Abbyy finereader что это

Обновлено: 03.07.2024

Заводя разговор о функциональной начинке FineReader, первым делом следует вкратце рассказать о трех базовых принципах — целостности, целенаправленности и адаптивности (Integrity, Purposefulness and Adaptability, сокращенно IPA), лежащих в основе OCR-решений ABBYY и применяющихся на всех стадиях и уровнях обработки документов. Принципы эти взяты не с потолка и продиктованы многолетними научными исследованиями о зрительном восприятии объектов человеком, и именно благодаря им технологии распознавания ABBYY могут принимать решения, самообучаться и эволюционировать.

Согласно первому правилу — принципу целостности (integrity) — наблюдаемый объект всегда рассматривается как целое, состоящее из множества взаимосвязанных частей. Принцип целенаправленности (purposefulness) говорит, что любая интерпретация данных должна преследовать какую-то цель. Таким образом, распознавание — это процесс выдвижения гипотез обо всем объекте целиком и целенаправленная их проверка. Третий принцип — адаптивности (adaptability) — подразумевает способность системы к самостоятельному обучению и умению использовать ранее накопленные знания об объектах. Полученная при распознавании информация упорядочивается, сохраняется и используется впоследствии при решении аналогичных задач.


Базовые принципы технологий распознавания текста ABBYY

В соответствии с ключевыми положениями IPA, разбираемый ABBYY FineReader фрагмент изображения, согласно принципу целостности, будет интерпретирован как некий объект (символ), только если на нем присутствуют все структурные элементы с соответствующими взаимосвязями. При этом система выдвигает ряд гипотез относительно того, на что похож обнаруженный объект, затем они целенаправленно проверяются с использованием принципа адаптивности, подразумевающего наличие накопленных ранее сведений о возможных начертаниях символа в распознаваемом документе.

На этапе предварительной обработки и анализа графических данных перед любой OCR-системой стоят две основные задачи: подготовка изображения к процедурам распознавания и выявление логической структуры документа — с тем, чтобы в дальнейшем иметь возможность воссоздать ее в электронном виде.

Для решения первой задачи в ABBYY FineReader задействован механизм бинаризации, то есть преобразования цветного или полутонового образа в монохромный (глубина цвета 1 бит). Бинаризация существенно ускоряет процесс анализа графических элементов. В случае обработки документов с подложенными текстурами и фоновыми рисунками в дело вступает система адаптивной бинаризации (Adaptive Binarization, AB), исследующая яркость фона и насыщенность черного цвета на протяжении всей строки или слова и подбирающая оптимальные параметры преобразования для каждого фрагмента изображения по отдельности.


Без обработки процедурой адаптивной бинаризации этот документ может быть распознан с ошибками


Обобщенная блок-схема алгоритма процедуры адаптивной бинаризации

С точки зрения технической реализации идея AB заключается в использовании обратной связи для оценки качества преобразования того или иного участка изображения. Если система видит, что после бинаризации появляется куча мелких элементов и ломаных кривых, не представляющих связные области, похожие на символы, то она автоматически корректирует порог бинаризации на конкретном участке до тех пор, пока не останется картинка, похожая на чистый текст. В случае обработки текстов со сложным фоном могут слушаться погрешности, и от этого никуда не деться.

Вторая задача в ABBYY FineReader решается с использованием алгоритмов многоуровневого анализа документов (Multilevel Document Analysis, MDA), осуществляющих разбор последних поэтапно, сверху вниз, посредством деления страниц на объекты низших уровней вплоть до отдельных символов. При этом обработка изображений осуществляется в полном соответствии с упомянутыми выше принципами IPA: в первую очередь выдвигаются гипотезы относительно типов обнаруженных объектов, затем они целенаправленно проверяются с учетом зафиксированных ранее особенностей данного документа.


Иерархическая структура документа

Ключевую роль в процессе предварительного анализа изображения и последующей сборки обработанных данных в единое целое играет адаптивная технология распознавания документов ADRT (Adaptive Document Recognition Technology). Лежащие в ее основе алгоритмы «смотрят» на контекст документа, находят общие структурные элементы, выявляют связи между ними и сохраняют полученные сведения для использования на финальных этапах синтеза либо экспорта данных в выбранный пользователем формат. Система распознает колонтитулы, нумерацию страниц, разноуровневые заголовки, подписи к картинкам, а также стили шрифтов и прочие элементы. ADRT буквально «понимает» структуру документа и «знает», где должны находиться те или иные элементы, в каком порядке и в каком формате. Так, например, верхний колонтитул будет воссоздан как настоящее поле колонтитула при конвертировании документа в Word, и пользователь при необходимости сможет отредактировать или удалить его на всех страницах одновременно.


Упрощенная схема работы классификатора

В OCR-решениях ABBYY задействованы шесть классификаторов — растровый, признаковый, признаковый дифференциальный, контурный, структурный и структурный дифференциальный, применяющиеся в зависимости от контекста документа, входных параметров изображения и задач распознавания. Набор используемых классификаторов во многом зависит от сложности обрабатываемого изображения и результатов первого прохода распознавания.

Рассмотрим вкратце свойства и особенности каждого из перечисленных классификаторов.

Растровый классификатор. Один из самых простых и быстрых классификаторов, принцип действия которого основан на прямом сравнении изображения символа с эталоном. Степень несходства при этом вычисляется как количество несовпадающих пикселей. Для обеспечения приемлемой точности растрового классификатора требуется предварительная обработка изображения: нормализация размера, наклона и толщины штриха. Эталон для каждого класса обычно получают, усредняя изображения символов обучающей выборки. В OCR-решениях ABBYY растровый классификатор, как правило, используется на начальных этапах распознавания для оперативного порождения предварительного списка гипотез.

Признаковый классификатор. Логика работы этого классификатора заключается в формировании для каждого изображения символа N-мерного вектора признаков и его последующем сравнении с набором эталонных векторов той же размерности. Формирование вектора (извлечение признаков) производится во время анализа предварительно подготовленного изображения. Эталон для каждого класса получают путем аналогичной обработки символов обучающей выборки. Назначение признакового классификатора — то же, что у растрового: быстрое порождение списка предварительных гипотез.


Блок-схема работы признакового классификатора

Признаковый дифференциальный классификатор. В задачи этого модуля входит обработка похожих друг на друга объектов, таких, например, как буква «m» и сочетание «rn». Он анализирует только те области изображения, где может находиться информация, позволяющая отдать предпочтение одному из вариантов. Так, в случае с «m» и «rn» ключом к ответу служит наличие и ширина разрыва в месте касания предполагаемых букв. Признаковый дифференциальный классификатор представляет собой набор признаковых классификаторов, оперирующих полученными для каждой пары схожих символов эталонами.

Контурный классификатор. Первоначально был создан и использовался для распознавания рукописного текста средствами ICR-технологий (Intelligent Character Recognition), затем был успешно применен и для обработки печатных документов. Механизм работы во многом схож с принципом действия признакового классификатора, а различие состоит в том, что для извлечения признаков контурный классификатор использует контуры, предварительно выделенные на изображении символа.

Структурно-дифференциальный классификатор. Как и признаково-дифференциальный, этот классификатор решает задачи различения похожих объектов, например таких, как символы C и G. Анализируя соответствующие части изображения, вычисляя значения признаков, структурно-дифференциальный классификатор позволяет различать каждую конкретную пару символов, опираясь на накопленные при обучении сведения. Характеризуется высокой точностью распознавания и требовательностью к вычислительным ресурсам компьютера. Используется в основном для обработки тех пар символов, которые не удалось хорошо различить признаковым дифференциальным классификатором.

По приведенным выше рисункам видно, насколько внушительным может быть объем генерируемых классификаторами на каждом логическом уровне документа гипотез. С целью оптимизации проверки оных в ABBYY FineReader задействован алгоритм обработки, предусматривающий структурирование гипотез в составе многоуровневых структур — моделей различных типов (словарное слово, несловарное слово, арабские цифры, римские цифры, URL, регулярное выражение и проч.). В результате такого структурирования количество подлежащих проверке гипотез существенно сокращается, и последующая проверка происходит максимально быстро и эффективно.

Чтобы читателю было проще вникнуть в механизм структурирования гипотез, рассмотрим его работу на примере слова turn. Предположим, что в процессе обработки данного слова системой было выдвинуто две гипотезы относительно возможного деления на символы: первая гипотеза соответствует прочтению tum, вторая — turn. Распознаватель, обработав изображения символов, предложил для каждого варианта деления некоторый ряд гипотез. Все они упорядочены в рамках структуры, строки которой соответствуют различным моделям.


В приведенном примере произойдет следующее: поскольку оценка гипотез, порожденных моделью английского слова, больше, чем гипотез от модели русского слова, то английские гипотезы попадут в начало списка. Гипотеза чисел будет иметь низкую оценку. После этого активируется проверка по словарю, которая подтвердит, что в словаре английского языка слова tum нет, а turn — есть. Следовательно, гипотеза относительно слова turn приобретет еще больший вес, что позволит ей в итоге оказаться доминирующей, а программе — без ошибок распознать символы. Важно отметить, что в OCR-системах ABBYY для некоторых языков предусмотрены словари и морфологические модели, которые позволяют генерировать все допустимые в языке словоформы. FineReader 11, например, имеет морфологическую поддержку 45 языков.

Реконструкция обработанного документа осуществляется FineReader в два этапа. Первый этап — страничный синтез — запускается на каждой странице сразу после выполнения соответствующих OCR-процедур, второй — документный синтез — начинает работу после распознавания всех страниц документа. Свою лепту на этапе синтеза документа вносит и технология ADRT, общие принципы и методы работы которой были рассмотрены ранее. Повторяясь, скажем, что именно благодаря им OCR-решения ABBYY могут практически «видеть» весь документ целиком и распознавать его не просто как набор символов и элементов, а как организованную, логически структурированную сущность.

Мы рассмотрели базовые аспекты функционирования OCR-систем компании ABBYY — приведенное описание технологий распознавания не претендует на всеобъемлющий обзор. Тем не менее даже перечисленных особенностей архитектуры FineReader достаточно, чтобы оценить потенциал заложенных в основу российской разработки инновационных подходов, совершенствуемых от версии к версии программы.

FineReader развивается, однако фундаментальные принципы целостности, целенаправленности и адаптивности, которым разработчики следуют с первой редакции продукта, по сей день остаются неизменными. Именно они позволяют решениям ABBYY приближаться к логике мышления, свойственной человеку, и справляться с гораздо более сложными задачами, чем распознавание текста. Ярким примером тому является лингвистическая платформа Compreno, о которой мы уже рассказывали.

Хотя авансы, выданные искусственному интеллекту (ИИ) за последние 50 лет, ни на йоту не приблизили «умные» машины к когнитивным возможностям человека, полностью отрицать успехи в данном направлении было бы несправедливо. Наиболее очевидный и яркий пример — шахматы (не говоря уже о более простых играх). Компьютер пока не может имитировать наше мышление, но он вполне способен компенсировать данный пробел большим объемом специализированной памяти и скоростью перебора. Владимир Крамник охарактеризовал игру победившей его в 2006 г. программы Deep Fritz как «нечеловеческую» в том смысле, что она зачастую противоречила устоявшимся (человеческим) правилам стратегии и тактики.

А чуть более года назад очередное детище IBM, в свое время положившей начало триумфальным шахматным победам компьютеров (знаменитый Deep Blue), под названием Watson совершило новый прорыв, с большим отрывом победив сразу двух чемпионов популярной американской викторины Jeopardy. Показательно, однако, что хотя Watson самостоятельно озвучивал ответы, вопросы ему все же передавались в текстовом виде. Это говорит о том, что успехи во многих сферах приложения ИИ — распознавании речи и образов, машинном переводе — достаточно скромны, хотя это и не мешает нам уже сегодня применять их на практике. Наибольшие же успехи, пожалуй, демонстрируют системы оптического распознавания символов (OCR, Optical Character Recognition), с которыми наверняка так или иначе знакомы почти все пользователи ПК. Тем более, что российские разработки в данной области занимают достойное место в мире — я имею в виду ABBYY FineReader.

Немного истории

Базовые принципы

FineReader — единственная в мире OCR-система, которая действует в соответствии с вышеописанными принципами на всех этапах обработки документа. Соответствующая технология носит название IPA — по первым буквам английских терминов. К примеру, согласно принципу целостности, фрагмент изображения будет интерпретироваться как символ, только если в нем присутствуют все структурные части подобных объектов, причем находящиеся в определенных взаимоотношениях. Это помогает заменить перебор большого числа эталонов (в поисках более-менее подходящего) целенаправленной проверкой разумного количества гипотез, причем опираясь на накопленные ранее сведения о возможных начертаниях символа в распознаваемом документе.

Большинство современных OCR действуют именно на этих трех уровнях — символов, слов, страниц, — практикуя, как уже было сказано, подходы сверху-вниз или снизу-вверх. Однако ABBYY, в соответствии с принципами IPA, ввела в FineReader еще один уровень — всего многостраничного документа. Прежде всего это понадобилось для корректного воспроизведения логической структуры, которая в современных документах становится все сложнее. Но есть и дополнительные бонусы: повышение точности и ускорение обработки повторяющихся объектов, более корректная идентификация (а значит, и распознавание) «перетекающих» со страницы на страницу объектов.

Именно для этого и была разработана ADRT (Adaptive Document Recognition Technology) — технология анализа и синтеза документа на логическом уровне. В конечном итоге она помогает сделать результат работы FineReader максимально похожим на оригинал. Для этого анализируется изображение всего документа, а распознанные слова объединяются в группы (кластеры) в зависимости от начертания, окружения и местоположения на странице. Таким образом программа как бы видит «логику» разметки документа и в дальнейшем может унифицировать оформление результата.

  • основной текст;
  • верхние и нижние колонтитулы;
  • номера страниц;
  • заголовки одного уровня;
  • оглавление;
  • текстовые вставки;
  • подписи к рисункам;
  • таблицы;
  • сноски;
  • зоны подписи/печати;
  • шрифты и стили.

Процесс распознавания

Принцип действия РК, или растрового классификатора, основан на попиксельном сравнении изображения символа с эталонами. Последние формируются в результате усреднения изображений из обучающей выборки и приводятся к некой стандартной форме; соответственно, для распознаваемого изображения также предварительно нормализуются размер, толщина элементов, наклон. Этот классификатор отличается простотой реализации, скоростью работы и устойчивостью к дефектам изображений, но обеспечивает сравнительно низкую точность и именно поэтому используется на первом этапе — для быстрого порождения списка гипотез.

Контурный классификатор (КК) представляет собой частный случай ПК и отличается тем, что анализирует контуры предполагаемого символа, выделенные из исходного изображения. В общем случае его точность ниже, чем у полновесного ПК.

Признаковый дифференциальный классификатор (ПДК) также похож на ПК, однако используется исключительно для различения похожих друг на друга объектов, таких как «m» и «rn». Соответственно, он анализирует только те области, где скрываются отличия, а на вход ему подаются не только исходные изображения, но и гипотезы, сформированные на ранних стадиях распознавания. Принцип его работы, однако, несколько отличается от ПК. На этапе обучения в N-мерном пространстве формируются два «облака» (групп точек) возможных значений для каждого из двух вариантов, затем строится гиперплоскость, отделяющая «облака» друг от друга и примерно равноудаленная от них. Результат распознавания зависит от того, в какое полупространство попадает точка, соответствующая исходному изображению.

Сам по себе ПДК не выдвигает гипотез, а лишь уточняет имеющиеся (список которых в общем случае сортируется пузырьковым методом), так что прямая оценка его эффективности не проводится, а косвенно ее приравнивают к характеристикам всего первого уровня OCR-распознавания. Однако понятно, что она зависит от корректности подобранных признаков и представительности выборки эталонов, обеспечение чего является достаточно трудоемкой задачей.

Структурно-дифференциальный классификатор (СДК) первоначально применялся для обработки рукописных текстов. Его задача состоит в различении таких похожих объектов, как «C» и «G». Таким образом, СДК основывается на признаках, характерных для каждой пары символов, процесс его обучения еще сложнее, чем у ПДК, а скорость работы ниже, чем у всех предыдущих классификаторов.

* оценка всего первого уровня OCR-алгоритма ABBYY
** оценка для всего алгоритма после добавления соответствующего классификатора

Все финальные действия выполняются уже именно с гипотезами, построенными по моделям. К примеру, контекстная проверка определит язык документа и сразу же существенно понизит вероятность моделей с использованием неправильных алфавитов, а словарная компенсирует погрешности при неуверенном распознавании некоторых символов: так, слово «turn» присутствует в словаре английского языка — в отличие от «tum» (во всяком случае, оно отсутствует среди популярных). Хотя приоритет словаря выше, чем у любого классификатора, он не обязательно является последней инстанцией, и в общем случае не останавливает дальнейшие проверки: во-первых, как говорилось выше, имеется модель несловарного слова, во-вторых, специальная организация словарей позволяет с высокой долей вероятности предположить, может ли какое-то неизвестное слово относиться к тому или иному языку. Тем не менее, словарная проверка (и полнота словарей) оказывает существенное влияние на результат распознавания, и в тестах самой ABBYY сокращает количество ошибок практически вдвое.

Не только OCR

Впрочем, важное отличие все же имеется: структурный классификатор является обязательным участником процесса — это связано со спецификой рукопечатных символов. Кроме того, ICR предполагает большое число специфических дополнительных проверок: например, не является ли символ зачеркнутым, или действительно ли распознанные символы формируют дату.

ABBYY FineReader на руссском языке идеально подходит тем, кто работает с текстами, которые были сфотографированы, а также старыми печатными изданиями после оцифровки. Даже если понадобится перевести конспект в электронный вид, это программа тоже очень поможет. Производителем софта является российская компания ABBYY. С 2009 года эта программа постоянно удостаивается различных международных наград и премий.


Особенности программы

Abby FineReader – это специальная утилита, которая используется для сканированных бумажных документов и дальнейшего распознавания текста. Программа использует в работе передовые технологические решения по распознаванию и содержит почти 200 словарей на разных языках, которые используют латиницу, кириллицу, а также арабские, армянские знаки, иероглифы.

Программа имеет такие особенности:

  • сканирование. Утилита считывает данные со сканера, который подключен;
  • технология OCR. Она помогает качественно оцифровывать символы с разных языков. Благодаря этой технологии достигается высокая точность распознавания символов – до 99%. К тому же используется система обучения самой программы, благодаря которой улучшается, совершенствуется распознавание, а его качество возрастает;
  • мультиформатность. Данные с бумажного носителя преобразуются в файлы DOC, XLS, PDF и пр. Количество файлов для сохранения варьируется (до 19 штук). То же самое касается и входных файлов;
  • программа предлагается в трех редакциях: Standard, Business и Enterprise;
  • возможность конвертировать как весь документ, так и отдельные страницы;
  • производительность. Происходит автоматическая обработка данных с применением всех ядер CPU. Благодаря этому скорость работы очень высокая. Чтобы распознать одну страницу уходит максимум 15 секунд;
  • сравнение. В двух разных документах с помощью этой программы можно выявить отличия;
  • простой интерфейс. Он выполнен на русском языке и интуитивно понятен любому.

Таким образом, утилита дает возможность качество и быстро получить текст со сфотографированного или отсканированного документа, при этом, не изменяя последовательность страниц и структуру текста. Получаемый файл можно сохранить в разных форматах, просматривать его, редактировать при необходимости, искать в его содержимом необходимую информацию, а также прикреплять документ к электронным письмам.

Хватит гуглить ответы на профессиональные вопросы! Доверьте их экспертам «Клерка». Завалите лучших экспертов своими вопросами, они это любят!


Я занимаюсь разработкой технологий, используемых в продуктах распознавания текста компании ABBYY. Самым известным продуктом (а точнее – семейством продуктов), использующим эти технологии, является FineReader.

Иногда все технологические модули (невидимые пользователю части программы) вместе называют «движком распознавания» («движок» — от английского «Engine»), что не совсем верно – они выполняют не только распознавание символов, но и кучу других действий, подробнее о которых ниже.

Чем занимается программа FineReader?


Сейчас любой из настольных вариантов FineReader может проделать все самостоятельно от получения изображения со сканера, камеры или из готового файла до выдачи результата обработки в файл или в указанное приложение, так, что человек остается «за кадром». Программа сама «распознаёт» всё что нужно (в кавычках, так как при этом программа определяет места расположения текста, таблиц, картинок, OCRит обнаруженные участки с изображённым текстом, формирует документ, который сохраняет в желаемом формате с указанными настройками)




А чем занимается пользователь?



Обычно почти ничем — сперва заказывает работу, а потом её принимает. Иногда пользователя что-то не устраивает в результате автоматической обработки, но в таких случаях типичный пользователь смиренно думает «Не повезло. »

К сожалению, далеко не все знают, что помимо окна «Задача», которое показывается и при запуске, есть другие способы управлять работой программы. Они помогают с помощью человеческого интеллекта преодолеть недостатки и ограничения (иногда принципиальные) искусственного интеллекта программы.

  • почитать «Краткое руководство», «Полное руководство пользователя», online-Справку к программе – там конечно же много букв, но почти все они написаны по делу.
  • прочитать до конца эту статью. В ней гораздо меньше букв, к тому же, автор обещает избавить читателя от страха перед программой и пробудить у него интерес к экспериментам,
  • экспериментировать с программой (единственный пункт, без которого не обойтись) – даже демо-версия позволяет попробовать всё, что нужно при реальной эксплуатации.

С чего начать?

Начать нужно с привычки сохранять результат работы не только в виде документа в целевом формате, но и как документ FineReader, содержащий результаты проделанной работы. Это позволяет работать с большим документом не несколько часов подряд в один подход, а когда удобно и сколько угодно раз, возвращаться к распознанному и вычитанному документу для экспериментов с настройками сохранения и так далее. Все действия с документом FineReader собраны в Меню «Файл».


Нет ничего практичнее хорошей теории, или из чего состоит «распознавание»


Глядя на лаконичные названия задач, например, «Сканировать в PDF», трудно вообразить, сколько всего происходит в промежутке между «Сканировать» и «PDF» (то есть на месте одной буквы «в»). Давайте посмотрим, сколько.
Задача «преобразования документов из растрового представления в редактируемое» (не просто «распознавания») включает следующие основные этапы:

    Получение исходного одно- или многостраничного изображения (со сканера, фотоаппарата или в виде файла), преобразование его в специальное внутреннее представление (для упрощения и ускорения дальнейших операций). В любом случае используется подсистема обработки изображений, понимающая множество внешних форматов как на чтение, так и на запись.

Зачем так много модулей (подсистем)?

Для начала необходимо заметить, что перечислены только основные, а не все. Подсистема сканирования, например, не день и не два писалась, а многие месяцы и даже, возможно, годы. Впрочем, вернёмся к вопросу, обозначенному выше.

Во-первых, проект «Технологии распознавания» и много сложных продуктов на его основе разрабатываются уже не первое десятилетие большими коллективами людей — их работу просто необходимо делить организационно и технологически на части, чтобы разрабатывать каждую более-менее независимо — конечно же, детально описав интерфейсы и правила взаимодействия модулей, чтобы выход предыдущего модуля в цепочке стыковался со входом следующего.

Во-вторых, некоторые продукты могут использовать не все из перечисленных стадий обработки (и реализующих их подсистем), а только некоторые. Например, модуль «Распознаватель» имеет собственные подмодули для обработки печатного и рукописного текста, а его «печатный» под-модуль – ещё и свои под-под-модули для обработки языков со сложной письменностью. Похожая ситуация с модулем разпознавания штрихкодов и кодеками некоторых форматов изображений – некоторые продукты обходятся без них.

Какой результат и зачем нужен пользователю?


Не озадачившись вовремя этим вопросом, можно остаться недовольным даже полностью правильным результатом OCR в узком смысле – когда вроде все буквы найдены и правильно распознаны, но в целом что-то в результате печалит.
Перечислю некоторые из популярных сценариев использования FineReader с особенностями каждого сценария.

Преобразование архива документов-изображений в электронный вид, с максимальным сохранением внешнего вида страниц, но добавлением возможности поиска и копирования небольших фрагментов текста.

Этот сценарий обычно использует сохранение обработанного документа в PDF с видимым изображением страницы (не всегда в полностью оригинальном виде, но по возможности максимально похожим на него) и добавлением «невидимого» распознанного текста, который в PDF-просмотрщиках можно искать, выделять и копировать. На нашем жаргоне этот режим сохранения в PDF называется «Текст под изображением», он наиболее популярен, но это лишь один из 4 режимов сохранения в PDF (на остальных остановлюсь подробнее в статье про сохранение). Ценители формата DjVu также могут использовать аналогичный режим сохранения.

Важное достоинство режима «Текст под изображением» в том, что он требует минимальных знаний о структуре сохраняемого текста, привязывая символы к нужным местам результирующей страницы просто по координатам на исходном изображении. Поэтому неважно, если таблицы не были правильно автоматически детектированы в оригинале (развалившись на кучу текстовых областей), или текст немного нелогично выделился в текстовые области – в результирующем PDF найдётся всё или почти всё, лишь бы символы правильно распознались и собрались в слова.

Создание документа в формате любого из популярных текстовых редакторов (Microsoft Word или OpenOffice/LibreOffice Writer), более-менее похожего на оригинал — для последующего редактирования и/или переиспользования значительных фрагментов в новых документах.

При сохранении в форматы RTF и DOCX (для Word) и ODT (для Writer) поддержаны 4 режима сохранения, отличающихся балансом «точное сохранение вида <-> простота редактирования и копирования содержимого». Я ещё напишу подробнее об их различиях, но общим требованием для разумного вида результата обработки является разумность разметки всех элементов документа в FR — областей и их свойств.

Создание электронной книги на базе сканированной бумажной книги.

Во многом похож на предыдущий, но в силу упрощённой модели документа в форматах электронных книг, ограничений средств их редактирования и показа после FineReader, иногда требует больше внимания к некоторым мелочам.

Читайте также: