Чем база данных отличается от файловой системы

Обновлено: 03.07.2024

В ключевое отличие между файловой системой и базой данных заключается в том, что файловая система управляет только физическим доступом, тогда как база данных управляет как физическим, так и логическим

В ключевое отличие между файловой системой и базой данных заключается в том, что файловая система управляет только физическим доступом, тогда как база данных управляет как физическим, так и логическим доступом к данным.

1. Обзор и основные отличия

2. Что такое файловая система

3. Что такое база данных

Что такое файловая система?

Как упоминалось выше, типичная файловая система хранит электронные данные в наборе файлов. Если файл состоит только из одного файла, то это плоский файл. Они содержат значения в каждой строке, разделенные специальным разделителем, например запятыми. Чтобы запросить некоторые случайные данные, сначала необходимо проанализировать каждую строку и загрузить ее в массив во время выполнения. Для этого файл следует читать последовательно, поскольку в файлах нет механизма управления. Поэтому это довольно неэффективно и требует много времени.

На пользователя возлагается определенная нагрузка, такая как поиск необходимого файла, просмотр записей построчно, проверка наличия определенных данных и запоминание того, какие файлы / записи редактировать. Пользователь либо должен выполнять каждую задачу вручную, либо должен написать сценарий, который выполняет их автоматически с помощью возможностей управления файлами операционной системы. По этим причинам файловые системы легко уязвимы для серьезных проблем, таких как несогласованность, неспособность поддерживать параллелизм, изоляция данных, угрозы целостности и отсутствие безопасности.

Что такое база данных?

Существует несколько типов баз данных, таких как аналитические базы данных, хранилища данных и распределенные базы данных. Базы данных или, если быть более точным, реляционные базы данных содержат таблицы, и они состоят из строк и столбцов, во многом как электронные таблицы в Excel. Каждый столбец соответствует атрибуту, а каждая строка представляет одну запись. Например, в базе данных, в которой хранится информация о сотрудниках компании, столбцы могут содержать имя сотрудника, идентификатор сотрудника и зарплату, а одна строка представляет одного сотрудника. Большинство баз данных поставляется с системой управления базами данных (СУБД), которая упрощает создание, управление и организацию данных.

В чем разница между файловой системой и базой данных?

Структура файловой системы проста, тогда как структура базы данных сложна. Кроме того, избыточность в файловой системе выше, чем в базе данных. Данные в файловой системе могут быть противоречивыми. Когда данные находятся в нескольких местах и ​​необходимо внести изменения, необходимо проверить всю систему на предмет обновления. В базе данных необходимо делать только одноразовые обновления. Остальные данные обновятся автоматически. Таким образом, база данных поддерживает согласованность данных. Хотя большинство операционных систем предоставляют графические пользовательские интерфейсы; файловая система выполняет большинство задач, таких как сохранение, получение и поиск вручную. Но база данных предоставляет автоматизированные методы для выполнения этих задач.

Более того, совместное использование данных в файловой системе затруднено, потому что пользователь должен найти местоположение файла и т. Д., Но это простой процесс при использовании базы данных. Кроме того, файловая система не очень безопасна. Следовательно, это может привести к повреждению файлов. С другой стороны, использование базы данных более безопасно. В отличие от файловой системы, база данных обеспечивает резервное копирование и восстановление при необходимости.

Вопрос № 16. Отличие баз данных от файловых систем

Уровень базы данных существенно выше, чем уровень файловой системы. Для хранения элементов баз данных используется файловая система, а для хранения элементов файловой системы используются физические носители. Многие современные системы включают специальные функции, необходимые для работы с базами данных. При работе с базами данных пользователь имеет более широкие возможности, чем при работе с файловой системой. Файловая система имеет древовидную структуру, а возможности связей элементов сильно ограничены. База данных может строиться в соответствии с сетевой моделью, поэтому в базе данных можно описывать более сложные и разнообразные объекты.

В отличие от файловых систем СУБД имеют следующие функции

  1. Непосредственное управление данными во внешней памяти

Эта функция включает обеспечение необходимых структур внешней памяти как для хранения данных, непосредственно входящих в БД, так и для служебных целей, например, для ускорения доступа к данным в некоторых случаях (обычно для этого используются индексы). В некоторых реализациях СУБД активно используются возможности существующих файловых систем, в других работа производится вплоть до уровня устройств внешней памяти. Но подчеркнем, что в развитых СУБД пользователи в любом случае не обязаны знать, использует ли СУБД файловую систему, и если использует, то, как организованы файлы. В частности, СУБД поддерживает собственную систему именования объектов БД.

СУБД обычно работают с БД значительного размера; по крайней мере, этот размер обычно существенно больше доступного объема оперативной памяти. Понятно, что если при обращении к любому элементу данных будет производиться обмен с внешней памятью, то вся система будет работать со скоростью устройства внешней памяти. Практически единственным способом реального увеличения этой скорости является буферизация данных в оперативной памяти. При этом, даже если операционная система производит общесистемную буферизацию (как в случае ОС UNIX), этого недостаточно для целей СУБД, которая располагает гораздо большей информацией о полезности буферизации той или иной части БД. Поэтому в развитых СУБД поддерживается собственный набор буферов оперативной памяти с собственной дисциплиной замены буферов.

То свойство, что каждая транзакция начинается при целостном состоянии БД и оставляет это состояние целостным после своего завершения, делает очень удобным использование понятия транзакции как единицы активности пользователя по отношению к БД. При соответствующем управлении параллельно выполняющимися транзакциями со стороны СУБД каждый из пользователей может в принципе ощущать себя единственным пользователем СУБД (на самом деле, это несколько идеализированное представление, поскольку в некоторых случаях пользователи многопользовательских СУБД могут ощутить присутствие своих коллег).

Существует несколько базовых алгоритмов сериализации транзакций. В централизованных СУБД наиболее распространены алгоритмы, основанные на синхронизационных захватах объектов БД. При использовании любого алгоритма сериализации возможны ситуации конфликтов между двумя или более транзакциями по доступу к объектам БД. В этом случае для поддержания сериализации необходимо выполнить откат (ликвидировать все изменения, произведенные в БД) одной или более транзакций. Это один из случаев, когда пользователь многопользовательской СУБД может реально ощутить присутствие в системе транзакций других пользователей.

Одним из основных требований к СУБД является надежность хранения данных во внешней памяти. Под надежностью хранения понимается то, что СУБД должна быть в состоянии восстановить последнее согласованное состояние БД после любого аппаратного или программного сбоя. Обычно рассматриваются два возможных вида аппаратных сбоев: так называемые мягкие сбои, которые можно трактовать как внезапную остановку работы компьютера (например, аварийное выключение питания), и жесткие сбои, характеризуемые потерей информации на носителях внешней памяти. Примерами программных сбоев могут быть: аварийное завершение работы СУБД (по причине ошибки в программе или в результате некоторого аппаратного сбоя) или аварийное завершение пользовательской программы, в результате чего некоторая транзакция остается незавершенной. Первую ситуацию можно рассматривать как особый вид мягкого аппаратного сбоя; при возникновении последней требуется ликвидировать последствия только одной транзакции.

Понятно, что в любом случае для восстановления БД нужно располагать некоторой дополнительной информацией. Другими словами, поддержание надежности хранения данных в БД требует избыточности хранения данных, причем та часть данных, которая используется для восстановления, должна храниться особо надежно. Наиболее распространенным методом поддержания такой избыточной информации является ведение журнала изменений БД.

При мягком сбое во внешней памяти основной части БД могут находиться объекты, модифицированные транзакциями, не закончившимися к моменту сбоя, и могут отсутствовать объекты, модифицированные транзакциями, которые к моменту сбоя успешно завершились (по причине использования буферов оперативной памяти, содержимое которых при мягком сбое пропадает). При соблюдении протокола WAL во внешней памяти журнала должны гарантированно находиться записи, относящиеся к операциям модификации обоих видов объектов. Целью процесса восстановления после мягкого сбоя является состояние внешней памяти основной части БД, которое возникло бы при фиксации во внешней памяти изменений всех завершившихся транзакций и которое не содержало бы никаких следов незаконченных транзакций. Для того, чтобы этого добиться, сначала производят откат незавершенных транзакций (undo), а потом повторно воспроизводят (redo) те операции завершенных транзакций, результаты которых не отображены во внешней памяти. Этот процесс содержит много тонкостей, связанных с общей организацией управления буферами и журналом.

Разница между файловой системой и СУБД в табличной форме

Основное различие между файловой системой и СУБД состоит в том, что Файловая система помогает хранить коллекцию необработанных файлов данных на жестком диске, тогда как СУБД помогает легко хранить, из

Основное различие между файловой системой и СУБД состоит в том, что Файловая система помогает хранить коллекцию необработанных файлов данных на жестком диске, тогда как СУБД помогает легко хранить, извлекать и манипулировать данными в базе данных.

Ключевые области покрыты

1. Что такое файловая система

2. Что такое СУБД

3. Разница между файловой системой и СУБД

Основные условия

Файловая система, СУБД

Что такое файловая система

Следовательно, существует большая несогласованность данных. Обычно существует вероятность избыточности данных в файловой системе, потому что могут быть дубликаты данных. В целом, файловая система проста в обращении, но у нее есть некоторые недостатки, такие как избыточность данных, несогласованность данных и меньшая безопасность.

Что такое СУБД

Рисунок 1: СУБД, MySQL

Использование СУБД дает множество преимуществ. Это уменьшает избыточность данных с помощью нормализации. Кроме того, несколько пользователей могут одновременно обращаться к СУБД. Таким образом, он поддерживает многопользовательскую среду. Кроме того, это помогает выполнять транзакции, резервное копирование и восстановление и многое другое.

Разница между файловой системой и СУБД в табличной форме

Определение

использование

Файловая система помогает хранить коллекцию файлов необработанных данных на жестком диске. СУБД помогает легко хранить, извлекать и манипулировать данными в базе данных. В этом основное отличие файловой системы от СУБД.

операции

Такие задачи, как хранение, извлечение и поиск выполняются вручную в файловой системе. Поэтому сложно управлять данными с помощью файловой системы. С другой стороны, такие операции, как обновление, поиск, выбор данных, проще в СУБД, потому что это позволяет использовать SQL-запросы.

Согласованность данных

Файловая система имеет несогласованность данных, тогда как СУБД обеспечивает более высокую согласованность данных с помощью нормализации.

Избыточность данных

В файловой системе больше избыточных данных, тогда как в СУБД низкая избыточность данных.

Безопасность

СУБД обеспечивает большую безопасность данных, чем файловая система.

Процесс резервного копирования и восстановления

Процесс резервного копирования и восстановления неэффективен в файловой системе, поскольку восстановить потерянные данные невозможно. Напротив, СУБД имеет сложное резервное копирование и восстановление.

пользователей

Файловая система подходит для обработки данных небольшой организации или отдельных пользователей. С другой стороны, СУБД подходит для средних и крупных организаций или для нескольких пользователей.

сложность

Работа с файловой системой проста, но работа с СУБД сложна.

Примеры

Заключение

Разница между файловой системой и СУБД заключается в том, что файловая система помогает хранить коллекцию необработанных файлов данных на жестком диске, тогда как СУБД помогает легко хранить, извлекать и манипулировать данными в базе данных. Вкратце, СУБД обеспечивает большую гибкость доступа и управления данными, чем файловая система.

База данных – интегральная совокупность данных с централизованным управлением.

Файловая система – часть операционной системы, обеспечивающая управление каталогами и файлами на дисках.

Представление данных в терминах файловой системы и БД – различно.

Уровень базы данных существенно выше, чем уровень файловой системы. Для хранения элементов баз данных используется файловая система, а для хранения элементов файловой системы используются физические носители. Многие современные системы включают специальные функции, необходимые для работы с базами данных. При работе с базами данных пользователь имеет более широкие возможности, чем при работе с файловой системой. Файловая система имеет древовидную структуру, а возможности связей элементов сильно ограничены. База данных может строиться в соответствии с сетевой моделью, поэтому в базе данных можно описывать более сложные и разнообразные объекты.

Реализация файловой системы – гораздо более трудоемкая задача, чем реализация базы данных, так как она находится в тесной взаимосвязи с принципами построения операционной системы. Изменение файловой системы может повлечь за собой коренную переработку операционной системы.

  1. Непосредственное управление данными во внешней памяти
  1. Управление буферами оперативной памяти
  1. Управление транзакциями

То свойство, что каждая транзакция начинается при целостном состоянии БД и оставляет это состояние целостным после своего завершения, делает очень удобным использование понятия транзакции как единицы активности пользователя по отношению к БД. При соответствующем управлении параллельно выполняющимися транзакциями со стороны СУБД каждый из пользователей может в принципе ощущать себя единственным пользователем СУБД (на самом деле, это несколько идеализированное представление, поскольку в некоторых случаях пользователи многопользовательских СУБД могут ощутить присутствие своих коллег).

С управлением транзакциями в многопользовательской СУБД связаны важные понятия сериализации транзакций и сериального плана выполнения смеси транзакций. Под сериализаций параллельно выполняющихся транзакций понимается такой порядок планирования их работы, при котором суммарный эффект смеси транзакций эквивалентен эффекту их некоторого последовательного выполнения. Сериальный план выполнения смеси транзакций - это такой план, который приводит к сериализации транзакций. Понятно, что если удается добиться действительно сериального выполнения смеси транзакций, то для каждого пользователя, по инициативе которого образована транзакция, присутствие других транзакций будет незаметно (если не считать некоторого замедления работы по сравнению с однопользовательским режимом).

Понятно, что в любом случае для восстановления БД нужно располагать некоторой дополнительной информацией. Другими словами, поддержание надежности хранения данных в БД требует избыточности хранения данных, причем та часть данных, которая используется для восстановления, должна храниться особо надежно. Наиболее распространенным методом поддержания такой избыточной информации является ведение журнала изменений БД.

Журнал - это особая часть БД, недоступная пользователям СУБД и поддерживаемая с особой тщательностью (иногда поддерживаются две копии журнала, располагаемые на разных физических дисках), в которую поступают записи обо всех изменениях основной части БД. В разных СУБД изменения БД журнализуются на разных уровнях: иногда запись в журнале соответствует некоторой логической операции изменения БД (например, операции удаления строки из таблицы реляционной БД), иногда - минимальной внутренней операции модификации страницы внешней памяти; в некоторых системах одновременно используются оба подхода.

Во всех случаях придерживаются стратегии "упреждающей" записи в журнал (так называемого протокола Write Ahead Log - WAL). Грубо говоря, эта стратегия заключается в том, что запись об изменении любого объекта БД должна попасть во внешнюю память журнала раньше, чем измененный объект попадет во внешнюю память основной части БД. Известно, что если в СУБД корректно соблюдается протокол WAL, то с помощью журнала можно решить все проблемы восстановления БД после любого сбоя.

Самая простая ситуация восстановления - индивидуальный откат транзакции. Строго говоря, для этого не требуется общесистемный журнал изменений БД. Достаточно для каждой транзакции поддерживать локальный журнал операций модификации БД, выполненных в этой транзакции, и производить откат транзакции путем выполнения обратных операций, следуя от конца локального журнала. В некоторых СУБД так и делают, но в большинстве систем локальные журналы не поддерживают, а индивидуальный откат транзакции выполняют по общесистемному журналу, для чего все записи от одной транзакции связывают обратным списком (от конца к началу).

При мягком сбое во внешней памяти основной части БД могут находиться объекты, модифицированные транзакциями, не закончившимися к моменту сбоя, и могут отсутствовать объекты, модифицированные транзакциями, которые к моменту сбоя успешно завершились (по причине использования буферов оперативной памяти, содержимое которых при мягком сбое пропадает). При соблюдении протокола WAL во внешней памяти журнала должны гарантированно находиться записи, относящиеся к операциям модификации обоих видов объектов. Целью процесса восстановления после мягкого сбоя является состояние внешней памяти основной части БД, которое возникло бы при фиксации во внешней памяти изменений всех завершившихся транзакций и которое не содержало бы никаких следов незаконченных транзакций. Для того, чтобы этого добиться, сначала производят откат незавершенных транзакций (undo), а потом повторно воспроизводят (redo) те операции завершенных транзакций, результаты которых не отображены во внешней памяти. Этот процесс содержит много тонкостей, связанных с общей организацией управления буферами и журналом.

Для восстановления БД после жесткого сбоя используют журнал и архивную копию БД. Грубо говоря, архивная копия - это полная копия БД к моменту начала заполнения журнала (имеется много вариантов более гибкой трактовки смысла архивной копии). Конечно, для нормального восстановления БД после жесткого сбоя необходимо, чтобы журнал не пропал. Как уже отмечалось, к сохранности журнала во внешней памяти в СУБД предъявляются особо повышенные требования. Тогда восстановление БД состоит в том, что, исходя из архивной копии, по журналу воспроизводится работа всех транзакций, которые закончились к моменту сбоя. В принципе, можно даже воспроизвести работу незавершенных транзакций и продолжить их работу после завершения восстановления. Однако в реальных системах это обычно не делается, поскольку процесс восстановления после жесткого сбоя является достаточно длительным.

Международный рынок гипермасштабируемых дата-центров растет с ежегодными темпами в 11%. Основные «драйверы» — предприятия, подключенные устройства и пользователи — они обеспечивают постоянное появление новых данных. Вместе с объемом рынка растут и требования к надежности хранения и уровню доступности данных.

Ключевой фактор, влияющий на оба критерия — системы хранения. Их классификация не ограничивается типами оборудования или брендами. В этой статье мы рассмотрим разновидности хранилищ — блочное, файловое и объектное — и определим, для каких целей подходит каждое из них.



/ Flickr / Jason Baker / CC

Типы хранилищ и их различия

Хранение на уровне блоков лежит в основе работы традиционного жесткого диска или магнитной ленты. Файлы разбиваются на «кусочки» одинакового размера, каждый с собственным адресом, но без метаданных. Пример — ситуация, когда драйвер HDD пишет и считывает блоки по адресам на отформатированном диске. Такие СХД используются многими приложениями, например, большинством реляционных СУБД, в списке которых Oracle, DB2 и др. В сетях доступ к блочным хостам организуется за счет SAN с помощью протоколов Fibre Channel, iSCSI или AoE.

Файловая система — это промежуточное звено между блочной системой хранения и вводом-выводом приложений. Наиболее распространенным примером хранилища файлового типа является NAS. Здесь, данные хранятся как файлы и папки, собранные в иерархическую структуру, и доступны через клиентские интерфейсы по имени, названию каталога и др.


/ Wikimedia / Mennis / CC

При этом следует отметить, что разделение «SAN — это только сетевые диски, а NAS — сетевая файловая система» искусственно. Когда появился протокол iSCSI, граница между ними начала размываться. Например, в начале нулевых компания NetApp стала предоставлять iSCSI на своих NAS, а EMC — «ставить» NAS-шлюзы на SAN-массивы. Это делалось для повышения удобства использования систем.

Что касается объектных хранилищ, то они отличаются от файловых и блочных отсутствием файловой системы. Древовидную структуру файлового хранилища здесь заменяет плоское адресное пространство. Никакой иерархии — просто объекты с уникальными идентификаторами, позволяющими пользователю или клиенту извлекать данные.

Марк Горос (Mark Goros), генеральный директор и соучредитель Carnigo, сравнивает такой способ организации со службой парковки, предполагающей выдачу автомобиля. Вы просто оставляете свою машину парковщику, который увозит её на стояночное место. Когда вы приходите забирать транспорт, то просто показываете талон — вам возвращают автомобиль. Вы не знаете, на каком парковочном месте он стоял.

Большинство объектных хранилищ позволяют прикреплять метаданные к объектам и агрегировать их в контейнеры. Таким образом, каждый объект в системе состоит из трех элементов: данных, метаданных и уникального идентификатора — присвоенного адреса. При этом объектное хранилище, в отличие от блочного, не ограничивает метаданные атрибутами файлов — здесь их можно настраивать.



/ 1cloud

Применимость систем хранения разных типов

Блочные хранилища

Блочные хранилища обладают набором инструментов, которые обеспечивают повышенную производительность: хост-адаптер шины разгружает процессор и освобождает его ресурсы для выполнения других задач. Поэтому блочные системы хранения часто используются для виртуализации. Также хорошо подходят для работы с базами данных.

Недостатками блочного хранилища являются высокая стоимость и сложность в управлении. Еще один минус блочных хранилищ (который относится и к файловым, о которых далее) — ограниченный объем метаданных. Любую дополнительную информацию приходится обрабатывать на уровне приложений и баз данных.

Файловые хранилища

Среди плюсов файловых хранилищ выделяют простоту. Файлу присваивается имя, он получает метаданные, а затем «находит» себе место в каталогах и подкаталогах. Файловые хранилища обычно дешевле по сравнению с блочными системами, а иерархическая топология удобна при обработке небольших объемов данных. Поэтому с их помощью организуются системы совместного использования файлов и системы локального архивирования.

Пожалуй, основной недостаток файлового хранилища — его «ограниченность». Трудности возникают по мере накопления большого количества данных — находить нужную информацию в куче папок и вложений становится трудно. По этой причине файловые системы не используются в дата-центрах, где важна скорость.

Объектные хранилища

Что касается объектных хранилищ, то они хорошо масштабируются, поэтому способны работать с петабайтами информации. По статистике, объем неструктурированных данных во всем мире достигнет 44 зеттабайт к 2020 году — это в 10 раз больше, чем было в 2013. Объектные хранилища, благодаря своей возможности работать с растущими объемами данных, стали стандартом для большинства из самых популярных сервисов в облаке: от Facebook до DropBox.

Такие хранилища, как Haystack Facebook, ежедневно пополняются 350 млн фотографий и хранят 240 млрд медиафайлов. Общий объем этих данных оценивается в 357 петабайт.

Хранение копий данных — это другая функция, с которой хорошо справляются объектные хранилища. По данным исследований, 70% информации лежит в архиве и редко изменяется. Например, такой информацией могут выступать резервные копии системы, необходимые для аварийного восстановления.

Но недостаточно просто хранить неструктурированные данные, иногда их нужно интерпретировать и организовывать. Файловые системы имеют ограничения в этом плане: управление метаданными, иерархией, резервным копированием — все это становится препятствием. Объектные хранилища оснащены внутренними механизмами для проверки корректности файлов и другими функциями, обеспечивающими доступность данных.

Плоское адресное пространство также выступает преимуществом объектных хранилищ — данные, расположенные на локальном или облачном сервере, извлекаются одинаково просто. Поэтому такие хранилища часто применяются для работы с Big Data и медиа. Например, их используют Netflix и Spotify. Кстати, возможности объектного хранилища сейчас доступны и в сервисе 1cloud.


После отправки к файлу добавляются необходимые метаданные. Для этого есть такой запрос:


Богатая метаинформация объектов позволит оптимизировать процесс хранения и минимизировать затраты на него. Эти достоинства — масштабируемость, расширяемость метаданных, высокая скорость доступа к информации — делают объектные системы хранения оптимальным выбором для облачных приложений.

Однако важно помнить, что для некоторых операций, например, работы с транзакционными рабочими нагрузками, эффективность решения уступает блочным хранилищам. А его интеграция может потребовать изменения логики приложения и рабочих процессов.

Типы файловых систем

Рядовому пользователю компьютерных электронных устройств редко, но приходится сталкиваться с таким понятием, как «выбор файловой системы». Чаще всего это происходит при необходимости форматирования внешних накопителей (флешек, microSD), установке операционных систем, восстановлении данных на проблемных носителях, в том числе жестких дисках. Пользователям Windows предлагается выбрать тип файловой системы, FAT32 или NTFS, и способ форматирования (быстрое/глубокое). Дополнительно можно установить размер кластера. При использовании ОС Linux и macOS названия файловых систем могут отличаться.

Возникает логичный вопрос: что такое файловая система и в чем ее предназначение? В данной статье дадим ответы на основные вопросы касательно наиболее распространенных ФС.

Что такое файловая система

Обычно вся информация записывается, хранится и обрабатывается на различных цифровых носителях в виде файлов. Далее, в зависимости от типа файла, кодируется в виде знакомых расширений – *exe, *doc, *pdf и т.д., происходит их открытие и обработка в соответствующем программном обеспечении. Мало кто задумывается, каким образом происходит хранение и обработка цифрового массива в целом на соответствующем носителе.

Операционная система воспринимает физический диск хранения информации как набор кластеров размером 512 байт и больше. Драйверы файловой системы организуют кластеры в файлы и каталоги, которые также являются файлами, содержащими список других файлов в этом каталоге. Эти же драйверы отслеживают, какие из кластеров в настоящее время используются, какие свободны, какие помечены как неисправные.

Запись файлов большого объема приводит к необходимости фрагментации, когда файлы не сохраняются как целые единицы, а делятся на фрагменты. Каждый фрагмент записывается в отдельные кластеры, состоящие из ячеек (размер ячейки составляет один байт). Информация о всех фрагментах, как части одного файла, хранится в файловой системе.

Файловая система связывает носитель информации (хранилище) с прикладным программным обеспечением, организуя доступ к конкретным файлам при помощи функционала взаимодействия программ A PI. Программа, при обращении к файлу, располагает данными только о его имени, размере и атрибутах. Всю остальную информацию, касающуюся типа носителя, на котором записан файл, и структуры хранения данных, она получает от драйвера файловой системы.

На физическом уровне драйверы ФС оптимизируют запись и считывание отдельных частей файлов для ускоренной обработки запросов, фрагментации и «склеивания» хранящейся в ячейках информации. Данный алгоритм получил распространение в большинстве популярных файловых систем на концептуальном уровне в виде иерархической структуры представления метаданных (B-trees). Технология снижает количество самых длительных дисковых операций – позиционирования головок при чтении произвольных блоков. Это позволяет не только ускорить обработку запросов, но и продлить срок службы HDD. В случае с твердотельными накопителями, где принцип записи, хранения и считывания информации отличается от применяемого в жестких дисках, ситуация с выбором оптимальной файловой системы имеет свои нюансы.

Основные функции файловых систем

Файловая система отвечает за оптимальное логическое распределение информационных данных на конкретном физическом носителе. Драйвер ФС организует взаимодействие между хранилищем, операционной системой и прикладным программным обеспечением. Правильный выбор файловой системы для конкретных пользовательских задач влияет на скорость обработки данных, принципы распределения и другие функциональные возможности, необходимые для стабильной работы любых компьютерных систем. Иными словами, это совокупность условий и правил, определяющих способ организации файлов на носителях информации.

Основными функциями файловой системы являются:

  • размещение и упорядочивание на носителе данных в виде файлов;
  • определение максимально поддерживаемого объема данных на носителе информации;
  • создание, чтение и удаление файлов;
  • назначение и изменение атрибутов файлов (размер, время создания и изменения, владелец и создатель файла, доступен только для чтения, скрытый файл, временный файл, архивный, исполняемый, максимальная длина имени файла и т.п.);
  • определение структуры файла;
  • поиск файлов;
  • организация каталогов для логической организации файлов;
  • защита файлов при системном сбое;
  • защита файлов от несанкционированного доступа и изменения их содержимого.

VDS Timeweb арендовать

Задачи файловой системы

Функционал файловой системы нацелен на решение следующих задач:

  • присвоение имен файлам;
  • программный интерфейс работы с файлами для приложений;
  • отображение логической модели файловой системы на физическую организацию хранилища данных;
  • поддержка устойчивости файловой системы к сбоям питания, ошибкам аппаратных и программных средств;
  • содержание параметров файла, необходимых для правильного взаимодействия с другими объектами системы (ядро, приложения и пр.).

В многопользовательских системах реализуется задача защиты файлов от несанкционированного доступа, обеспечение совместной работы. При открытии файла одним из пользователей для других этот же файл временно будет доступен в режиме «только чтение».

Вся информация о файлах хранится в особых областях раздела (томах). Структура справочников зависит от типа файловой системы. Справочник файлов позволяет ассоциировать числовые идентификаторы уникальных файлов и дополнительную информацию о них с непосредственным содержимым файла, хранящимся в другой области раздела.

Операционные системы и типы файловых систем

Существует три основных вида операционных систем, используемых для управления любыми информационными устройствами: Windows компании Microsoft, macOS разработки Apple и операционные системы с открытым исходным кодом на базе Linux. Все они, для взаимодействия с физическими носителями, используют различные типы файловых систем, многие из которых дружат только со «своей» операционкой. В большинстве случаев они являются предустановленными, рядовые пользователи редко создают новые дисковые разделы и еще реже задумываются об их настройках.

В случае с Windows все выглядит достаточно просто: NTFS на всех дисковых разделах и FAT32 (или NTFS) на флешках. Если установлен NAS (сервер для хранения данных на файловом уровне), и в нем используется какая-то другая файловая система, то практически никто не обращает на это внимания. К нему просто подключаются по сети и качают файлы.

На мобильных гаджетах с ОС Android чаще всего установлена ФС версии ext4 во внутренней памяти и FAT32 на карточках microSD. Владельцы продукции Apple зачастую вообще не имеют представления, какая файловая система используется на их устройствах – HFS+, HFSX, APFS, WTFS или другая. Для них существуют лишь красивые значки папок и файлов в графическом интерфейсе.

Более богатый выбор у линуксоидов. Но здесь настройка и использование определенного типа файловой системы требует хотя бы минимальных навыков программирования. Тем более, мало кто задумывается, можно ли использовать в определенной ОС «неродную» файловую систему. И зачем вообще это нужно.

Рассмотрим более подробно виды файловых систем в зависимости от их предпочтительного использования с определенной операционной системой.

Файловые системы Windows

Исходный код файловой системы, получившей название FAT, был разработан по личной договоренности владельца Microsoft Билла Гейтса с первым наемным сотрудником компании Марком Макдональдом в 1977 году. Основной задачей FAT была работа с данными в операционной системе Microsoft 8080/Z80 на базе платформы MDOS/MIDAS. Файловая система FAT претерпела несколько модификаций – FAT12, FAT16 и, наконец, FAT32, которая используется сейчас в большинстве внешних накопителей. Основным отличием каждой версии является преодоление ограниченного объема доступной для хранения информации. В дальнейшем были разработаны еще две более совершенные системы обработки и хранения данных – NTFS и ReFS.

FAT (таблица распределения файлов)

Числа в FAT12, FAT16 и FAT32 обозначают количество бит, используемых для перечисления блока файловой системы. FAT32 является фактическим стандартом и устанавливается на большинстве видов сменных носителей по умолчанию. Одной из особенностей этой версии ФС является возможность применения не только на современных моделях компьютеров, но и в устаревших устройствах и консолях, снабженных разъемом USB.

Пространство FAT32 логически разделено на три сопредельные области:

  • зарезервированный сектор для служебных структур;
  • табличная форма указателей;
  • непосредственная зона записи содержимого файлов.

К недостатком стандарта FAT32 относится ограничение размера файлов на диске до 4 Гб и всего раздела в пределах 8 Тб. По этой причине данная файловая система чаще всего используется в USB-накопителях и других внешних носителях информации. Для установки последней версии ОС Microsoft Windows 10 на внутреннем носителе потребуется более продвинутая файловая система.

С целью устранения ограничений, присущих FAT32, корпорация Microsoft разработала обновленную версию файловой системы exFAT (расширенная таблица размещения файлов). Новая ФС очень схожа со своим предшественником, но позволяет пользователям хранить файлы намного большего размера, чем четыре гигабайта. В exFAT значительно снижено число перезаписей секторов, ответственных за непосредственное хранение информации. Функция очень важна для твердотельных накопителей ввиду необратимого изнашивания ячеек после определенного количества операций записи. Продукт exFAT совместим с операционными системами Mac, Android и Windows. Для Linux понадобится вспомогательное программное обеспечение.

NTFS (файловая система новой технологии)

Стандарт NTFS разработан с целью устранения недостатков, присущих более ранним версиям ФС. Впервые он был реализован в Windows NT в 1995 году, и в настоящее время является основной файловой системой для Windows. Система NTFS расширила допустимый предел размера файлов до шестнадцати гигабайт, поддерживает разделы диска до 16 Эб (эксабайт, 10 18 байт ). Использование системы шифрования Encryption File System (метод «прозрачного шифрования») осуществляет разграничение доступа к данным для различных пользователей, предотвращает несанкционированный доступ к содержимому файла. Файловая система позволяет использовать расширенные имена файлов, включая поддержку многоязычности в стандарте юникода UTF, в том числе в формате кириллицы. Встроенное приложение проверки жесткого диска или внешнего накопителя на ошибки файловой системы chkdsk повышает надежность работы харда, но отрицательно влияет на производительность.

ReFS (Resilient File System)

Последняя разработка Microsoft, доступная для серверов Windows 8 и 10. Архитектура файловой системы в основном организована в виде B + -tree. Файловая система ReFS обладает высокой отказоустойчивостью благодаря реализации новых функций:

  • Copy-on-Write (CoW) – никакие метаданные не изменяются без копирования;
  • данные записываются на новое дисковое пространство, а не поверх существующих файлов;
  • при модификации метаданных новая копия хранится в свободном дисковом пространстве, затем система создает ссылку из старых метаданных на новую версию.

Все это позволяет повысить надежность хранения файлов, обеспечивает быстрое и легкое восстановление данных.

Файловые системы macOS

Для операционной системы macOS компания Apple использует собственные разработки файловых систем:

Файловые системы macOS

  1. HFS+, которая является усовершенствованной версией HFS, ранее применяемой на компьютерах Macintosh, и ее более соверешенный аналог APFS. Стандарт HFS+ используется во всех устройствах под управлением продуктов Apple, включая компьютеры Mac, iPod, а также Apple X Server.
  2. Кластерная файловая система Apple Xsan, созданная из файловых систем StorNext и CentraVision, используется в расширенных серверных продуктах. Эта файловая система хранит файлы и папки, информацию Finder о просмотре каталогов, положениях окна и т.д.

Файловые системы Linux

В отличие от ОС Windows и macOS, ограничивающих выбор файловой системы предустановленными вариантами, Linux предоставляет возможность использования нескольких ФС, каждая из которых оптимизирована для решения определенных задач. Файловые системы в Linux используются не только для работы с файлами на диске, но и для хранения данных в оперативной памяти или доступа к конфигурации ядра во время работы системы. Все они включены в ядро и могут использоваться в качестве корневой файловой системы.

Файловая система Линукс

Основные файловые системы, используемые в дистрибутивах Linux:

Ext2, Ext3, Ext4 или Extended Filesystem – стандартная файловая система, первоначально разработанная еще для Minix. Содержит максимальное количество функций и является наиболее стабильной в связи с редкими изменениями кодовой базы. Начиная с ext3 в системе используется функция журналирования. Сегодня версия ext4 присутствует во всех дистрибутивах Linux.

JFS или Journaled File System разработана в IBM в качестве альтернативы для файловых систем ext. Сейчас она используется там, где необходима высокая стабильность и минимальное потребление ресурсов (в первую очередь в многопроцессорных компьютерах). В журнале хранятся только метаданные, что позволяет восстанавливать старые версии файлов после сбоев.

ReiserFS также разработана в качестве альтернативы ext3, поддерживает только Linux. Динамический размер блока позволяет упаковывать несколько небольших файлов в один блок, что предотвращает фрагментацию и улучшает работу с небольшими файлами. Недостатком является риск потери данных при отключении энергии.

XFS рассчитана на файлы большого размера, поддерживает диски до 2 терабайт. Преимуществом системы является высокая скорость работы с большими файлами, отложенное выделение места, увеличение разделов на лету, незначительный размер служебной информации. К недостаткам относится невозможность уменьшения размера, сложность восстановления данных и риск потери файлов при аварийном отключении питания.

Btrfs или B-Tree File System легко администрируется, обладает высокой отказоустойчивостью и производительностью. Используется как файловая система по умолчанию в OpenSUSE и SUSE Linux.

Другие ФС, такие как NTFS, FAT, HFS, могут использоваться в Linux, но корневая файловая система на них не устанавливается, поскольку они для этого не предназначены.

Дополнительные файловые системы

В операционных системах семейства Unix BSD (созданы на базе Linux) и Sun Solaris чаще всего используются различные версии ФС UFS (Unix File System), известной также под названием FFS (Fast File System). В современных компьютерных технологиях данные файловые системы могут быть заменены на альтернативные: ZFS для Solaris, JFS и ее производные для Unix.

Кластерные файловые системы включают поддержку распределенных хранилищ, расширяемость и модульность. К ним относятся:

  • ZFS – «Zettabyte File System» разработана для распределенных хранилищ Sun Solaris OS;
  • Apple Xsan – эволюция компании Apple в CentraVision и более поздних разработках StorNext;
  • VMFS (Файловая система виртуальных машин) разработана компанией VMware для VMware ESX Server;
  • GFS – Red Hat Linux именуется как «глобальная файловая система» для Linux;
  • JFS1 – оригинальный (устаревший) дизайн файловой системы IBM JFS, используемой в старых системах хранения AIX.

Практический пример использования файловых систем

Владельцы мобильных гаджетов для хранения большого объема информации используют дополнительные твердотельные накопители microSD (HC), по умолчанию отформатированные в стандарте FAT32. Это является основным препятствием для установки на них приложений и переноса данных из внутренней памяти. Чтобы решить эту проблему, необходимо создать на карточке раздел с ext3 или ext4. На него можно перенести все файловые атрибуты (включая владельца и права доступа), чтобы любое приложение могло работать так, словно запустилось из внутренней памяти.

Операционная система Windows не умеет делать на флешках больше одного раздела. С этой задачей легко справится Linux, который можно запустить, например, в виртуальной среде. Второй вариант - использование специальной утилиты для работы с логической разметкой, такой как MiniTool Partition Wizard Free . Обнаружив на карточке дополнительный первичный раздел с ext3/ext4, приложение Андроид Link2SD и аналогичные ему предложат куда больше вариантов.

Файловая система для microSD

Флешки и карты памяти быстро умирают как раз из-за того, что любое изменение в FAT32 вызывает перезапись одних и тех же секторов. Гораздо лучше использовать на флеш-картах NTFS с ее устойчивой к сбоям таблицей $MFT. Небольшие файлы могут храниться прямо в главной файловой таблице, а расширения и копии записываются в разные области флеш-памяти. Благодаря индексации на NTFS поиск выполняется быстрее. Аналогичных примеров оптимизации работы с различными накопителями за счет правильного использования возможностей файловых систем существует множество.

Надеюсь, краткий обзор основных ФС поможет решить практические задачи в части правильного выбора и настройки ваших компьютерных устройств в повседневной практике.

Читайте также: