24 мегапикселя какое разрешение экрана

Обновлено: 06.07.2024

В последние 15 лет производители фотоаппаратов активно соревнуются в увеличение числа мегапикселей и уменьшении площади матрицы фотоаппарата. В этой статье вы узнаете, почему мегапикселей может быть слишком много, чем это грозит и почему можно обходится меньшим их количеством без какой-либо потери качества. В итоге вы поменяете представление о стоимости фотоаппарата и научитесь задавать правильные вопросы при его покупке.

Что такое мегапиксель?

Мегапиксель - это массив из 1 000 000 пикселей. Пиксель - это элемент, который формирует изображение. То есть квадрат 1000 х 1000 пикселей формирует картинку размером ровно 1 мегапиксель.

Раньше, когда у камер было разрешение 2-3 мегапикселя, добавление мегапикселей вызывало детский восторг, а сейчас даже любительские камеры оборудованы матрицей более 15 мегапикселей. И теперь даже у любителя есть возможность печатать свои фотографии на широкоформатных полотнах.

Увеличение числа мегапикселей часто уменьшает резкость изображения.

Думаете, чушь? Отнюдь. Посмотрите сами и убедитесь.

Допустим, мы будем увеличивать число мегапикселей с сохранением размера сенсора. Из-за этого процесса площадь каждого отдельно рассмотренного пикселя будет уменьшаться. А при сокращении площади пикселя ухудшается его чувствительность. Теоретически это вызовет рост уровня шумов. Однако сейчас технологически научились уменьшать шум матриц небольшого размера, однако есть проблема, которая до сих пор остается у матриц с небольшим размером и большим числом пикселей.

Дифракция (процесс огибания волнами тел) напрямую связана с проецированием изображения на сенсор.

При прохождение через диафрагму свет "распыляется" на матрицу и тут возникает вопрос: "Как будет выглядеть одна и та же картинка, снятая на две матрицы одного размера, но с разным числом пикселей?".

Представьте, что вы взяли распылитель и подставили под рассеянную струю спрея ладонь (пускай это наш пиксель на маленькой матрице). Вы получите большую порцию влаги на всю ладонь.

А теперь подставьте все свое пальцы, попросите друга подставить все свои пальцы, чтобы получить площадь, равную вашей ладони, и распылите спрей. И что?

А то, что чем, дальше от оси испускания воды находятся пальцы, тем меньше попадает на них воды.

Со светом то же самое, да простят меня физики.

Апертура- диафрагма нашего фотоаппарата.

Когда мы пропускаем через апертуру свет, он слегка отклоняется от траектории, потому при попадании на пиксели большего размера будет возникать четкое пятно,

а при попадании того же пучка света на облако пикселей будет возникать градиент и на кадре точка будет размыта.

Из этого нужно сделать вывод, что при уменьшении площади пикселей уменьшается диапазон размера диафрагмы, при которой будет качественная картинка. Опыт показывает, что при матрице в +/- 12 пикселей на фотоаппарате со сменной оптикой любительского уровня оптимальную картинку дает значение f/8. А при небольшом кол-ве пикселей можно смело закрывать диафрагму до f/22 и при этом вы вряд ли встретите размытие.

Как качественная оптика влияет на качество изображения?

Китовые зумы, спроектированные, когда о кроп матрицах на 24 мегапикселя и не знали, дадут картинку ужасного качества, в то время как современные бюджетные зумы являются компромиссом, они дают картинку лучшего качества, но все же не достойного. Поэтому, если вы покупаете продвинутую тушку, то купите или качественную оптику или, если нет 1500 $ на стекло, купите фикс-это лайфхак, который спасет ваши снимки.

Самые популярные 50 mm объективы с диафрагмой 1.8 (например, canon 50 mm f/1.8 ) дают отличную картинку, но при этом вам придется побегать, чтобы все красиво закомпоновать - везде свои плюсы и минусы.

Сколько пикселей должно быть?

Опытным путем выявлено, что оптимальные значения:

  • При съемке на 12 мегапикселях с китовым зум объективом не используйте крайние значения фокусного расстояния и придерживайтесь диафрагмы f/8.
  • При съемке на фикс-объективы или профессиональные зумы ограничений на использование крайних значений нет, но будет заметно ухудшение качества после значения диафрагма f/11.
  • Компактные (мыльницы) фотоаппараты с матрицей размером 1/1.7" и меньше не должны оснащаться сенсором более, чем на 10-12 мегапикселей. Когда вы слышите про матрицы более 20 мегапикселей на такой маленькой камере-это маркетинговый ход.

Что в матрице важнее числа пикселей?

Если сравнить 20 мегапикселей на матрице 1/2.3" с APS-C или FF, то очевидно, что это не одно и тоже. НА матрицах большего размера лучше качество цветопередачи и шире динамический диапазон, богаче цветовая гамма, насыщеннее фотография, чем на матрице меньшего размера.

Подавляющее большинство современных камер имеет матрицу со сглаживающим низкочастотным фильтром. Один пиксель изображения формируется путем интерполяции группы 2*2 пикселя матрицы (2 зеленых, 1 красный, 1 синий). Низкочастотный фильтр "замыливает" изображение, но предотвращает появление муара на объектах с регулярным повторяющимся рисунком.

Качество матрицы важно, но также важен тот путь, которые проходит сигнал, полученной сенсором. То есть важен процессор и внутреннее ПО фотоаппарата. Как правило, техника высокого класса с схожими процессором и матрицей, что и любительская, дает лучшее качество картинки. Разумеется, производители не будут объяснять почему, но можно догадаться, что все дело в программном обеспечении, ведь даже у моделей одной линейки с одинаковыми матрицами наблюдается отличие в качестве изображения.

Подписывайтесь на наш канал и получайте ежедневно полезную информацию про фотографию, искусство, фотографов и фототехнику.

Заметили, что мегапикселей стало как-то очень много? В Samsung готовят матрицы разрешением 600 Мп, уже есть — 108 Мп, а вот в iPhone, по-прежнему, 12 Мп. Почему так?

Вы наверное думаете, что всё дело в Deep Fusion и других волшебных алгоритмах. Отчасти, да. Но дело не только в них.

А что если я вам скажу, что в iPhone гораздо больше мегапикселей, чем мы думаем. А в Samsung, наоборот, гораздо меньше. Смотря как посчитать эти мегапиксели. Что это еще за заговор такой? Давайте разберемся!

Традиционная структура

Первый момент. Если внимательно посмотреть на современные ультра-мегапиксельные матрицы на 48, 64 или даже 108 Мп (а Samsung официально анонсировал, что работает над 600 Мп сенсором), то становится понятно, что разрешение матрицы стало вещью относительной. Почему я так говорю?

Традиционно, каждый пиксель на матрице состоял как минимум из 3 вещей:

  1. Фотодиод — маленький сенсор, который улавливает свет.
  2. Это цветовой фильтр, который позволят каждому фотодиоду улавливать только нужный спектр света: красный, зеленый или синий.
  3. Микролинза — которая позволяет точнее фокусировать свет внутрь пикселя.


И получается что если в пикселе есть эти три компонента, его можно назвать полноценным. И в матрицах с такими дополнениями пикселя мы всегда получаем честное разрешение: если матрица 12 МП, то и фотография будет 12 МП. Но разве можно делать как-то иначе?

Quad Bayer

Оказывается, можно. Долгое время у производителей матриц была проблема. Они никак не могли сделать пиксель меньше 1 мкм. А значит они не могли при том же физическом размере матрицы увеличить разрешение. Вот мы и сидели в основном с 12 Мп камерами.


Но в 2018 году барьер в 1 мкм был преодолён и появились первые компактные матрицы с размером пикселя 0,9 или 0,8 мкм и разрешением в 48 МП и больше. Но с уменьшением размера пикселя при прочих равных падает и их светочувствительность. Что, кстати, происходит не всегда…

Поэтому придумали очень простой хак. Цветовой фильтр стали накладывать не на один, а сразу на четыре пикселя и назвали такую структуру Quad Bayer, ну или Tetra Cell, если вы маркетолог Samsung. А дальше, объединив 4 пикселя в один гигантский, мы получаем отличную светочувствительность!

Но при этом реальное разрешение в 48 Мп камерах с Quad Bayer структурой в 4 раза меньше номинального и все равно — 12 Мп. Потому что пиксели в таких матрицах не проходят наш критерий полноценности: в каждом пикселе есть фотодиод, в каждом есть микролинза, но цветовой фильтр только один на четырёх. А значит цветовое разрешение в таких камерах в 4 раза ниже фактического.


Более того, даже в новых Samsung со 108 Мп камерами, реальное разрешение тоже 12 Мп, потому как в них объединяют не четыре, а сразу девять пикселей. Итого, 108 делим на 9, получаем 12.


Но почему же просто не сделать большие пиксели и не заморачиваться с этим объединением? Как ни странно такой подход даёт массу преимуществ!

Во-первых, днём когда света много — можно не объединять пиксели, а наоборот, при помощи алгоритма Re-mosaic можно восстановить хоть и неполное разрешение матрицы, но очень высокое.



Во-вторых, мы можем заставить разные пиксели работать с разной выдержкой. Тогда на выходе мы получим один светлый и один темный кадр, а склеив их мы можем получить полноценную HDR фотографию, или даже HDR видео!


Короче, вариантов для экспериментов масса и грех такое не использовать.

Но, если все уже поняли, что подход работает, почему же тогда ни в iPhone, ни в Pixel не используется преимуществами новых матриц? И вот тут самое интересное. На самом деле они пользуется, причем давно, но по-другому!

Dual Pixel

Помимо структур Bayer и Quad Bayer, существует и альтернативная школа, которая называется Dual Pixel или вернее сказать Dual Photo Diode.

Она отличается от традиционного Байера тем, что каждый пиксель в ней состоит из двух независимых фотодиодов. При этом оба фотодиода перекрывает только одна микролинза.


Но зачем это нужно? Если посмотреть на традиционную цифровую матрицу под микроскопом, то помимо обычных пикселей мы заметим какие-то странные зоны — вот эти зеленые штучки.


Это датчики фазовой фокусировки. Они необходимы для автофокуса. Кто снимал на зеркальные, помните вот такие зоны фокусировки в видоискателе? Вот это они!

Чем больше таких датчиков, тем быстрее и точнее будет работа автофокуса или AF. Но вот проблема. Они физически занимают место на матрице и отнимают его у нормальных пикселей. А значит, нельзя бесконечно увеличивать количество фазовых пикселей. Потому как если бы на каждый обычный пиксель приходился один фазовый пиксель, то система фокусировки занимала бы процентов 60 от общей площади.


Так было раньше, пока Canon не придумал технологию Dual Pixel. В качестве датчиков фазовой фокусировки они стали использовать обычные пиксели, разделив их на две части! Это позволило все пиксели сделать фазовыми! Опять же все кто пользовался зеркалками, знает какой у Canon крутой автофокус.



Но если у взрослых камер такая технология есть только у Canon, то в смартфонах матрицы с двойными пикселями производит и Samsung, и Sony, поэтому такую систему фокусировки можно встретить в куче смартфонов. В том числе во всех Google Pixel, начиная со второго и в iPhone 11 и 12.

Поэтому фактически в iPhone матрицы 24 мегапиксельные, если считать по количеству фотодиодов. Только полноценными такие 24 Мп конечно назвать нельзя, потому как тут пиксели делят на двоих не только цветовой фильтр, но и макролинзу. Поэтому в таких матрицах пиксели всегда работают в режиме объединения.

Правда есть одно исключение, если в iPhone систему двойных пикселей используют исключительно по назначению то есть для улучшения фокусировки, и, кстати, автофокус в iPhone замечательно работает как в фото, так и в видео, то в Google Pixel при помощи этой технологии научились делать портретные снимки с одной камеры. Они просто берут две фотографии, которые получились с правого и левого фотодиода и, подсчитав насколько сдвинулось изображение, строят карту глубины.


Так к чему я всё это? 12 Мп в iPhone — это осознанный выбор Apple, как и 108 Мп в Galaxy — осознанный выбор Samsung. Каждый из которых даёт свои преимущества и недостатки.

Камеры с высоким разрешением и структурой Quad Bayer или NonaCell — позволяют добиться более высокого разрешения днём и классной светочувствительности ночью. Позволяют проводить съёмку с алгоритмами HDR для фото и видео и вообще могут очень гибко настраиваться под конкретную задачу. Но пока не каждый процессор может справится с обработкой такого количества пикселей, а также, как показали тесты Galaxy S20 Ultra, бывают проблемы с фокусировкой.


Dual Pixel матрицы с низким разрешением вроде бы ничем особо не отличаются от традиционных матриц, но фотографии в низком разрешении проще обрабатывать. А структура Dual Pixel позволяет добиться потрясающей скорости и точности фокусировки.


Тем не менее мир не стоит на месте, Samsung и Sony уже показали новые матрицы с Quad Bayer структурой и двойными пикселями, которые берут лучшее из двух миров. Поэтому в будущем ждем еще более крутые камерофоны в следующем году.


Обозначения качества изображения, применяющееся в стандартах сигналов (IP, HD-TVI, AHD)

Разрешающая способность («разрешение» записи или «размер кадра» видео) определяется количеством пикселей (точек) при оцифровывании изображения (по горизонтали и вертикали соответственно).

Обозначение «Mp, Mpx, Мп» (1 Mp; 1,3 Mpx; 2,1 Мп)

MP – это общее число мегапикселей (миллионов точек), полученное перемножением числа столбцов (точек по горизонтали) на число строк (точек по вертикали). Например, для камеры 1080p: 1920 столбцов умножаем на 1080 строк и получаем 2МР (точнее, 2.07МР, но обычно это обозначают как 2MP или 2.1MP).

Обозначение «р» (720p, 960p,1080p, 2160p)

Число с символом «p» соответствует полному числу строк в данном видео (количество точек в кадре по вертикали). Например, видео, обозначаемое как 720p, содержит 720 строк пикселов (при общей площади 1.3Mp). Видео, обозначаемое как 1080p, содержит 1080 строк пикселов (при общей площади 2.1Mp). Наконец, видео, обозначаемое как 2160p, содержит 2160 строк пикселов (при общей площади 8.3Mp).

Сам по себе значок «р» указывает на прогрессивную развертку (в отличие от чересстрочной). В настоящее время практически все камеры для видеонаблюдения имеют прогрессивную развертку, так что значок «р» в этом смысле уже не играет особого значения.

Обозначения «H и К» (960H, 2K, 4K)

Обозначения качества видео, применявшиеся в устаревших аналоговых системах видеонаблюдения (D1, DCIF, 2CIF, CIF, QCIF, 380ТВЛ, 420ТВЛ, 480ТВЛ, 560ТВЛ, 600ТВЛ, 800ТВЛ, 1000ТВЛ) перевод в мегапиксели и их отличия

D1 — «полный» кадр, размер изображения 704х576 — позволяет получить максимальное качество изображения при использовании аналоговой камеры высокого разрешения (более 540 ТВЛ)

DCIF — «расширенный» кадр, размер изображения 528х384. По сравнению с D1 характеризуется 30% потерей исходной информации.

2CIF — «длинный» кадр, размер изображения 704х288 — используется одно поле изображения, но с максимальным разрешением по горизонтали. Характеризуется хорошим горизонтальным разрешением и позволяет почти в 2 раза уменьшить объем создаваемого архива по сравнению с D1. Однако низкое вертикальное разрешение, не позволяет вести видеорегистрацию в узких зонах наблюдения (наблюдение вдоль коридора). Используется в основном при панорамном обзоре.

CIF — «четверть» кадр, размер изображения 352х288 — усеченное поле. Обычно используется только при наблюдении по сети при ограниченной пропускной способностью канала, а также регистрации общей ситуации при малых зонах обзора (от 3 до 5 м). При этом малый объем видеопотока позволяет резко увеличить продолжительность архива.

QCIF — размер изображения 176х144 — используется только при сетевом мониторинге по низкоскоростным каналам связи с потоком до 56-128 Кбит/с. О качестве изображения можно сказать только то, что «видно какое то движение», и более ничего.

Список всех (основных и промежуточных) форматов видеоизображений с указанием горизонтального и вертикального размера кадра в пикселях и полной площади изображения в килопикселях и мегапикселях

Какого объема нужен жесткий диск для видеорегистратора?

Руководствуясь таблицей, приведенной ниже, можно посчитать сколько гигабайт в час будут передавать на видеорегистратор все камеры.

Для уменьшения объема хранимой видеоинформации в видеорегистраторах применяются различные алгоритмы ее компрессии.

Основным преимуществом алгоритма H.264 является межкадровое сжатие, при котором для каждого следующего кадра определяются его отличия от предыдущего, и только эти отличия после компрессии сохраняются в архиве. При работе алгоритма периодически в архиве сохраняются опорные кадры (I-кадры), представляющие собой сжатое полное изображение, а затем на протяжении 25-100 кадров сохраняются только изменения, называемые промежуточными кадрами (P- и B-кадрами). Такой способ компрессии позволяет получить высокое качество изображения при малом объеме, но требует большего объема вычислений, чем компрессия в стандарте MJPEG.

При использовании алгоритма MJPEG компрессии подвергается каждый кадр не зависимо от наличия в нем отличий от предыдущего. Поэтому единственным способом уменьшения объема сохраняемых данных является увеличение компрессии и тем самым снижение качества записи. Такой способ используется только в простых автономных видеорегистраторах, не требующих длительного хранения информации.

Еще одним преимуществом алгоритма H.264 является его возможность работы в режиме постоянного потока (CBR — constant bit rate) при котором степень компрессии видеоинформации изменяется динамически и таким образом четко фиксируется объем создаваемого архива за одну секунду. Такая особенность алгоритма позволяет однозначно определить максимальный объем архива за час непрерывной работы системы, а также необходимый сетевой трафик при удаленном доступе.


One thought on “Таблица разрешений камер видеонаблюдения”

Статья,конечно интересная, но совершенно бестолковая. Какой-же в конце концов нужен объем HDD ? Можно лить много воды, но ведь надо же и отвечать за слова. Люди же хотят научиться, читают, вникают, тратят время. Или вам платят за пустое больство?

Плотность пикселей PPI — что это такое и как влияет на изображение

Четкость изображения — первое, что требуется от экрана любого электронного устройства. Плотность пикселей или PPI как раз характеризует этот показатель. Что такое PPI, как этим параметром пользоваться и каким он должен быть для различных устройств — расскажем в этой статье.

Что такое PPI

Большинство владельцев электронных устройств знает, что экран состоит из множества квадратиков, способных менять цвет — пикселей. Пока мы не пытаемся изобразить на экране ничего сложнее «черного квадрата», проблем нет. Но как только появляются диагональные линии, на экране становятся заметны зубцы.


Очевидно, что чем меньше размер пикселей, тем менее они заметны. Однако с уменьшением размера пикселя неизбежно вырастет их количество (мы же не хотим, чтобы экран тоже уменьшался). О количестве пикселей говорит такой параметр, как разрешение экрана. Например, разрешение 2400х1080 означает, что на экране умещается 2400 пикселей по горизонтали и 1080 по вертикали. Много это или мало?

Чтобы ответить на этот вопрос, одного разрешения недостаточно, ведь неизвестна величина экрана. А вот если поделить количество пикселей по горизонтали на ширину экрана (или по вертикали – на высоту), то получится PPI — количество пикселей на дюйм длины (по-английски PPI так и расшифровывается — «Pixel Per Inch», в переводе на русский — «Пикселей На Дюйм»). Так, 200 PPI означает, что на дюйм экрана приходится 200 пикселей.


PPI, разрешение и размер экрана

Легко понять, что эти три параметра связаны между собой. Но связь не настолько однозначна, насколько может показаться с первого взгляда. Дело в том, что разрешение говорит о количестве пикселей по горизонтали и вертикали, а размер обычно указывается по диагонали. Поэтому для подсчета PPI по разрешению и диагонали экрана следует воспользоваться теоремой Пифагора:


Так, для смартфона Samsung Galaxy S21+ с 6.7-дюймовым экраном, имеющим разрешение 2400 на 1080, плотность пикселей будет составлять


Сколько PPI нужно на самом деле

Установлено, что большинство людей с остротой зрения 10/10 способны различить объекты размером 1 угловую минуту. Это проистекает из устройства нашего глаза, точнее, из количества колбочек, воспринимающих свет.


Чем ближе объект к глазу, тем более мелкие детали мы можем распознать. Но только до определенного предела. Наша «оптическая система» также имеет пределы по подстройке фокусного расстояния. На объекты, расположенные ближе 25 см, глаз фокусируется с трудом, и чем ближе — тем хуже. На расстоянии наилучшего зрения (250 мм) линейный размер одной угловой минуты составляет


Значение плотности пикселей, соответствующее этому размеру, равно 358 PPI. Таким образом, для большинства людей более высокая плотность пикселей смысла просто не имеет.

PPI и тип устройства

Теперь для сравнения возьмем другое устройство. Например, 65-дюймовый телевизор Sony KD65A8BR2.

При разрешении в 3840х2160 плотность пикселей составляет всего 67! Почему так мало? Потому что телевизор мы смотрим на расстоянии 2-5 метров, а не 25 сантиметров. А та же 1 угловая минута на 2 метрах соответствует 0,5 мм. Т.е. максимальный PPI на таком расстоянии составит всего 50.

Выходит, что для каждого типа устройств имеется свой «хороший» показатель PPI. Ведь смартфон мы держим чуть ли не вплотную к лицу, планшет — подальше, монитор компьютера — уже почти в метре от глаз, а дальше всего — телевизор. Так какой же должна быть плотность пикселей экрана для каждого устройства?


С учетом всего вышеизложенного, на сегодняшний день оптимальные значения PPI для различной техники следующие:

Читайте также: