Потоки реального времени в ос семейства windows nt имеют приоритет

Обновлено: 08.07.2024

Выбор текущего потока из нескольких активных потоков, пытающихся получить доступ к процессору называется планированием. Планирование - очень важная и критичная для производительности операция, поэтому система предоставляет много рычагов для ее гибкой настройки.

Выбранный для выполнения поток работает в течение некоего периода, называемого квантом, по истечении которого поток вытесняется, то есть процессор передается другому потоку. Предполагается, что поток не знает, в какой момент он будет вытеснен. Поток также может быть вытеснен даже, если его квант еще не истек. Это происходит, когда к выполнению готов поток с более высоким приоритетом.

Процедура планирования обычно связана с весьма затратной процедурой диспетчеризации - переключением процессора на новый поток , поэтому планировщик должен заботиться об эффективном использовании процессора. Принадлежность потоков к процессу при планировании не учитывается, то есть единицей планирования в ОС Windows является именно поток . Запуск процедуры планирования удобно проиллюстрировать на упрощенной ( по сравнению с диаграммой, изображенной на рис. 5.3) диаграмме состояний потока, см. рис. 6.1.

Упрощенная диаграмма состояний потоков в ОС Windows


Рис. 6.1. Упрощенная диаграмма состояний потоков в ОС Windows

Наиболее важным вопросом планирования является выбор момента для принятия решения. В ОС Windows запуск процедуры планирования вызывается одним из следующих событий.

Это, во-первых, события, связанные с освобождением процессора.

(1) Завершение потока

(2) Переход потока в состояние готовности в связи с тем, что его квант времени истек

(3) Переход потока в состояние ожидания

Во-вторых, это события, в результате которых пополняется или может пополниться очередь потоков в состоянии готовности.

(4) Поток вышел из состояния ожидания

(5) Поток только что создан

(6) Деятельность текущего потока может иметь следствием вывод другого потока из состояния ожидания.

В последнем случае выведенный из состояния ожидания поток может сразу же начать выполняться, если имеет высокий приоритет.

Наконец, процедура планирования может быть запущена, если изменяется приоритет потока в результате вызова системного сервиса или самой Windows , а также если изменяется привязка ( affinity ) потока к процессору, из-за чего поток не может больше выполняться на текущем процессоре.

Заметим, что переключение из пользовательского режима в режим ядра (и обратно) не влияет на планирование потока, так как контекст в этом случае не меняется.

В результате операции планирования система может определить, какой поток выполнять следующим, и переключить контексты старого и нового потоков. В системе нет центрального потока планировщика. Программный код, отвечающий за планирование и диспетчеризацию, рассредоточен по ядру. В случаях 1-3 процедуры планирования работают в контексте текущего потока, который запускает программу планировщика для выбора преемника и потенциальной загрузки его контекста.

Перевод потока из состояния ожидания в состояние готовности (вариант 4) может быть следствием прерывания, свидетельствующим об окончании операции ввода-вывода. В этом случае процедура планирования может быть отложена (deffered procedure call ) до окончания выполнения высокоприоритетного системного кода.

Иногда подобный переход происходит в результате деятельности другого потока, который, например, выполнил операцию up на семафоре (пример 6-го варианта). Хотя этот другой поток и может продолжить работу, он должен запустить процедуру планирования, поскольку в очереди готовности могут оказаться потоки с более высоким приоритетом. По тем же причинам планирование осуществляется в случае запуска нового потока.

Алгоритмы планирования

Приоритеты

В ОС Windows реализовано вытесняющее приоритетное планирование , когда каждому потоку присваивается определенное числовое значение - приоритет, в соответствии с которым ему выделяется процессор. Потоки с одинаковыми приоритетами планируются согласно алгоритму Round Robin (карусель). Важным достоинством системы является возможность вытеснения потоков, работающих в режиме ядра - код исполнительной системы полностью реентерабелен. Не вытесняются лишь потоки, удерживающие спин-блокировку (см. "Синхронизация потоков" ). Поэтому спин-блокировки используются с большой осторожностью и устанавливаются на минимальное время.

В системе предусмотрено 32 уровня приоритетов. Шестнадцать значений приоритетов (16-31) соответствуют группе приоритетов реального времени, пятнадцать значений (1-15) предназначены для обычных потоков, и значение 0 зарезервировано для системного потока обнуления страниц (см. рис. 6.2).

Приоритеты потоков

Чтобы избавить пользователя от необходимости запоминать числовые значения приоритетов и иметь возможность модифицировать планировщик, разработчики ввели в систему слой абстрагирования приоритетов. Например, класс приоритета для всех потоков конкретного процесса можно задать с помощью набора констант-параметров функции SetPriorityClass , которые могут иметь следующие значения:

  • реального времени ( REALTIME_PRIORITY_CLASS ),
  • высокий ( HIGH_PRIORITY_CLASS ),
  • выше нормы ( ABOVE_NORMAL_PRIORITY_CLASS ),
  • нормальный ( NORMAL_PRIORITY_CLASS ),
  • ниже нормы ( BELOW_NORMAL_PRIORITY_CLASS )
  • и неработающий ( IDLE_PRIORITY_CLASS ).

Относительный приоритет потока устанавливается аналогичными параметрами функции SetThreadPriority :

Совокупность из шести классов приоритетов процессов и семи классов приоритетов потоков образует 42 возможные комбинации и позволяет сформировать так называемый базовый приоритет потока (см. таб. 6.1).

Базовый приоритет процесса и первичного потока по умолчанию равен значению из середины диапазонов приоритетов процессов (24, 13, 10, 8, 6 или 4). Смена приоритета процесса влечет за собой смену приоритетов всех его потоков, при этом их относительные приоритеты остаются без изменений.

Приоритеты с 16 по 31 в действительности приоритетами реального времени не являются, поскольку в рамках поддержки мягкого реального времени, которая реализована в ОС Windows, никаких гарантий относительно сроков выполнения потоков не дается. Это просто более высокие приоритеты, которые зарезервированы для системных потоков и тех потоков, которым такой приоритет дает пользователь с административными правами. Тем не менее, наличие приоритетов реального времени, а также вытесняемость кода ядра, локализация страниц памяти (см. "Функционирование менеджера памяти" ) и ряд дополнительных возможностей - все это позволяет выполнять в среде ОС Windows приложения мягкого реального времени, например, мультимедийные. Системный поток с нулевым приоритетом занимается обнулением страниц памяти. Обычные пользовательские потоки могут иметь приоритеты от 1 до 15.

Сама по себе Windows NT не подходит для применения в системах реального времени, поскольку в ней слишком мало приоритетных уровней, отсутствует механизм наследования приоритетов. Для минимизации времени обработки прерываний (ISR) в Windows NT введена концепция отложенного вызова процедуры (DPC – deferred procedure call), приоритет которой выше, чем приоритет пользовательских и системных потоков, в то время как все DPC имеют одинаковый приоритет. Это приводит к тому, что все DPC ставятся в очередь FIFO, и DPC с высокоуровневым прерыванием сможет выполниться только после того, как все другие DPC, стоящие в очереди перед ней, будут выполнены. Такие ситуации ведут к непредсказуемым временам отклика, что несовместимо с требованиями к ОСРВ. Управление памятью в Windows NT основано на механизме виртуальной памяти. Это тянет за собой защиту памяти, трансляцию адресов и подкачку, которая неприемлема в ОСРВ.

2.5.1. RTX для Windows NT

Расширение реального времени RTX (Real Time Extension) для ОС Windows NT (разработано корпорацией VenturСom) позволяет создавать приложения для высокоскоростного управления с детерминированным временем реакции на внешние события [RTX].

RTX глубоко интегрировано в ядро Windows NT и для обеспечения необходимых функций использует сервис Windows NT и API WIN32. Ядро реального времени (nucleus) интегрировано в ядро NT (kernel). Каждый процесс RTX выполняется как драйвер устройства ядра NT, при этом процессы не защищены друг от друга. Такая реализация приводит к быстрому переключению контекста, но небезопасна с точки зрения конфиденциальности.

  • Обеспечивается возможность создавать процессы реального времени, управляемые собственным планировщиком. Этот планировщик работает уже по правилам реального времени и использует алгоритм вытеснения по приоритетам. Кроме того, процессы реального времени имеют преимущество перед стандартными процессами Win32, вытесняя их. Процессы реального времени имеют совсем иную, по сравнению со стандартными процессами Windows NT, степень надежности и специфическую функциональность.
  • Процессы реального времени и стандартные процессы Win32 имеют средства взаимодействия друг с другом.
  • Процессы реального времени имеют свой собственный программный интерфейс RTAPI, реализующий развитый набор средств, характерный для программных интерфейсов (API) ОСРВ.
  • Приложение может использовать как стандартные функции Win32, так и специфические функции API реального времени (RTAPI), что позволяет выделять критические участки кода приложений Windows NT и контролировать время и надежность их выполнения.
  • Имеется возможность контроля над работоспособностью и временами реакции системы. Зависания стандартных приложений Windows NT или крах системы не приводят к зависанию приложений реального времени.
  • Предоставляется возможность работы с быстрыми часами и таймерами высокого разрешения.
  • Обеспечивается возможность прямого доступа к памяти и физическим устройствам.
  • уровень абстракции аппаратуры HAL (Hardware Abstraction Layer) реального времени (Real-Time HAL). HAL является программным компонентом самого низкого уровня при взаимодействии драйверов ядра с аппаратурой. В частности, именно на уровне HAL происходит первоначальная обработка прерываний от таймера,
  • подсистему реального времени RTSS (Real-Time Subsystem),
  • программный интерфейс расширений реального времени RTAPI (Real-Time Application Programming Interface). HAL реального времени подменяет стандартный HAL Windows NT.

Работа с прерываниями Real-Time HAL. Перехватывая аппаратные прерывания, Real-Time HAL различает прерывания, относящиеся к обработчикам реального времени и обработчикам Windows NT. Прерывания, которые должны обрабатываться драйверами Windows NT, отправляются по стандартной цепочке. При этом Real-Time HAL следит за тем, чтобы прерывания не маскировались драйверами Windows NT более чем на 5 мкс, исключая возможность пропуска критического события.

Быстрые часы и таймерные службы. Для измерения временных интервалов или для генерации прерываний Real-Time HAL позволяет работать с тиккером, разрешение которого 1 мкс. Системный таймер синхронизирован с тиккером, и может работать с периодом 100 мкс или быстрее, обеспечивая работу как стандартных таймерных сервисов, так и дополнительных, входящих в состав подсистемы реального времени.

Поддержка подсистемы реального времени (RTSS). Кроме перечисленных выше функций (прерывания и таймеры), Real-Time HAL содержит поддержку функционирования всей подсистемы реального времени. Так, на основе прерываний от таймера строится диспетчер процессов реального времени. Real-Time HAL отвечает также за выполнение функций ввода-вывода подсистемы реального времени и пр.

  • управление процессами и потоками – предоставляет Win32-совместимый интерфейс для управления, создания, изменения приоритетов, профилирования и завершения потоков реального времени,
  • управление объектами RTSS – предоставляет возможности унифицированного управления объектами RTSS (создание, закрытие, доступ). Объектами RTSS являются: таймеры, обработчики преры-ваний и исключительных ситуаций (startup, shutdown, blue screen), потоки, процессы, семафоры, мьютексы (mutex), разделяемая память, почтовые ящики, консольный и файловый ввод-вывод, регистры.

Взаимодействие между процессами. В RTAPI используются семафоры, мьютексы и разделяемая память для взаимодействия как потоков реального времени между собой, так и для их взаимодействия с процессами WIN32.

Управление памятью позволяет фиксировать приложения в памяти, запрещая их выгрузку в файл подкачки.

Доступ к физической памяти: приложение пользователя получает возможность доступа к данным по физическим адресам памяти.

Управление прерываниями позволяет назначать и запрещать обработчики прерываний, разрешать и запрещать прерывания.

Управление часами и таймерами разрешает создавать, удалять, отменять, инициализировать таймеры, назначать обработчики прерываний.

Управление вводом-выводом RTAPI предоставляет два способа управления устройствами ввода-вывода. Во-первых, приложения пользователя получают возможность непосредственного доступа к адресам портов ввода-вывода, что позволяет программировать работу устройств напрямую. Кроме того, внешнее устройство может управляться специальными (легко разрабатываемыми) драйверами, для работы с которыми RTAPI предоставляет специальный интерфейс.

2.5.2. INtime

Система INtime является расширением реального времени Windows, которое было разработано корпорацией Radisys Corporation, а в настоящее время поддерживается корпорацией TenAsys [INTIME].

INtime комбинирует возможности ОСРВ жесткого реального времени со стандартными ОС Windows, включая Windows XP, Windows XP Embedded, Windows 2000, Windows NT и Windows NT Embedded, не требуя дополнительной аппаратуры. INtime специально разработана под архитектуру процессора x86. Приложения реального времени и не реального времени выполняются на разных виртуальных машинах на единственном компьютере (см. рис. 4).

INtime, в отличие от RTX, слабо связана с NT. Архитектура INtime основана на механизме аппаратного обслуживания задач (hardware tasking), которое обеспечивается процессором Intel. Получается, что два ядра выполняются на одной аппаратуре. Поскольку они разделяют одну аппаратуру, потребовались некоторые модификации NT HAL. Такой подход позволяет защитить и отделить среду выполнения и область памяти от Windows. Внутри INtime каждый процесс приложения имеет свое собственное адресное пространство. Кроме того, ядро и приложения выполняются на разных приоритетных уровнях, что позволяет защитить их друг от друга.

INtime показывает предсказуемое поведение, однако ее сложная архитектура не позволяет достичь системе хорошей производительности. Из-за сегментационных ограничений INtime подходит не для всех систем реального времени.


Рис. 4. Структура INtime.

2.5.3. Microsoft Windows Embedded

Операционные системы Microsoft Windows Embedded для встраиваемых систем имеют две разновидности в соответствии с версиями ОС Windows – NT и XP [MSEmb]. Версии систем Embedded корпорации Microsoft состоят из многочисленных конфигурируемых частей, которые позволяют легко манипулировать набором установленного программного обеспечения.

Windows NT Embedded использует технические ресурсы Windows NT и позволяет разрабатывать приложения, которые могут быть легко интегрированы в существующую информационную инфраструктуру.

Набор средств разработки – Target Designer и Component Designer – позволяет OEM (original equipment manufacturer) производителям конфигурировать и создавать операционную систему для конкретной аппаратной платформы. Windows NT Embedded обладает специфическими компонентами для создания встраиваемых систем, которые позволяют работать в системах без видеоадаптера, осуществлять загрузку и работу накопителей в режиме "только чтение", выполнять удаленное администрирование и предоставляют дополнительные средства обработки ошибок и восстановления. Windows NT Embedded дает возможность создавать устройства, с которыми работать так же просто, как и со стандартными ПК на основе Windows, и управлять этими новыми устройствами на основе существующих профессиональных продуктов, таких как Microsoft Systems Management Сервер, HP OpenView, IBM Tivoli, CA Unicenter TNG, и др.

Разработчик встраиваемых систем применяет для конфигурирования ОС Target Designer, используя готовый двоичный код Windows NT, дополнительные компоненты для встраивания и дополнительные приложения. В случае необходимости, для создания новых компонентов, не входящих в состав продукта (например, драйверов устройств, приложений и пр.), может использоваться Component Designer. Вновь созданные новые компоненты могут быть импортированы в Target Designer и включены в состав целевой ОС. После конфигурирования ОС с помощью Target Designer происходит проверка взаимосвязей компонентов и строится образ системы, готовый к загрузке и исполнению на целевой системе.

Windows XP Embedded насчитывает до 10000 отдельных компонентов, а в Windows NT Embedded их было чуть больше 300. Основной отличительной чертой Windows XP Embedded является четкое разграничение компонентов системы, что позволяет разработчикам встраиваемого набора функций при создании образа системы включать только необходимые файлы и максимально сократить размер результирующей системы. Этими компонентами служат отдельные части системы Windows XP Professional.

Компоненты Windows XP Embedded представлены сервисами, приложениями, библиотеками и драйверами – разработчику нужно сконфигурировать необходимый набор функций и собрать из компонентов необходимую конфигурацию в образ среды исполнения (runtime image). Все опции конфигурации собраны воедино в базу данных компонентов. Разработчик имеет к ней доступ и может ее редактировать с помощью специального инструмента – Component Database Manager.

  • платформа, на которой будет выполняться данный компонент (определяет порядок компиляции и сборки);
  • описание и схема подключения компонента;
  • список ассоциированных ресурсов, таких как файлы и ключи реестра;
  • зависимости компонента от других компонентов (например, от DirectX или NET runtime);
  • указатель на хранилище файлов (чаще всего это просто локальный каталог, но может быть и сетевым ресурсом);
  • принадлежность к группе для упрощения обращения сразу к нескольким компонентам как к целому.

Сама база данных управляется СУБД MS SQL Server и может быть расположена как локально, на компьютере разработчика, так и на сервере.

Рассмотрим, как в системе Windows осуществляется планирование потоков для их выполнения на центральном процессоре. Также посмотрим на приоритеты процессов и потоков.

Планирование потоков в системе

В Windows всегда выполняется хотя бы один поток с самым высоким приоритетом. Если в системе много ядер, то Windows делит все ядра на группы по 64 ядра. Каждому процессу даётся доступ к определённой группе ядер. Следовательно потоки этих процессов могут видеть только свою группу ядер.

Поток выполняется на процессоре определённое время, затем уступает место другому потоку. Кстати, максимальное время на которое поток может занять процессор называется квантом. Причем время кванта можно настроить, выбрав короткие или длинные кванты. Как это сделать, я покажу ниже в этой статье, так что читайте дальше.

Поток может не отработать весь свой квант, так как если другой поток готов к выполнению и имеет более высокий приоритет, то он вытеснит первый поток.

В системе существует планировщик, который и занимается управлением потоками. Именно он решает какой поток будет выполняться на процессоре следующим. Причем планировщик работает в режиме ядра.

Так как процессор постоянно обрабатывает разные, несвязанные между собой потоки, то он должен запоминать на каком результате он остановился выполняя определённый поток. Такое запоминание предыдущего потока и переключение на новый называют – переключением контекста.

Планирование осуществляется на уровне потоков, а не процессов. Например, Процесс_А имеет 10 потоков, а Процесс_Б – 2 потока. Тогда процессорное время распределился между этими 12 потоками равномерно.

Приоритеты потоков

Планирование потоков полагается на их приоритеты. Windows использует 32 уровня приоритета для потоков от 0 до 31:

  • 16 — 31 — уровни реального времени;
  • 1 — 15 — обычные динамические приоритеты;
  • 0 — зарезервирован для потока обнуления страниц.

Вначале поток получает свой Базовый приоритет, который наследуется от приоритета процесса:

Дальше назначается относительный приоритет который увеличивает или уменьшает приоритет потока:

После получения базового приоритета и корректировки относительным приоритетом получается динамический приоритет:

Изменить базовый приоритет процесса можно из “Диспетчера задач” на вкладке “Подробности“, или в “Process Explorer“. Однако, это не поменяет относительный приоритет потока.

Диспетчер задач. Проверка приоритета процесса, запущенного командой «start /low notepad.exe»

Приоритеты отдельных потоков можно посмотреть в программе “Process Explorer“. Но изменять их нет смысла, так как только разработчик данной программы понимает как лучше расставить приоритеты потокам.


Получается что относительный приоритет у потока Notepad.exe равен 2, так как динамический приоритет больше базового на 2.

Состояния потоков

Поток может находиться в следующих состояниях:

  • Готов (Ready) — поток готов к выполнению и ожидает процессор.
  • Готов с отложенным выполнением (Deferred ready) — поток выбран для выполнения на конкретном ядре и ожидает именно это ядро.
  • В повышенной готовности (Standby) — поток выбран следующим для выполнения на конкретном ядре. Как только сможет процессор выполнит переключение контекста на этот поток.
  • Выполнение (Running) — выполняется на процессоре пока не истечет его квант времени, или пока его не вытеснит поток с большем приоритетом.
  • Ожидание (Waiting) — поток ждет каких-то ресурсов.
  • Переходное состояние (Transition) — готов к выполнению, но стек ядра выгружен из памяти, как только стек загрузится в память поток перейдет в состояние Готов.
  • Завершение (Terminated) — поток выполнил свою работу и завершился сам, или его завершили принудительно.
  • Инициализация (Initializated) — состояние при создании потока.

Кванты времени

Как я уже говорил квант времени выполнения потока может быть длинным или коротким. В настольных системах по умолчанию квант времени короткий, чтобы различные приложения быстро уступали друг другу место. В серверных системах по умолчанию длинный квант времени, чтобы серверные службы реже переключали контекст процессора.

Итак, теперь я вам покажу как переключить систему на работу с длинным или коротким квантом. Длительность кванта времени настраивается тут: “Свойства системы” / “Дополнительные параметры системы” / “Дополнительно” / “Быстродействие” / “Параметры” / “Дополнительно”:

На серверной системе можно выбрать “программ” если это сервер терминалов или просто настольный компьютер с установленной серверной системой.

На десктопной системе можно выбрать “служб” если вы запускаете какую-то длительную компиляцию или рендерите видео, а потом вернуть обратно в состояние “программ“.

Изменение приоритета планировщиком

Планировщик Windows периодически меняет текущий приоритет потоков. Делается это например для:

  • повышения приоритета, если поток слишком долго ожидает выполнение (предотвращает зависание программы);
  • повышения приоритета, если происходит ввод из пользовательского интерфейса (сокращение времени отклика);
  • повышения приоритета, после завершения операции ввода/вывода (чтобы потоки ждущие ввод/вывод быстрее выполнялись). При ждать могут:
    • диск, cd-rom, параллельный порт, видео — повышение на 1 пункт;
    • сеть, почтовый слот, именованный канал, последовательный порт — повышение на 2 пункта;
    • клавиатура или мышь — повышение на 6 пунктов;
    • звуковая карта — повышение на 8 пунктов.

    Эксперимент

    Позвольте продемонстрировать следующий эксперимент, который покажет как посмотреть за повышением и понижением динамического приоритета:

    1. Запустите программу «Блокнот».
    2. Запустите «Системный монитор».
    3. Щелкните на кнопке панели инструментов «Добавить» (Add Counter).
    4. Выберите объект «Поток» (Thread), а затем выберите счетчик «Текущий приоритет» (Priority Current).
    5. В поле со списком введите «Notepad», а затем щелкните на кнопке «Поиск» (Search).
    6. Найдите строку «Notepad/0». Выберите ее, щелкните на кнопке «Добавить» (Add), а затем щелкните на кнопке «ОК».
    7. Как только вы щелкните мышкой по блокноту, то заметите в Системном мониторе, что приоритет у потока «Блокнот» поднялся до 12, если свернуть блокнот то приоритет вновь упадет до 10.

    Поток простоя — idle

    К вашему сведению процессор всегда обрабатывает какой-нибудь поток. Когда кажется что процессор ничем не занят, на самом деле запускается специальный поток idle (поток простоя). Притом, на каждое ядро процессора существует свой собственный поток простоя. В общем-то все потоки простоя принадлежат процессу простоя. Поток простоя имеет самый низкий приоритет (1), поэтому выполняется только тогда — когда полезных потоков нет.

    Групповое планирование

    Планирование потоков на базе потоков отлично работает, но не способно решить задачу равномерного распределения процессорного времени между несколькими пользователями на терминальном сервере. Потому в Windows Server 2012 появился механизм группового планирования.

    Термины группового планирования:

    • поколение — период времени, в течении которого отслеживается использование процессора;
    • квота — процессорное время, разрешенное группе на поколение (исчерпание квоты означает, что группа израсходовала весь свой бюджет);
    • вес — относительная важность группы от 1 до 9 (по умолчанию 5);
    • справедливое долевое планирование — вид планирования, при котором потокам исчерпавшим квоту могут выделяться циклы простоя;
    • ранг — приоритет групповой политики, 0 — наивысший, чем больше процессорного времени истратила группа, тем больше будет ранг, и с меньшей вероятностью получит процессорное время (ранг всегда превосходит приоритет) (0 ранг у потоков которые: не входят ни в одну группу, не израсходовали квоту, потоки с приоритетами реального времени).

    Где же применяется групповое планирование? Например его использует механизм DFSS для справедливого распределения процессорного времени между сеансами на машине. Этот механизм включается по умолчанию при установке роли служб терминалов.

    Помимо DFSS групповое планирование применяется в объектах Jobs (Задания), так мы можем ограничить Задание по % потребления CPU, например задание будет потреблять не больше 20% процессорного времени.

    Потоки планируются для запуска на основе их приоритета планирования. Каждому потоку назначается приоритет планирования. Уровни приоритета находятся в диапазоне от нуля (самый низкий приоритет) до 31 (наивысший приоритет). Только поток нулевой страницы может иметь приоритет, равный нулю. (Поток нулевой страницы — это системный поток, ответственный за обнуление свободных страниц при отсутствии других потоков, которые необходимо выполнить.)

    Система рассматривает все потоки с одинаковым приоритетом, равным. Система назначает временные срезы циклическим перебору для всех потоков с наивысшим приоритетом. Если ни один из этих потоков не готов к выполнению, система назначает временные срезы циклическим перебору для всех потоков со следующим высшим приоритетом. Если поток с более высоким приоритетом станет доступным для выполнения, система прекратит выполнение потока с низким приоритетом (не позволяя ему завершить работу с его временным срезом) и назначает полный временной срез для потока с более высоким приоритетом. Дополнительные сведения см. в разделе контекстные переключения.

    Приоритет каждого потока определяется следующими критериями.

    • Класс приоритета его процесса
    • Уровень приоритета потока в классе приоритета его процесса

    Класс приоритета и уровень приоритета объединяются для формирования базового приоритета потока. Сведения о динамическом приоритете потока см. в разделе повышение приоритета.

    Класс Priority

    Каждый процесс принадлежит одному из следующих классов приоритета: _класс приоритета простоя _
    НИЖЕ _ обычного _ класса приоритета _
    _класс обычного приоритета _
    ВЫШЕ _ класса с нормальным _ приоритетом _
    класс с высоким _ приоритетом _
    _класс приоритета в режиме реального времени _

    По умолчанию класс приоритета процесса — это класс с НОРМАЛЬным _ приоритетом _ . Используйте функцию CreateProcess , чтобы указать класс приоритета дочернего процесса при его создании. Если вызывающий процесс является _ классом приоритета простоя _ или ниже _ обычного _ класса приоритета _ , новый процесс будет наследовать этот класс. Используйте функцию жетприоритикласс для определения текущего класса приоритета процесса и функции сетприоритикласс , чтобы изменить класс приоритета процесса.

    Процессы, выполняющие мониторинг системы, такие как экранные заставки или приложения, которые периодически обновляют отображение, должны использовать _ класс приоритета простоя _ . Это препятствует потокам этого процесса, которые не имеют высокого приоритета, от влияния на потоки с более высоким приоритетом.

    Используйте _ класс с высоким приоритетом _ с осторожностью. Если поток выполняется с наивысшим приоритетом для расширенных периодов, другие потоки в системе не будут получать процессорное время. Если несколько потоков одновременно устанавливаются с высоким приоритетом, потоки теряют свои эффективность. Класс с высоким приоритетом должен быть зарезервирован для потоков, которые должны отвечать на критические по времени события. Если приложение выполняет одну задачу, для которой требуется класс с высоким приоритетом, в то время как остальные задачи имеют нормальный приоритет, используйте сетприоритикласс , чтобы временно вызвать класс приоритета приложения. затем сократите его после завершения задачи, критичной по времени. Другая стратегия состоит в том, чтобы создать высокоприоритетный процесс, в большинстве случаев блокирующий все его потоки, выводят потоки только при необходимости выполнения критических задач. Важно отметить, что поток с высоким приоритетом должен выполняться в течение короткого промежутка времени и только тогда, когда он имеет критическую для выполнения работу.

    Почти никогда не следует использовать _ класс приоритета реального времени _ , так как это прерывает системные потоки, управляющие вводом мыши, вводом с клавиатуры и фоновым сбросом дисков. Этот класс может быть пригоден для приложений, которые «говорите» непосредственно на оборудование или выполняют короткие задачи, которые должны иметь ограниченные перерывы.

    Уровень приоритета

    Ниже приведены уровни приоритета в каждом классе приоритета. приоритет потока — _ _ бездействие
    _ _ самый низкий приоритет потока
    _приоритет потока _ ниже _ обычного
    приоритет потока — _ _ нормальный
    _приоритет потока _ выше _ обычного
    приоритет потока — _ _ самый высокий
    _ _ критическое время ПРИОРИТЕТа потока _

    Все потоки создаются с использованием _ обычного приоритета потока _ . Это означает, что приоритет потока аналогичен классу приоритета процесса. После создания потока используйте функцию сетсреадприорити , чтобы изменить ее приоритет относительно других потоков в процессе.

    Типичной стратегией является использование _ приоритета потока _ выше _ обычного или _ приоритета потока _ для входного потока процесса, чтобы обеспечить реагирование приложения на запросы пользователя. Фоновым потокам, в частности, которые являются ресурсоемкими, можно задать _ приоритет потока _ ниже _ обычного или _ приоритета потока _ , чтобы гарантировать, что при необходимости они могут быть вытеснены. Однако при наличии потока, ожидающего другого потока с более низким приоритетом для выполнения некоторой задачи, не забудьте заблокировать выполнение ожидающего потока с высоким приоритетом. Для этого используйте функцию Wait, критическую секциюили функцию Sleep , слипексили свитчтосреад . Это предпочтительнее, чтобы поток выполнял цикл. В противном случае процесс может привести к взаимоблокировке, так как не запланировано выполнение потока с более низким приоритетом.

    Чтобы определить текущий уровень приоритета потока, используйте функцию жетсреадприорити .

    Базовый приоритет

    Класс приоритета процесса и уровень приоритета потока объединяются для формирования базового приоритета каждого потока.

    В следующей таблице показан базовый приоритет для сочетания класса приоритета процесса и значения приоритета потока.

    Читайте также: