в полтора-два раза.

Возможности системы

Перед разработчиками системы была поставлена задача создать операционную систему персонального компьютера, предназначенную для решения серьезных задач, а также для домашнего использования. Перечень возможностей системы достаточно широк, вот лишь некоторые из них [ Руссинович ] , [ Рихтер ] . Операционная система Windows:

  • является истинно 32-разрядной, поддерживает вытесняющую многозадачность;
  • работает на разных аппаратных архитектурах и обладает способностью к сравнительно легкому переносу на новые аппаратные архитектуры;
  • поддерживает работу с виртуальной памятью;
  • является полностью реентерабельной;
  • хорошо масштабируется в системах с симметричной мультипроцессорной обработкой;
  • является распределенной вычислительной платформой, способной выступать в роли как клиента сети, так и сервера;
  • защищена как от внутренних сбоев, так и от внешних деструктивных действий. У приложений нет возможности нарушить работу операционной системы или других приложений;
  • совместима, то есть, ее пользовательский интерфейс и API совместимы с предыдущими версиями Windows и MS-DOS. Она также умеет взаимодействовать с другими системами вроде UNIX, OS/2 и NetWare;
  • обладает высокой производительностью независимо от аппаратной платформы;
  • обеспечивает простоту адаптации к глобальному рынку за счет поддержки Unicode;
  • поддерживает многопоточность и объектную модель.

Успешность реализации этих требований будет продемонстрирована по мере изучения деталей ОС Windows. В рамках курса будут введены и впоследствии уточнены и детализированы различные понятия и термины.. Некоторые из них приведены в приложении.

Операционные системы могут различаться особенностями реализации внутренних алгоритмов управления основными ресурсами компьютеров (процессорами, памятью, устройствами), особенностями использованных методов проектирования, типами аппаратных платформ, областями использования и многими другими свойствами.


По числу одновременно работающих пользователей ОС де­лятся на однопользовательские и многопользовательские. Главным отличием многопользовательских систем от однопользовательских является наличие средств за­щиты информации каждого пользователя от несанкционированного доступа других пользователей. Следует заметить, что не всякая многозадачная система является многопользовательской, и не всякая однопользователь­ская ОС является однозадачной.

По числу одновременно выполняемых задач операционные системы могут быть разделены на два класса: однозадачные и многозадачные.

Однозадачные ОС выполняют функцию предоставления пользователю виртуальной машины, делая более простым и удобным процесс взаимодействия пользователя с компьютером. Однозадачные ОС включают сред­ства управления периферийными устройствами, средства управления файлами, средства общения с пользовате­лем.

Многозадачные ОС, кроме вышеперечисленных функций, управляют разделением совместно используе­мых ресурсов, таких, как процессор, оперативная память, файлы и внешние устройства.

Вытесняющая и невытесняющая многозадачность.


Многопроцессорные ОС могут классифицироваться по способу организации вычислительного процесса в системе с многопроцессорной архитектурой: асимметричные ОС и симметричные ОС. Асимметричная ОС целиком выполняется только на одном из процессоров системы, распределяя прикладные задачи по остальным процессорам. Симметричная ОС полностью децентрализована и использует весь пул процессоров, разделяя их между системными и прикладными задачами.

Многозадачные ОС подразделяются на три типа:

1) системы пакетной обработки (например, ОС ЕС),

2) системы разделения времени (UNIX, VMS),

3) системы реального времени (QNX, RT/U).


Системы пакетной обработки предназначались для решения задач в основном вычислительного характера, не требующих быстрого получения результатов. Главной целью и критерием эффективности систем пакетной обработки является максимальная пропускная способность, то есть решение максимального числа задач в единицу времени.

В системах пакетной обработки переключение процессора с выполнения одной задачи на выполнение другой происходит только в случае, если активная задача сама отказывается от процессора, например, из-за необходимости выполнить операцию ввода-вывода. Поэтому одна задача может надолго занять процессор, что делает невозможным выполнение интерактивных задач. Таким образом, взаимодействие пользователя с вычислительной машиной, на которой установлена система пакетной обработки, сводится к тому, что он приносит задание, отдает его диспетчеру-оператору, а в конце дня после выполнения всего пакета заданий получает результат. Очевидно, что такой порядок снижает эффективность работы пользователя.

Некоторые операционные системы могут совмещать в себе свойства систем разных типов, например, одна часть задач может выполняться в режиме пакетной обработки, другая — в режиме реального времени или в режиме разделения времени. В таких случаях режим пакетной обработки часто называют фоновым режимом.

В зависимости от того, как распределены функции между компьютерами сети, сетевые операционные системы, а следовательно, и сети делятся на два класса: одноранговые и двухранговые. Последние чаще называют сетями с выделенными серверами.

Если компьютер предоставляет свои ресурсы другим пользователям сети, то он играет роль сервера. При этом компьютер, обращающийся к ресурсам другой машины, является клиентом. Как уже было сказано, компьютер, работающий в сети, может выполнять функции либо клиента, либо сервера, либо совмещать обе эти функции.

Если выполнение каких-либо серверных функций является основным назначением компьютера (например, предоставление файлов в общее пользование всем остальным пользователям сети или организация совместного использования факса, или предоставление всем пользователям сети возможности запуска на данном компьютере своих приложений), то такой компьютер называется выделенным сервером. В зависимости от того, какой ресурс сервера является разделяемым, он называется файл-сервером, факс-сервером, принт-сервером, сервером приложений и т.д.

Сетевая ОС не имеет фундаментальных отличий от ОС однопроцессорного компьютера. Она обязательно содержит программную поддержку для сетевых интерфейсных устройств (драйвер сетевого адаптера), а также средства для удаленного входа в другие компьютеры сети и средства доступа к удаленным файлам, однако эти дополнения существенно не меняют структуру самой операционной системы.

Специфика сетевых ОС проявляется в реализации сетевых функций:

Кластер – слабо связанная совокупность нескольких вычислительных систем, работающих совместно для выполнения общих приложений и представляющихся пользователю единой системой.

Мобильные ОС – ОС переносимые с компьютера одного типа на компьютер другого типа (UNIX).

Читайте также: