3 все ли современные цифровые компьютеры концептуально похожи

Обновлено: 03.07.2024

Обычно концептуальными проектами называют прототипы устройств, которые пока ещё далеки от серийного производства или которые даже могут вообще никогда не появиться на свет. Однако за последние годы на крупных международных выставках электроники сложилось негласное правило демонстрировать необычные продукты, продажи которых готовы начаться в самое ближайшее время. Не стала исключением и выставка CES 2014, проходившая в январе во всемирной столице развлечений Лас-Вегасе. Вот пять концептов, показавшихся нам особенно любопытными и вот-вот могущих появиться на прилавках магазинов.

1. Razer Project Christine

«Кристина» представляет собой модульный персональный компьютер, который собирается из отдельных блоков, устанавливаемых в специальную раму. Начинка такой машины может быть любой, то есть нет никаких ограничений по выбору процессоров, памяти, графических ускорителей, накопителей, блоков питания и прочих комплектующих. При этом сами модули могут устанавливаться и заменяться за считаные секунды.

Отдельного внимания заслуживает реализованная в Project Christine система охлаждения: в модулях применяется жидкостная система на основе минерального масла, которая при установке блоков в раму работает во взаимодействии со встроенной в неё центральной водяной системой охлаждения. Эффективность такой схемы настолько высока, что конструкторам удалось сделать её полностью бесшумной, и это ещё один её плюс.

Точной даты начала серийного производства Project Christine объявлено не было: на сайте Razer предлагается подписаться на получение дополнительной информации. Но, судя по интересу, проявленному к этому проекту на CES 2014, у него есть все шансы не только появиться на свет, но и сделать это в ближайшем будущем.

2. Toshiba 5-in-1

В этом году поразить посетителей CES решили в компании Toshiba, которая продемонстрировала концептуальный гибрид 5-in-1, то есть «пять в одном». Как и Acer R7, он притворяется обычным лэптопом, но при этом способен становиться трансформером, планшетом с беспроводной Bluetooth-клавиатурой, монитором для презентаций, а также планшетом для рисования, при котором сенсорный экран располагается перед пользователем под углом в 270 градусов.

В отличие от громоздкого Acer R7, это настоящий планшет: тонкий, лёгкий и практичный. К тому же в комплект поставки входит электронное перо, позволяющее пользоваться продвинутыми пакетами для создания и редактирования изображений.

Как и Razer, Toshiba пока не объявляла ни цены, ни даты официальной презентации этого устройства, но поскольку уже в январе существовало достаточное количество готовых экземпляров, предоставляемых для тестирования, можно предположить, что совсем скоро оно появится в продаже.

3. Asus Transformer Book Duet TD300

4. Sony Life Space UX

Концепция Life Space UX предполагает создание выполненных в едином дизайне устройств, замаскированных под модную мебель с использованием алюминия, среди которых проектор, громкоговорители и специальные тумбы для прочей аппаратуры.

Видеопроектор Life Space UX предназначен для работы с игровой приставкой PlayStation 4, а также с фирменным облачным сервисом Gaikai, перезапуск которого ожидается в ближайшем будущем. Сам проектор появится в продаже уже летом этого года и будет стоить примерно $30-40 тыс. За эти деньги вы получите поистине уникальный игровой интерфейс и веб-телевидение, поэтому вполне возможно, что Life Space UX со временем действительно изменит наше представление о домашних электронных развлечениях.

5. RoboThespian

Это уже третье поколение RoboThespian, умеющее по-всякому развлекать публику: актёрствовать, петь, танцевать и лицедействовать самыми разными способами, реагируя на просьбы и задания. Компания-разработчик Engineered Arts Limited продаёт даже целые комплекты из трёх андроидов, сцены с освещением и озвучкой и программным обеспечением под названием «Театр роботов». К комплекту прилагается одно полноценное представление, а в остальном дело за творчеством покупателей.

Робота RoboThespian можно приобрести примерно за £55 тыс. (около $90 тыс.), что, конечно, немало за манерно кривляющуюся говорящую машину. Но если вы увидите, как она это делает, то наверняка согласитесь, что оно того стоит.

Рано или поздно рост производительности компьютеров остановиться по чисто физическим причинам. Сейчас рост производительности достигается за счёт все большей миниатюризации — уменьшения размеров транзисторов, что позволяет разместить в одном кубическом сантиметре больше количество логических элементов.

Однако миниатюризация не может продолжаться бесконечно. Уже в 2021-м году ожидается появление процессоров сделанных по 3-х нанометровому технологическому процессу, т.е. минимальный размер элемента составляет 3 нанометра. Для сравнения размер атома кремния, повсеместно используемого при изготовлении процессоров составляет 0.21 нанометра. Очень скоро мы упрёмся в ограничения связанные с атомарной структурой вещества.

Миниатюризация электроники приближается к своему пределу Миниатюризация электроники приближается к своему пределу

В связи с этим квантовые компьютеры многие рассматривают как возможную в будущем замену традиционным электронным компьютерам.

Что такое квантовый компьютер?

Если очень коротко: квантовый компьютер, это вычислительное устройство, использующее некоторые эффекты квантовой механики , такие как суперпозиция и квантовая запутанность для хранения информации и вычислений.

В квантовых компьютерах информация хранится в квантовых битах – кубитах (QuBit - quantum bit).

Если обычный бит может принимать два строго определённых состояния: 0 и 1, то квантовый бит является вероятностным: он находится в суперпозиции двух возможных состояний: α|0⟩+β|1⟩ где α и β соответственно являются вероятностями обнаружить кубит в состоянии |0⟩ или |1⟩ соответственно.

В теории это может позволить обрабатывать одновременно все возможные состояния объекта и позволит получить большое преимущество над классическими компьютерами при решении некоторых классов задач.

Что по быстродействию?

Существует распространённое заблуждение, что квантовые компьютеры обладают намного большим быстродействием, чем традиционные.

Это не так. На самом деле все современные квантовые компьютеры в тысячи и десятки тысяч раз медленнее обычных электронных компьютеров.

Нет, это не люстра. Это квантовый компьютер разработки IBM Нет, это не люстра. Это квантовый компьютер разработки IBM

Однако существует отдельный класс задач, с которыми квантовые компьютеры благодаря особенностям своего устройства справляются быстрее, а иногда даже намного быстрее .

Классическим примером такой задачи является факторизация целых чисел (в особенности очень больших чисел), т.е. разложение их на простые множители. Эта задача особенно важна в современной криптографии, так как многие алгоритмы шифрования основаны на том, что факторизация очень больших чисел является непосильной задачей для современных цифровых компьютеров.

Развитие квантовых вычислений может быть опасно например для держателей криптовалют, так как появление быстрых способов разложения больших целых чисел на множители скомпрометирует все основные алгоритмы шифрования. Развитие квантовых вычислений может быть опасно например для держателей криптовалют, так как появление быстрых способов разложения больших целых чисел на множители скомпрометирует все основные алгоритмы шифрования.

Поэтому квантовые компьютеры представляют угрозу для практически всех существующих на данный момент алгоритмов шифрования и систем электронной безопасности.

Какие перспективы?

Критическим моментом в развитии квантовых вычислений является их помехоустойчивость. Информация хранящаяся в кубитах (квантовых битах) подвержена компрометации из-за декогеренции несущих информацию частиц в результате взаимодействия с другими частицами.

Основные надежды связаны с так называемой квантовой пороговой теоремой (Quantum Threshold Theorem), которая гласит, что если удастся создать квантовую схему с достаточно высоким уровнем точности, то с помощью неё можно будет смоделировать квантовый компьютер точность которого будет 100%.

Насчёт принципиальной разрешимости этой задачи есть разные мнения. Многие специалисты считают, что это всего-лишь вопрос времени. Другие смотрят на это довольно скептически.

IBM Q System One – первый коммерческий квантовый компьютер IBM Q System One – первый коммерческий квантовый компьютер

Однако даже если пороговая точность квантовых микросхем будет достигнута и мы получим способ создавать надёжные квантовые компьютеры, всё равно я не ожидаю, что они полностью заменят обычные цифровые компьютеры.

Дело в том, что квантовые и цифровые компьютеры имеют разные области применения. Квантовые компьютеры не имеют никаких преимуществ перед цифровыми в решении задач, для которых существуют эффективные вычислительные алгоритмы.

Наиболее вероятным вариантом развития событий мне видится появление гибридных, квантово-цифровых компьютеров, в которых в дополнение к обычному центральному процессору будет использоваться квантовый сопроцессор, которому основной процессор будет делегировать сложные задачи, как например уже упоминавшаяся выше задача факторизации больших целых чисел.

Есть три типа компьютеров, каждый из которых способен делать уникальные вещи. Они разделены аппаратным обеспечением и способом обработки данных. Рассматриваются три типа компьютеров: Аналоговый, Цифровой, и Гибридный. Каждый из них можно найти в различных отраслях по всему миру, у вас дома и даже в автомобиле. Но послушайте, давайте продолжим и сосредоточимся на том, что такое все эти компьютеры.

Типы компьютеров

Эти три типа компьютеров основаны на работе, приложениях и функциях:

  1. Аналоговый компьютер
  2. Цифровой компьютер
  3. Гибридный компьютер

Разница между аналоговыми, цифровыми и гибридными компьютерами

1]Аналоговый компьютер


Обратите внимание, что аналоговые компьютерные системы не требуют каких-либо возможностей хранения, потому что они связывают и измеряют количества в одном процессе. Короче говоря, они нигде не умны по сравнению с тем, что мы используем сегодня, но у них есть свои отрасли.

В прошлом аналоговый компьютер в основном использовался в научных и промышленных приложениях и даже после появления цифровых компьютеров. Это связано с тем, что на заре цифровых компьютеров аналоговые системы все еще работали намного быстрее. Однако между 1950-ми и 1960-ми годами аналоговые компьютерные системы устарели, поскольку они больше не могли идти в ногу с цифровой волной.

Электронные аналоговые компьютеры

По большей части эти компьютеры действительно основаны на специфике аналога. Однако их компоненты состоят из конденсаторов, катушек индуктивности и резисторов. Люди могут моделировать их, используя уравнения аналогичной формы. Кроме того, они более полезны, чем обычные аналоговые устройства, потому что имеют электрическую цепь.

Использование электрической схемы позволяет моделированию двигаться быстрее, чем когда-либо прежде, что в то время было огромным преимуществом для научного сообщества.

Теперь, если вам интересно, как выглядят эти компьютеры, ну, у них много усилителей и разъемов. Коммутатор в прошлом был отличным аналоговым компьютером, но ему не хватало надежности по сравнению с тем, что есть сегодня. И это не должно вызывать удивления.

Например, мы можем найти аналоговые компьютеры на нефтеперерабатывающих заводах и в бумажной промышленности, и это лишь некоторые из них.

Некоторые характеристики аналоговых компьютеров

  • Непрерывные значения
  • Маленькая память
  • Медленная скорость
  • Не такой надежный
  • Результаты неточные
  • Сложно использовать

Теперь вы знаете, что такое аналоговый компьютер, давайте поговорим о цифровом.

2]Цифровой компьютер


Для тех, кто может захотеть обрабатывать числовые или нечисловые данные, цифровой компьютер более чем способен выполнять такие задачи. Кроме того, такие системы могут выполнять арифметические операции с легкостью и в большинстве случаев намного быстрее, чем человеческий мозг.

В настоящее время наиболее распространенными цифровыми компьютерами являются калькуляторы и бухгалтерские машины.

Некоторые характеристики цифровых компьютеров

  • Дискретные значения
  • Большая память
  • Быстрее скорость
  • Очень надежный
  • Результаты точны на 100 процентов

Пора поговорить о гибридных компьютерах, которые наиболее известны в мире благодаря тому, что они широко используются как потребителями, так и предприятиями.

3]Гибридный компьютер

Аналоговые, цифровые и гибридные компьютеры

Что приходит на ум, когда вы думаете о гибридном компьютере? Это должна быть смесь аналоговых и цифровых компьютеров. Таким устройствам удалось объединить в себе лучшие аналоговые и цифровые характеристики, что сделало их очень важными в ряде областей.

Что касается того, где используются гибридные компьютеры, то они в основном используются в специализированных приложениях, которым необходимо обрабатывать аналоговую и цифровую информацию. Как вы могли догадаться, гибридные компьютеры могут обрабатывать дискретные и непрерывные данные.

Сегодня весь мир в значительной степени полагается на гибридные компьютеры, и это во многом связано с их гибкостью. Один гибридный компьютер можно использовать для разных целей. Этого нельзя сказать об аналоге, но мы не должны забывать о его вкладе.

Примером гибридного компьютера являются отделения интенсивной терапии (ICU) в больницах по всему миру. В этих устройствах используется аналоговая технология для измерения температуры и артериального давления, а затем данные преобразуются и отображаются в цифровой форме на небольшом экране.


Многие из нас слышали такое слово, как «ЭВМ». Но, не все задумывались, что на самом деле оно означает, и с чего началось развитие ЭВМ как техники.

Согласно [1], ЭВМ — это электронно-вычислительная машина, выполненная из электронных элементов, которые в свою очередь важны для исполнения автоматизированных процессов и решения вычислительных задач.

С древности люди нуждались в вычислениях, один из первых, вероятно, приспособлений были счетные палочки [2], которые и в наши дни не утратили своей важности, их используют для обучения маленьких детей счету. Также немало известно про счеты [3], впервые появившиеся в Вавилоне, которые и зародили потребность к вычислениям.

Развитие всего мира в целом привело к потребности более сложных вычислений, поэтому, ученые и инженеры потратили многие годы на разработки электронных механизмов, которые помогали бы нам во многих сложных вычислениях.

Одним из главных потребителей в периоды зарождения вычислительной техники становились военные, так как для военных нужны были точные и быстрые расчеты.

Поэтому, уже в послевоенное время, потребителями ЭВМ стали не только военные, но и научные институты, которые в свое время разрабатывали секретные технологии для военных. Только ближе к 80-ымгодам прошлого столетия потребителями становились и простые граждане, обычно крупных мегаполисов и городов.

Цель исследования. В связи с этим, целью данной работы является знакомство с ключевыми историческими фактами развития электронно-вычислительных машин и персональных компьютеров до настоящего времени.

Развитие элементной базы компьютеров.На чем основывались первые компьютеры? Первые компьютеры создавались на основе электронных ламп [5]. Первым, кто случайно получил электронную лампу, стал Томас Альва Эдисон [6], американский ученый и предприниматель, который в довольно молодом возрасте смог получить свой первый патент (1869 год).

Молодой Томас сформулировал для себя очень важный принцип, которого придерживался всю жизнь: "никогда не изобретать того, на что не имеется спроса". Поэтому, когда он пытался продлить срок службы лампы, то случайно для себя открыл непонятное для него явление.

Он ввел угольную нить в вакуумный баллон, платиновый электрод, положительное напряжение и понял, что в вакууме между электродом и нитью начинает протекать ток. Американский изобретатель не понял всей важности своего открытия, и решил подробно описать явление, которое происходит в лампе.

Это была первая электронная лампа, с которой начинается развитие элементной базы компьютеров. Вскоре после открытия Эдисона, многие ученые-изобретатели начинали усовершенствовать его электронную лампу.

Первое поколение компьютеров. Компьютеры создавались на основе электронных ламп, которые имели свой ряд недостатков. Так как электронные лампы были высотой около 7 см, то компьютеры имели довольно внушительные (огромные) размеры, для которых порой требовались несколько больших (смежных между собой) комнат.

Также каждые 5-10 минут одна из ламп выходила из строя, для поиска вышедшей из строя лампы уходило длительное время, потому что в среднем один компьютер состоял примерно из 15-20 тысяч электронных ламп.

Еще один из минусов состоял в том, что большие компьютеры требовали специальной системы охлаждения. Что тоже было нелегким трудом для обслуживающего персонала. Примерами компьютеров первого поколения могут служить такие модели как MarkI (AutomaticSequenceControlledCalculator) [7], ENIAC (ElectronicNumericalIntegratorandComputer) [8], EDSAC (ElectronicDelayStorageAutomaticCalculator) [9].

Второе поколение компьютеров. Компьютеры второго поколения содержали уже транзисторы [10]. Транзисторы были открыты в конце 40-х годов прошлого столетия.

Это стало главным открытием в компьютерной отрасли, и заняло очень важное место в конструировании второго поколения вычислительной техники.

Во-первых, транзисторы были более просты в изготовлении, намного надежнее электронных ламп, дешевле в производстве и еще один немаловажный фактор, это потребление меньшей электроэнергии.

Во-вторых, один транзистор мог заменять уже более 40 электронных ламп, они были более стабильны в работе. Также сами компьютеры уменьшились в размерах, что тоже было немаловажным фактором. Быстродействие таких компьютеров достигало до полумиллиона операций в секунду.

С развитием второго поколения начали появляться первые запоминающие устройства на основе магнитных носителей, а также первые алгоритмические языки, такие как LISP (List Processing Language) [11], COBOL (CommonBusinessOrientedLanguage) [12], ALGOL-60 [13], и пакетные операционные системы, которые автоматизируют процесс запуска одной программы из пакета в другой, что увеличивает коэффициент загрузки процессора.

Для реализации пакетной обработки был создан язык управления заданиями, с помощью которого программист сообщал системе и оператору, какую работу хотел бы он выполнить на ЭВМ. В то же время произошло деление основного персонала на программистов, операторов и специалистов, обслуживающих вычислительные машины.

Один из суперкомпьютеров был разработан в конце 1965 года в СССР под названием БЭСМ-6 (Большая Электронно-Счётная Машина) [14]. Его быстродействие достигало одного миллионаопераций в секунду.

Третье поколение компьютеров. Это поколение характеризуется переходом от транзисторов к интегральным схемам [15]. В это время вычислительная техника становится более прогрессивной по сравнению со вторым поколением. Сама же вычислительная техника образует более дешевую и надежную технологию.

Меняются габариты, растет и сложность операций, и количество выполняемых задач, которые может выполнить техника на базе интегральных схем.

Быстродействие таких ЭВМ уже достигало выше одного миллионаопераций в секунду, что во втором поколение было доступно только сверхкомпьютерам. В этот же период появляется микропроцессор [16].

По определению, ЭВМ на интегральных схемах, или как еще называют кристаллом — это миниатюрная схема, которая выполнена на одном кристалле полупроводника.

В это же время появляется полупроводниковая память, которая используется и в наше время в качестве оперативной памяти [17].

Первая интегральная микросхема была изобретена в 1958году американским ученым Джеком Сент-Клэр Килби [18], который в то время работал в компании Texas Instruments [19]. Также он изобрел карманный калькулятор [20] и термопринтер [21].

Новые машины уже могли использовать широкий спектр оборудования для ввода и вывода, а также хранения информации. Появление интегральных схем было революцией в вычислительной технике, которые смогли заменить собой сотни транзисторов.

Быстродействие машин на таких схемах достигало более одного миллионаопераций в секунду. А размеры компьютеров уменьшились в несколько раз. Поэтому производство компьютеров приобретает промышленный размах. Одна из лидирующих компаний того времени была IBM (International Business Machines) [22], которая смогла реализовать целое семейство ЭВМ.

Программное обеспечение начинает дальнейшее развитие, это касается операционных систем, которые должны быть многорежимными, тем самым поддерживая работу в различных режимах: (1) пакетная обработка; (2) разделение времени; (3) запрос-ответ.

В 1968году был разработан Язык Программирования Паскаль [23] профессором кафедры вычислительной техники Швейцарского Федерального института технологии Никлаусом Виртом [24]. Язык Паскаль становится одним из важных и широко используемых языков программирования, как в школьных учебных заведениях, так и вузах.

Четвертое поколение компьютеров (начиная с 1980 года). В период эволюции поколения ЭВМ произошли серьезные изменения, так как наш прогресс никогда не стоит на месте, люди всегда стараются усовершенствовать технологии настолько, насколько считают возможным.

Мы уже знаем, что интегральные схемы сделали большой переворот в компьютерной технике. Поэтому, казалось бы, что можно придумать еще? Оказалось можно. Ученые смогли уместить в одном кристалле тысячи интегральных схем. С этого начинается эпоха микрокомпьютеров [25].

Быстродействие было колоссальным, оно в 10раз превосходило третье поколение, не говоря уже о первом и втором поколениях. Стоимость производства таких микросхем была снижена, а это означало, что эксплуатация компьютеров становится доступной каждому человеку. Наступает эра персональных компьютеров [26].

Компьютеры стали использовать не только специалисты, но и простые люди, что требовало разработки доступного и простого программного обеспечения. В середине 80-хгодов прошлого столетия стали бурно развиваться сети компьютеров, в том числе персональных, работающих под управлением сетевых или распределенных операционных систем.

В то время были только две лидирующие компании, это AppleInc. [27] и IBM (International Business Machines) [22], между которыми шла долгое время война за первенство продаж и производства персональных компьютеров. Но каждая из компаний имела ряд своих преимуществ.

Можно считать, что четвертое поколение появилось на свет благодаря компании IntelCorporation [28], которая занималась разработкой микропроцессоров, создав свой революционный чип, который при малых размерах кристалла содержал 2300 транзисторов и имел тактовую частоту 108 кГц. Это был настоящий прорыв ЭВМ.

В современном мире компания IntelCorporation занимает одно из лидирующих мест по производству процессоров. Как и сами компьютеры, процессоры требовали не менее важных затрат на их разработку и усовершенствование. Компании, которые занимались разработкой процессоров, шли в ногу со временем. Можно утверждать, что эволюция ЭВМ напрямую зависела от разработок и новшеств процессоров.

Благодаря всему этому, компьютеры стали по-настоящему общедоступны. Несмотря на то, что персональные компьютеры имели некоторое отставание от больших машин, большая часть всех новшеств в 90-егодыпрошлого столетия приходилась на современные операционные системы, графические интерфейсы, периферийные устройства, которые немаловажно повлияли на появление глобальных сетей. Уже в этот период суперкомпьютеры даже при своих развитиях не занимали лидерство на компьютерной арене.

Пятое поколение компьютеров (создание искусственного интеллекта). Пятое поколение основывалось на создании искусственного интеллекта [29], который смог бы при помощи логических языков программирования подойти вплотную к решению задач по обработке и хранению знаний.

Основная задача состояла в том, что для компьютеров пятого поколения не требовалось бы каких-то программных кодов для решения целевых процессов, а достаточно простое объяснение на "почти естественном" языке.

Многие считают, что в то время это было провальное пятое поколение, которое даже при большой финансовой поддержке оказалось недостигаемой. Одна из задач проекта состояла в разработке машины, которая имела бы искусственный интеллект, а общение с пользователем было бы максимально простым.

Самым сложным являлось создание простого интерфейса, при помощи которого пользователь мог бы вести диалог с такой машиной и решать необходимые ему задачи. Многие интерфейсы операционных систем (или программ) решают лишь половину проблемы, то есть пользователь может вести диалог строго по спроектированному программному обеспечению такой машины. При этом, на сегодняшний день ученые и многие разработчики ведут исследования в данном направлении, и пытаются создать полностью уникальный искусственный интеллект, который будет помощником человека.

Однако существует немало устройств, которые имеют довольно серьезную технологию обработки информации. Примером тому является компания CubicRobotics [30] из России, которая имеет уникальную систему VOIS (Voice Intellectual Operation System) [30].

Это единственная компания, которая создала (частично) искусственный интеллект и имеет рабочий прототип.

Выводы и заключение. В нашем мире технологии имеют определенные пределы их развития. Но, не смотря на это, ученые по всему миру пытаются создать прорыв в технологиях, чтобы наши задачи в научном и повседневном мире были намного упрощены.

Наш XXIвек — это век развития всех возможных технологий, именно в наше время разработали тысячи новых устройств, которые бы никогда не появились, если бы у нас не было такой эволюции ЭВМ.

В последнее десятилетие ученые рассматривали большое количество вариантов дальнейшего развития вычислительной техники, вот примеры некоторых из них: (1) биологические; (2) квантовые; (3) оптические; (4) нейрокомпьютеры.

Конечно, на этом развитие технологий не останавливается, с каждым годом вывод полупроводниковой электроники рассматривают разные варианты ее применения.

Современное общество настолько привыкло к новым технологиям и персональным устройствам, что каждый человек из этого общества просто не может обходиться без телефона, планшета, компьютера и т.д. Они настолько облегчают нашу жизнь, что без их использования мы уже не можем обойтись и дня.

Весь наш современный мир состоит из новых электронных устройств, которые окружают нас. Широкое распространение ЭВМ позволило автоматизировать многие процессы во всех сферах деятельности человека.

Таким образом, ЭВМ заняла прочную ключевую позицию в XXI веке, и, несомненно, новые (инновационные) технологии преподнесут человечеству еще много разновидностей персональных компьютеров будущего.

1. Толковый словарь по вычислительным системам. // Под ред. В. Иллингуорта и др.: Пер. с англ. А. К. Белоцкого и др.; Под ред. Е. К. Масловского. — М.: Машиностроение, 1990. — 560 с.

3. Спасский И.Г. Происхождение и история русских счётов. // Историко-математические исследования. — М.: ГИТТЛ, 1952. — № 5. — С.269-420.

4. Угрюмов Е.П. Цифровая схемотехника. — СПб., 2002. — 46 с.

6. Надеждин Н.Я. Томас Эдисон: "Человек изобретающий". — Неформальные биографии. — Майор, 2010. — 191 с.

8. Nancy B. Stern. From Eniac to UNIVAC: An Appraisal of the Eckert-Mauchy Computers. — Digital Press, 1981. — 286 p.

9. Herman H. Goldstine. The Computer from Pascal to von Neumann. — Princeton University Press, 1980. — 365 p.

11. Paul Graham. ANSI Common Lisp. — СПб.: Символ-Плюс, 2012. — 448 с.

12. Роберт В. Себеста. 2.6. Компьютеризация коммерческих записей: язык COBOL. // Основные концепции языков программирования. — 5-е изд. — М.: «Вильямс», 2001. — С.672.

13. Роберт В. Себеста. 2.5. Первый шаг к совершенствованию: язык ALGOL 60. // Основные концепции языков программирования. — 5-е изд. — М.: «Вильямс», 2001. — С.672.

15. Жан М. Рабаи, Ананта Чандракасан, Боривож Николич. Цифровые интегральные схемы. Методология проектирования. — 2-е изд. — М.: Вильямс, 2007. — 912 с.

17. Скотт Мюллер. Глава 6. Оперативная память. // Модернизация и ремонт ПК. — 17-е изд. — М.: Вильямс, 2007. — С.499-572.

22. Луис Герстнер. Кто сказал, что слоны не могут танцевать? Жесткие реформы для выживания компании. — М.: Альпина Паблишер, 2014. — 320 с.

25. Адян С.И., Бахвалов Н.С., Битюцков В.И., Ершов А.П., Кудрявцев Л.Д., Онищик А.Л., Юшкевич А.П.. Математический энциклопедический словарь. // Гл. ред. Прохоров Ю.В.. — М.: Советская энциклопедия, 1988. — 845 с.

26. Ковтанюк Ю.С.. Библия пользователя ПК. — М.: Диалектика, 2007. — 992 с.

29. Жданов А.А. Автономный искусственный интеллект. — М.: БИНОМ. Лаборатория знаний, 2009. — 359 с.

Читайте также: